
Noname manuscript No.
(will be inserted by the editor)

Middleware for Wireless Sensor Networks: An Outlook

Luca Mottola · Gian Pietro Picco

Received: date / Accepted: date

Abstract In modern distributed computing, applications are
rarely built directly atop operating system facilities, e.g.,
sockets. Higher-level middleware abstractions and systems
are often employed to simplify the programmer’s chore or
to achieve interoperability. In contrast, real-world wireless
sensor network (WSN) applications are almost always de-
veloped by relying directly on the operating system.

Why is this the case? Does it make sense to include a
middleware layer in the design of WSNs? And, if so, is it
the same kind of software system as in traditional distributed
computing? What are the fundamental concepts, reasonable
assumptions, and key criteria guiding its design? What are
the main open research challenges, and the potential pitfalls?
Most importantly, is it worth pursuing research in this field?

This paper provides a (biased) answer to these and other
research questions, preceded by a brief account on the state
of the art in the field.

1 Introduction and Motivation

Wireless sensor networks (WSNs) are finding their way into
the mainstream. Networked embedded systems sensing from,
and acting on, the environment are increasingly employed as
a bridge between the physical and digital world. To achieve

This work is partially supported by the European Union through the
project makeSense (FP7-ICT-2009-5-258351) and the Cooperating
Objects Network of Excellence (CONET, FP7-2007-2-224053).

Luca Mottola
Swedish Institute of Computer Science
E-mail: luca@sics.se
WWW: www.sics.se/˜luca

Gian Pietro Picco
Department of Information Engineering and Computer Science, Uni-
versity of Trento, Italy
E-mail: gianpietro.picco@unitn.it
WWW: disi.unitn.it/˜picco

this, significant financial resources and man power have gone
in devising efficient technical solutions at all levels, from the
hardware up to the application layers. Among these, mid-
dleware abstractions and systems have been in the focus of
several research efforts [9, 13, 23, 26, 28].

However, unlike mainstream distributed computing, mid-
dleware is not always referred to as such in WSN research.
Current designs favor architectures where the WSN stack
is highly application- or even deployment-specific, rather
than application-agnostic as usual. This is due to the tar-
get hardware: traditional architectures are simply not afford-
able given the scarcity of computing and communication re-
sources. For better resource utilization, layers blur and blend
together, to the point that placing a middleware layer in a
WSN design becomes difficult, even conceptually.

As a consequence, a number of solutions are available in
WSN research that would be traditionally termed as middle-
ware technology, as Section 2 illustrates, but often are not
explicitly named so. These solutions cover a variety of as-
pects: from programming abstractions to component mod-
els and distributed protocols. Yet, most of the real-world
deployments reported in the literature do not leverage this
functionality, and resort to implementing highly customized
mechanisms right atop the operating system (OS).

To understand why this is the case, and what are the re-
search challenges involved, the rest of the paper unfolds as
follows. In Section 3, we briefly report on our direct expe-
rience in applying WSN middleware in a real deployment,
articulating on what it takes to move WSN middleware out
of the research lab into the physical world and on the ben-
efits that can be reaped by doing so. Section 4 distills what
we believe are the most significant open research challenges
in this field; our target readers include both those who build
WSN middleware and those who instead rely on it. In Sec-
tion 5 we widen the scope of the discussion to considera-
tions concerned with the research community and industry

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Software institutes' Online Digital Archive

https://core.ac.uk/display/301006264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Luca Mottola, Gian Pietro Picco

SELECT AVG(light), AVG(temp), location
FROM sensors
SAMPLE PERIOD 2 s FOR 30 s

Fig. 1 Monitoring bird nests using TinyDB.

at large, with the intent to share insights useful towards a
long-term research strategy. We conclude in Section 6 with a
note about two crucial, overarching needs concerning WSN
middleware, namely, how to i) demonstrate its applicability
in the real world, and ii) raise awareness about the pecu-
liarity of its design and implementation w.r.t. mainstream
systems.

2 A Concise Look at the State of the Art

The notion of middleware manifests itself with various facets
in WSN research [9, 13, 26, 28]. For instance, a number of
programming abstractions [23] provide functionality com-
monly deemed as “middleware”, although this term does
not appear in papers and documentation. Moreover, several
WSN component-based approaches exist, in a sense akin
to mainstream component-based middleware. Finally, even
the functionality shipped with the OS is sometimes referred
to as “middleware”, mainly as a result of the different role
taken by WSN OSes compared to traditional networked sys-
tems. We describe next three examples corresponding to these
flavors of WSN middleware.

2.1 WSN Programming Abstractions: TinyDB

Many existing WSN programming abstractions can be re-
garded as providing middleware functionality [27] at vari-
ous levels of abstraction. A first distinction might be drawn
as to whether a given system enables only the specifica-
tion of actions taken by individual devices, or instead allows
one to program the network as a whole—the latter often
referred to as “macroprogramming”. Nevertheless, we ob-
serve that this classification is too coarse-grained and fails
to capture other fundamental characteristics of existing ap-
proaches (e.g., the communication or computation scope a
given abstraction enables) or its intended use (e.g., as stand-
alone programming system vs. building-block abstraction).
In previous work, based on the state of the art, we identified
several dimensions worth considering in this respect [23].

As an example, we describe here TinyDB [20], a query
processing system whose focus is to optimize energy con-
sumption by controlling where, when, and how often data
is sampled. SQL-like queries are submitted by the user at a
base station where the application intelligence resides. The-
re, queries are parsed, optimized, and injected into the WSN.
Upon reception of a query, a WSN node processes the corre-

Fig. 2 RUNES middleware architecture.

sponding data requests by gathering readings as needed, and
funnels the results back to the base station.

Figure 1 shows an example to monitor the presence of
birds in nests [20]. The data model revolves around a sin-
gle sensors table that logically contains one row per node
per instant in time, and one column for each data type the
node can produce (e.g., temperature or light). In the exam-
ple, the average light and temperature around a nest are gath-
ered every 2 s for a total of 30 s. The SELECT, FROM,
and WHERE clauses have the usual SQL semantics, while
SAMPLE PERIOD specifies the query rate and lifetime.

Data collection applications are easily expressed with
TinyDB, as its declarative abstraction helps programmers
focus on the data to retrieve without specifying how to do
so. As a layer sitting between the OS (i.e., TinyOS in this
case) and the application developer, TinyDB is sometimes
referred to as WSN middleware [9]. Moreover, to some ex-
tent it provides interoperability between the WSN and back-
end systems, as it also includes libraries to store the results
of TinyDB queries on standard DBMSes.

2.2 Component-based WSN Middleware: RUNES

Enabling dynamic re-configuration is one of the main moti-
vations for component-based designs in WSNs [19, 21, 24].
The need arises mostly in application scenarios with chang-
ing requirements, where the system must adapt on the fly.
The ability to individually deploy units of functionality thus
becomes a critical need for flexibility and resource efficiency,
as replacing the entire binary running on nodes is an energy-
intensive operation and requires interrupting the normal sys-
tem operation.

The RUNES middleware [11] is representative of this
type of approach, and also provides interoperability among
some hardware/software platforms. Figure 2 depicts the RU-
NES architecture. The foundation is a component-based pro-
gramming model, available to programmers through a mid-
dleware kernel API. This interface is used to build a com-
position of middleware and application-level components
offering the necessary functionality. Rather than providing
a monolithic “layer” as in TinyDB, orthogonal middleware
features are factored out into self-contained components, se-



Middleware for Wireless Sensor Networks: An Outlook 3

lectively deployed according to resource constraints and ap-
plication requirements.

For example, some devices might require only a basic
communication component providing unreliable messaging,
whereas others might require reliable communication, real-
ized on top of the base components. However, these needs
may also arise for the same device at different times, based
on changing application requirements. To address this need,
the RUNES middleware allows the set of components to be
updated at run-time, with the platform-specific kernel im-
plementation managing such dynamic reconfiguration.

2.3 Operating System Libraries: TinyOS and nesC

Operating systems for WSNs are typically simple, provid-
ing basic mechanisms to schedule concurrent tasks and ac-
cess the hardware. This sharply contrasts with conventional
OSes, which are rather complex and support functionality
such as memory protection and user interaction. Moreover,
the communication constructs built into WSN OSes are usu-
ally 1-hop only; more complex patterns must be realized as
intermediate functionality between OS and application, ef-
fectively making a case for a “middleware” layer [18]. In
this respect, a representative example is TinyOS [15] and
the accompanying nesC language.

nesC is an event-driven programming language derived
from C. Applications are built by interconnecting compo-
nents that interact by providing or using interfaces. The func-
tionality encapsulated in each component describes the ac-
tions a node is to perform. Interfaces list one or more func-
tions, tagged as commands or events. Commands are used to
start operations; events are used to collect the results asyn-
chronously. TinyOS manages the scheduling of commands
and events, as well as their interactions with the hardware.

The only communication functionality built into TinyOS
is the Active Message API. This allows messages to be tag-
ged with an identifier specifying which component must pro-
cess them upon reception, in a way similar to TCP/UDP
ports, although limited to 1-hop broadcast and unicast. In
this context, Active Messages play a role similar to sock-
ets in mainstream distributed computing, by providing a ba-
sic building block enabling the development of higher-level
functionality. Multi-hop communication (e.g., data collec-
tion and dissemination) is realized atop Active Messages [2].

3 A First-Hand Example: The TeenyLIME Middleware

To provide the reader with a concrete feel of what can be
attained by WSN middleware and the research challenges
entailed, in this section we focus on a system called Teeny-
LIME [3, 12], for which we have first-hand experience both
w.r.t. its development and real-world use [7, 8].

Fig. 3 The TeenyLIME-based architecture used in [8].

TeenyLIME is based on the tuple space abstraction, a
memory space where processes read/write data in the form
of tuples, shared among nodes within radio range. Besides
operations to insert, read, and withdraw tuples, reactions al-
low for asynchronous notifications when data of interest ap-
pear in the shared tuple space. WSN-specific features are
provided, e.g., to maintain system information about neigh-
bors. TeenyLIME’s abstractions essentially replace the 1-
hop message passing provided by nesC with 1-hop data shar-
ing, and are useful to develop both application- and system-
level mechanisms (e.g., routing or time synchronization).

The effects of this change in communication paradigm
are many. From a qualitative point of view, the sharp de-
coupling provided by data sharing boosts reuse within and
across applications, and leads to code that is inherently less
complex. From a quantitative point of view, the code writ-
ten by the developer is significantly more concise. For in-
stance, we found the size, in lines of source code, of a sim-
plified HVAC (Humidity, Ventilation, Air Conditioning) ap-
plication to be 25-70% smaller with TeenyLIME than with
nesC [12].

Our initial findings with TeenyLIME were confirmed dur-
ing its first real-world deployment, a structural health mon-
itoring system in a medieval tower in Trento, Italy [8]. Fig-
ure 3 shows the architecture we used for such system, based
on a TinyOS implementation of TeenyLIME targeting TMote
Sky nodes [25]. Across the development of the different
functionality, we observed code reductions between 50%
and 80% w.r.t. alternatives in the TinyOS distribution.

Nevertheless, a reduction in the source code size does
not imply only a reduction of the programmer’s effort; it also
yields smaller binary code, and therefore allows one to pack
more functionality in the memory-tight WSN nodes. For in-
stance, the alternatives provided by TinyOS for data col-
lection, data dissemination, and time synchronization would
not have fit together in the 48 KB available on TMote Sky
nodes—despite the code memory taken by TeenyLIME. The-
se considerations prompted us to use it in other deployments,
e.g., closed-loop adaptive control of light levels in an opera-
tional road tunnel [7].

In our experience, WSN middleware is therefore not a
luxury: it is a need, in that it not only simplifies develop-
ment, but also enables an efficient use of program memory.
Nevertheless, harvesting these benefits does not come for
free. For instance, although we essentially kept the same



4 Luca Mottola, Gian Pietro Picco

API, the initial implementation of TeenyLIME [12] under-
went significant changes to meet the requirements of our
structural health monitoring application [8]. Modifications
were required, e.g., to provide efficient memory manage-
ment for the high data rates involved, and to tailor the com-
munication stack to the specific hardware platform—issues
that would not have surfaced had we stopped at simulation
and tabletop experiments.

4 Open Research Challenges

Designing and implementing middleware for WSNs is a re-
search endeavor with many open challenges. In the follow-
ing, we focus on those we deem particularly significant, ba-
sed on our analysis of the state of the art and our own first-
hand experience. Moreover, these challenges are only going
to be exacerbated when WSNs will become key elements
of larger pervasive infrastructures such as Internet of Things
(IoT) or Cyber-Physical Systems (CPS). Therefore, we also
hint at how these scenarios will impact WSN middleware.

Finding the right abstractions—for the right application.
In today’s WSNs, the functionality provided by middleware
is biased towards sense-only, fixed-node applications:

– most programming abstractions, component-based sys-
tems, and OS-level libraries, are geared towards a many-
to-one communication spanning the entire WSN. This
reflects the needs of sense-only applications w.r.t. data
collection, but it is ill-suited for sense-and-react scenar-
ios (e.g., CPS ones), key to WSN integration into indus-
trial practice. Here, communication is also one-to-many
and many-to-many, and focused on subsets of nodes dis-
tinct by role, e.g., sensor vs. actuator. Abstractions ex-
pressly supporting these scenarios are needed;

– despite the many proposed applications where WSN no-
des are attached to mobile entities [17], and the many
networking solutions supporting them, very few middle-
ware systems are designed with mobility in mind. A no-
table exception is Impala [19], which provides mecha-
nisms for delay-tolerant, network-wide reprogramming.
The general trend is however to assume the WSN as en-
tirely composed of fixed nodes. This is surprising, given
the vast literature on middleware for mobile comput-
ing [22]. IoT scenarios, and specifically their emphasis
on the user and her interaction with the environment, are
likely to bring mobility back at the center of the stage of
middleware research.

Finding the right abstractions—for the right developer.
As discussed in Section 2, WSN middleware exists at differ-
ent levels of abstraction. Nevertheless, most of the program-
ming activity in real-world deployments takes places at the
lowest possible level—right atop the OS. We believe the an-
swer to the question whether WSNs are going to become

commonplace will be determined by the ability to empower
the right user with the right programming abstraction. We
identify three possible types of developer:

– domain experts are usually scientists or engineers, typ-
ically quite skilled with basic IT tools (e.g., databases
and spreadsheets). Their main concern is to have “good
data”, e.g., without noise and accurately timestamped.
They require high-level abstractions simplifying the con-
figuration of the WSN at large, possibly allowing one
to define its software architecture based on pre-canned
functionality. They see the WSN as a macro-component
delivering a useful service, and therefore require the mid-
dleware platform to hide distribution to the maximum
extent. The aforementioned TinyDB system is an attempt
in this direction. However, complexity often strikes back,
as the conceptual gap from the operation of the individ-
ual devices to a network-wide perspective is significant.
Hence, WSN middleware pursuing these goals tends to
be very rigid and difficult to adapt to different needs;

– at the other extreme, WSN geeks are those who, today,
develop the software for, and often deploy, the WSN.
They are typically skilled at embedded systems program-
ming and protocol design, and can deal with complex
languages and systems. Their main concern is to have
“good yield”, i.e., to efficiently funnel as much data as
possible to the collection point. Therefore, they need ab-
stractions that, albeit low-level, simplify intra- and inter-
node communication and computation, supporting both
application- and system-level functionality. Moreover,
they need APIs exposing knobs for tuning the system
performance. These features are currently provided by
the OS, whose programming model however easily dis-
tracts developers from application goals and into low-
level details and protocols. The resulting implementa-
tions become entangled and difficult to maintain and to
port, making the case for a lightweight middleware layer;

– WSN technicians are the middle ground between these
two extremes—one that does not really exist today. We
envision these developers with good IT technical back-
ground and expertise, able to build systems in addition to
using them, but not necessarily acquainted with the intri-
cacies of WSN innards. We believe that the vision of do-
main experts programming WSNs without help is real-
istic only in simple scenarios; more likely, a WSN tech-
nician will help deploy the system and customize it to
application-specific requirements. To achieve this goal,
this kind of developer will require more visibility into
the system operation compared to domain experts. On
the other hand, WSN technicians most likely will not de-
velop system-level or hardware-specific functionality—
the turf of WSN geeks—and will also need mechanisms
for tuning performance based on high-level goals instead



Middleware for Wireless Sensor Networks: An Outlook 5

of low-level knobs. Unfortunately, few approaches cur-
rently support this developer type.

Language vs. middleware, monoliths vs components. The
quest for abstractions and expressive power is only half of
the coin. The other half is their realization in a way that
does not sacrifice performance. WSNs are applied in envi-
ronments and scenarios with significantly different require-
ments (e.g., static vs. mobile, low vs. high data rate, low vs.
high reliability). The need to meet the tight resource bounds
brings the additional requirement of a flexible run-time: a
one-size-fits-all solution with many unused features may not
be practical, given that resources are limited.

We note instead that many existing systems are designed
as languages [23]. In other words, they are meant to be a
full replacement of the underlying OS-based language (e.g.,
nesC) with a higher-level one. This approach places great
expressive power in the hands of the programmer, often at
the expense of flexibility. The user is shielded from low-
level details, and this prevents many opportunities for cus-
tomizing the underlying run-time, which is often monolithic
and cast in stone. If the proposed abstractions are not suited
for the application at hand, the developer must resort to (of-
ten completely) different ones, or go back to implementing
directly on top of the OS facilities.

The OS typically provides a great degree of componen-
tization. As already noted in the case of TinyOS, the set
of run-time components atop the OS effectively plays the
role of a WSN middleware, providing a set of network ab-
stractions [18] offering communication services for applica-
tion development. We maintain that this view, which none-
theless enabled many of the stand-alone sense-only deploy-
ments in the literature, is not sufficient when tackling the
more complex CPS and IoT scenarios. Here, the presence
of in-network actuation and/or richer end-user requirements
significantly complicates development. While WSN geeks
may be well-suited to develop stand-alone WSN applica-
tions, these more sophisticated environments will require
collaboration with domain experts and WSN technicians,
who cannot deal with the lowest abstraction levels.

Striking a balance among these conflicting requirements
is challenging, yet attempts are ongoing. For instance, in
the makeSense [1] project, we target a system featuring
i) an extensible macro-programming language, ii) a founda-
tion of run-time components. This will allow developers to
customize the programming model based on application re-
quirements, by composing abstractions on a per-application
or even per-deployment basis. Only the run-time compo-
nents supporting the abstractions needed in a given scenario
will then be automatically woven together by a dedicated
compiler.

What about cross-layering? Since the inception of the field,
WSNs were expected to challenge traditional layered archi-

tectures through cross-layer designs, for greater efficiency
and better resource utilization [4]—a goal achieved only par-
tially [10]. Cross-layering affects directly WSN middleware,
and brings several technical challenges.

Firstly, as layers blend together, it becomes difficult to
place a middleware “layer” anywhere in the stack. In tradi-
tional architectures, the positioning of middleware is quite
well-defined: above the OS-provided network stack, below
the application, and well-decoupled from both. As we al-
ready mentioned, in WSNs there is really no OS-provided
network stack. Moreover, the application layer often must
include custom communication functionality. Therefore, a
commonly-agreed architecture including a WSN middleware
is difficult to identify, and defining its interfaces towards the
application often results in ad hoc solutions. Put in perspec-
tive, this situation will render standardizing WSN architec-
tures, let apart middleware, quite a challenge.

Secondly, although access the low-level knobs is consid-
ered key to optimize resource consumption [4], this aspect
is mostly neglected by the state of the art, partly because of
the emphasis on monolithic approaches. However, striking
a balance between flexibility and complexity in providing
access to low-level features is probably one of the toughest,
yet most important, problems in WSN middleware.

Enabling reliable, predictable implementations. Today’s
development process for WSNs essentially consists of trial
and error through the design, implementation, and deploy-
ment phases. To some extent, this is unavoidable: given the
interactions between the WSN and the environment, and of-
ten the unpredictability of the latter, it is impossible to antic-
ipate all situations the system may have to deal with. More-
over, gaining an understanding of the root causes of failures
is hard, due to the resource limitations of devices. Never-
theless, this ad hoc approach is very effort-demanding, ulti-
mately hampering commercial adoption of WSNs.

Middleware may alleviate this issue by providing hooks
to make the system behavior verifiable, both statically and at
run-time. Monitoring tools integrated with the middleware
may help developers diagnose problems and better under-
stand their causes. We maintain that this functionality finds
its natural place within the middleware rather than in the OS
or at application level. The former would be too detailed to
enable practical verification or debugging, while the latter
option would severely limit re-use.

Moreover, upon failure, current middleware lets the WSN
break down in unpredictable ways, as the run-time support
provides no guarantees in these situations. Nodes running
out of battery power, for instance, are eventually recognized
and excluded from processing, but no bounds are provided
w.r.t. when this happens. Transient faults (e.g., incorrect sen-
sors readings) are usually not considered. Software errors
are often fatal, yielding an erratic node behavior. To make
things worse, faults at given nodes often affect others, caus-



6 Luca Mottola, Gian Pietro Picco

ing a “domino” effect that ultimately renders the WSN unus-
able. These issues will become more and more important as
WSNs become part of safety-critical systems. WSN middle-
ware should provide known failure modes, along with tools
and abstractions helping developers to understand the sys-
tem behavior in these exceptional circumstances.

Supporting multiple concurrent applications. In existing
real-world experiences, the WSN is always designed, im-
plemented, and deployed with a single application in mind.
On the contrary, traditional networks rely on a common,
application-agnostic foundation of network protocols and
services, serving the needs of heterogeneous applications.

This, however, is not necessarily going to remain the
case. As WSNs become commonplace, it is natural to think
of a WSN node running multiple applications. For instance,
a node equipped with a temperature sensor may originally
be programmed to report its readings to a fire application
running in an office building. However, an HVAC applica-
tion may be later deployed in the same building, relying on
temperature readings to ensure the occupants’ comfort. IoT
scenarios exacerbate the problem, as they often regard WSN
nodes as “clean-slate” components whose behavior can be
transiently redefined according to (multiple) users’ needs.

WSN middleware plays a critical role in enabling the
scenarios above, which require functionality such as resour-
ce virtualization to control concurrent access to resources,
on-the-fly reprogramming to enable on-demand deployment
of multiple applications, and fair management of communi-
cation facilities shared across multiple tasks. These mecha-
nisms are often delegated to the middleware layer, to keep
the OS simple and enable re-use across applications. How-
ever, very little work exists in defining proper APIs and ded-
icated underlying mechanisms to provide such functionality.

Joining the flow: Integrating WSNs into the mainstream.
We already mentioned that WSNs are often stand-alone sen-
se-only systems. The data they gather is funneled to one or
more collection points, and from there made available to the
external world, typically in an ad-hoc fashion. In essence,
WSNs are sharply decoupled and left at the periphery of the
system: the “intelligence” resides outside the WSN and the
system perceives the latter simply as a data source.

On the other hand, many popular scenarios rely on a
different vision where the WSN actually hosts a significant
part of the system intelligence. For instance, CPS are of-
ten thought as enforcing control laws in-network, with ac-
tuators cooperating to close the loop based on the informa-
tion gathered by surrounding sensors. IoT scenarios often
encompass complex peer-to-peer interactions among hetero-
geneous embedded devices. This may possibly rely also on
communication with functionality external to the WSN.

Business processes are another example, which we are
considering in the makeSense project. Industry has several
solutions to describe, implement, and operate business pro-

cesses: the Business Process Modeling Notation (BPMN) [6]
and related technologies are examples. In this context, the
option of interacting with WSNs in an ad-hoc fashion is not
viable. WSN nodes and their capabilities must become first-
class citizens in business process languages. The abstraction
level must be such that a process modeler can specify the
appropriate work-flow without being too distracted by low-
level details concerned with the WSN. Unfortunately, these
aspects have hitherto received little attention.

“How good is my middleware?” In the current practice,
this question is often answered only from a performance
standpoint (e.g., by evaluating the underlying protocols, or
focusing on the memory and computational overhead) and
typically only through simulation—both a relic of what com-
monly done by the networking and systems communities.
However, this has at least two negative effects:

– the impact on programming practice is overlooked. Per-
formance is important, but increasing productivity and
the quality of the resulting implementations should also
be a major goal—the defining one, actually. These as-
pects are currently largely ignored. Moreover, they are
inherently difficult to assess, let apart quantitatively. At
present, the only metric used is the number of lines of
code, which is questionable as an indication of program-
ming effort, and makes it impossible to compare appro-
aches based on different programming paradigms. Finer-
grained metrics, tailored to the specificity of WSNs, are
sorely missing;

– simulations are only a very rough approximation: the
gap w.r.t. a real-world deployment is significant. For in-
stance, fluctuating link qualities have an impact on the
system performance that current simulation models can-
not reproduce. As a result, because of the lack of ev-
idence that WSN middleware actually works in a real
environment, very few of them are used in real-world
deployments. This further hinders the field, by limiting
the necessary feedback from domain experts and the in-
field experience researchers would gain in the deploy-
ment process, as we further elaborate in Section 6.

5 Tactics vs. Strategy and Potential Pitfalls

Here we concern ourselves with considerations less tied to
specific technical challenges, and more to “external” fac-
tors coming from the research community and industry at
large. Our intent is to highlight some issues that should be
considered when planning a long-term research “strategy”—
opposed to the “tactics” possibly necessary to survive in the
short-term—along with potential pitfalls.

Hardware and OS: Cozy or adventurous? WSN research
has been ignited by the availability of cheap hardware plat-
forms along with basic OS services, e.g., the MICA [14]



Middleware for Wireless Sensor Networks: An Outlook 7

node and TinyOS. Subsequent developments in both radios
and MCUs spurred major leaps for the field at large (i.e., not
just middleware). Nevertheless, a frequently-heard comment
is that we are currently “stuck” with TMote Sky-like nodes
and TinyOS. Thus, it is fair to ask to what extent settling on
this platform still enables significant progress. On the other
hand, one could argue that, given the trends in miniaturiza-
tion, more resources (e.g., memory, energy, and bandwidth),
will be packed in the same hardware footprint. Is it then still
meaningful to talk about resource limitations in WSNs?

On one hand, resource limitations are one of the defin-
ing features of WSNs: if one removes, say, memory limita-
tions, a number of “challenges” in WSNs cease to exist. His-
tory has also shown that, along with more power within the
same form factor, we will also see today’s power in smaller
devices—likely to enable new applications, pushing the en-
velope of what one can do with resource-constrained de-
vices. Some of these challenges are, however, really system
issues, where problems are essentially determined by hw/sw
idiosyncrasies. On the other hand, one of the key ideas put
forth by WSNs is the paradigm shift in enabling sensing
(and/or actuation) in a distributed fashion: the issues of how
to design and develop massively decentralized systems that
behave as a coherent component of a bigger system is still
open and does not go away with hardware enhancements.

Unlike with our everyday personal computers, one can-
not just buy a more powerful model and use it with the same
OS and applications. For instance, the most common MCU
in WSNs today is the TI MSP430, specifically the variant
with 48 KB of code memory and 10 KB of RAM aboard
the TMote Sky. Other variants of MSP430 exist with more
code memory, e.g., 96 KB and more. Leveraging this im-
provement (which is, all things considered, rather limited)
may not be immediate, as we recently learned in an ongo-
ing deployment where the application demanded more code
memory. These MSP430 variants are not directly supported
by TinyOS: using them requires changing portions of the
TinyOS source, and in turn our own TeenyLIME middle-
ware. Once more, developing WSN middleware entails chal-
lenges commonly not found in mainstream middleware.

“Have you ever heard of ZigBee?” ZigBee [29] is an indu-
stry-promoted standard for low-power wireless networks that
specifies how applications can access the network stack (e.g.,
as discovery, addressing, security services) and configure
it according to pre-defined, domain-specific profiles. In a
sense, it provides a middleware simplifying application de-
velopment. ZigBee is successfully used in many applica-
tions, especially in the automation landscape, building on
the IEEE 802.15.4 standard for physical and MAC layers.

Academic WSN research and ZigBee appear to inter-
sect only seldom, if at all. In part, this is a consequence
of the platforms chosen. The CC2420, the radio chip most
employed in WSN research because of cost and simplicity

of use, despite being 802.15.4-compliant, does not imple-
ment the MAC layer in hardware. This turned into a bo-
nanza for researchers (free and almost compelled to experi-
ment alternatives) that spurred a wealth of research on low-
power MAC protocols, and also enabled deployments whose
characteristics (e.g., bursty traffic or mobile nodes) do not
match the assumptions of ZigBee. However, this progres-
sively caused industry to lose interest in academic WSN
research, as compliance with standards, especially when it
comes to security, is key to industry applications.

As a consequence, the WSN notion appears today to be
interpreted in two very different ways. Roughly speaking,
in industry it often implies the use of ZigBee-compliant de-
vices, whose network and middleware layers are rigidly de-
fined, and where innovation occurs only in developing new
application-specific hardware. In academia, it often implic-
itly assumes the use of a TMote-like device and TinyOS,
without reference to a specific network/software stack.

It is clear what is the best playground for a middleware
researcher. Nevertheless, it is also clear where the commer-
cial value is: in our experience with big companies, their
interest fades quickly after the issue of ZigBee compliance
w.r.t. research systems is unveiled. Choosing the field to play
determines directly the chances of real-world impact.

Is interoperability an issue? Interoperability is one of the
defining features of mainstream middleware, but so far we
barely touched upon it. To the best of our knowledge, there
is really no WSN middleware available for more than one
OS. The reason is that in the current state of the art interop-
erability is essentially an artificial problem. There is simply
not enough of an installed base to justify an investment in a
layer that papers over OSes, enabling nodes supporting dif-
ferent systems to coexist.

Things are, however, slowly changing. On one hand, vir-
tual machines for WSN nodes are making a comeback af-
ter the early days. For instance, Darjeeling [5] provides a
Java VM for commonly-used MCUs. If this approach is pro-
ven effective, it may realize a “write once, run everywhere”
at language level, with interoperability provided one layer
below the middleware. At the same time, there is a push
from commercial players in the networking arena to bring
IP-based solutions in WSNs (e.g., through the 6LOWPAN
and ROLL initiatives [16]). These efforts aim at simplifying
interoperability across and outside WSNs by relying on vari-
ations of Internet technology. It is unclear, however, whether
this approach is beneficial when applied inside the WSN:
some key aspects of WSN networking are fundamentally
different (e.g., the predominance of many-to-one communi-
cation, instead of the Internet’s one-to-one or one-to-many).

Nevertheless, an IP-based networking layer could sim-
plify the aforementioned goal of integrating the WSN into
mainstream information system, through standardized pro-
tocols and services. Moreover, unlike today’s WSNs, IoT



8 Luca Mottola, Gian Pietro Picco

scenarios demand interoperability, as they envision nodes
from different vendors, managed by different users, to inter-
operate seamlessly.

6 A Final Note: Meeting (and Enduring) the Real World

Designing WSN middleware is an open research topic with
significant challenges, from conceptual ones such as defin-
ing abstractions to simplify programming, down to the sys-
tem optimizations necessary to cope with resource limita-
tions. In conclusion, however, we want to draw the reader’s
attention on two intertwined points we deem crucial.

To really affect the state of the art, WSN middleware
must concretely demonstrate its real-world applicability. Re-
search on WSNs is eminently system-oriented, slowly mo-
ving from labs into full-blown applications. A number of
networking protocols exist that proved to sustain the chal-
lenges of real deployments. Very few WSN middleware sys-
tems can claim the same. Reverting the trend entails not only
an in-field validation, but also a different mindset when de-
signing and implementing WSN middleware: one that takes
into consideration since the beginning the trade-offs between
research speculation and practical issues.

Therefore, the design of WSN middleware cannot be ad-
dressed as “business as usual”. Due to resource constraints
and the specialized nature of WSN applications, middle-
ware designs must take into account aspects typically dis-
regarded in mainstream middleware. For instance, a middle-
ware for large-scale distributed computing can be success-
fully designed without knowledge of the underlying MAC
protocols: the same does not hold for WSNs. Designing and
implementing WSN middleware requires a broad blend of
competences that vertically span several layers of the stack
and, equally important, intersect numerous research com-
munities, ultimately calling for a concerted effort.

References

1. makeSense—Easy Programming of Integrated Wireless Sensor
Networks. www.project-makesense.eu

2. TinyOS TEP 126 - CC2420 radio stack. www.tinyos.net/
tinyos-2.x/doc/html/tep126.html

3. TeenyLIME Web site. teenylime.sf.net
4. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A sur-

vey on sensor networks. IEEE Communication Mag. 40(8) (2002)
5. Brouwers, N., Langendoen, K., Corke, P.: Darjeeling, a feature-

rich VM for the resource poor. In: Proc. of the 7th Conf. on
Embedded Networked Sensor Systems (SENSYS) (2009)

6. Business Process Management Initiative: www.bpmn.org
7. Ceriotti, M., Corrà, M., D’Orazio, L., Doriguzzi, R., Facchin, D.,

Guna, S., Jesi, G., Lo Cigno, R., Mottola, L., Murphy, A., Pescalli,
M., Picco, G.P., Pregnolato, D., Torghele, C.: Is There Light at
the Ends of the Tunnel? Wireless Sensor Networks for Adaptive
Lighting in Road Tunnels. In: Proc. of the 10th Int. Conf. on
Information Processing in Sensor Networks (IPSN) (2011)

8. Ceriotti, M., Mottola, L., Picco, G.P., Murphy, A.L., Guna, S.,
Corrà, M., Pozzi, M., Zonta, D., Zanon, P.: Monitoring heritage
buildings with wireless sensor networks: The Torre Aquila deploy-
ment. In: Proc. of the 8th Int. Conf. on Information Processing in
Sensor Networks (IPSN) (2009)

9. Chatzigiannakis, I., Mylonas, G., Nikoletseas, S.: 50 ways to build
your application: A survey of middleware and systems for wireless
sensor networks. In: Proc. of the Int. Conf. on Emerging Technolo-
gies and Factory Automation (ETFA) (2007)

10. Choi, J.I., Kazandjieva, M., Jain, M., Levis, P.: The case for a net-
work protocol isolation layer. In: Proc. of the 7th Conf. on Em-
bedded Networked Sensor Systems (SENSYS) (2009)

11. Costa, P., Coulson, G., Gold, R., Lad, M., Mascolo, C., Mottola,
L., Picco, G.P., Sivaharan, T., Weerasinghe, N., Zachariadis, S.:
The RUNES middleware for networked embedded systems and its
application in a disaster management scenario. In: Proc. of the
5th Int. Conf. on Pervasive Communications (PerCom) (2007)

12. Costa, P., Mottola, L., Murphy, A.L., Picco, G.P.: Programming
wireless sensor networks with the TeenyLIME middleware. In:
Proc. of the 8th ACM/USENIX Int. Middleware Conf. (2007)

13. Henricksen, K., Robinson, R.: A survey of middleware for sen-
sor networks: state-of-the-art and future directions. In: Proc. of
the 1st ACM Int. Workshop on Middleware for Sensor Networks
(MidSens) (2006)

14. Hill, J., Culler, D.: Mica: A wireless platform for deeply embedded
networks. IEEE Micro 22 (2002)

15. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.:
System architecture directions for networked sensors. In: Proc.
of the 9th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IX) (2000)

16. IP for Smart Objects Alliance: ipso-alliance.org
17. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L.S., Ruben-

stein, D.: Energy-efficient computing for wildlife tracking: Design
tradeoffs and early experiences with ZebraNet. SIGPLAN Not.
37(10) (2002)

18. Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R., Woo,
A., Brewer, E., Culler, D.: The emergence of networking abstrac-
tions and techniques in TinyOS. In: Proc. of 1st Symp. on Net-
worked System Design and Implementation (NSDI) (2004)

19. Liu, T., Martonosi, M.: Impala: A middleware system for manag-
ing autonomic, parallel sensor systems. In: Proc. of the 9th Symp.
on Principles and Practice of Parallel Programming (2003)

20. Madden, S., M.J. Franklin, J.M. Hellerstein, Hong, W.: TinyDB:
An acquisitional query processing system for sensor networks.
ACM Trans. on Database Systems 30(1) (2005)

21. Marrón, P.J., Gauger, M., Lachenmann, A., Minder, D., Saukh,
O., Rothermel, K.: FlexCup: A flexible and efficient code update
mechanism for sensor networks. In: Proc. of the 3rd European
Workshop on Wireless Sensor Networks (EWSN) (2006)

22. Mascolo, C., Capra, L., Emmerich, W.: Mobile computing mid-
dleware. Advanced lectures on networking (2002)

23. Mottola, L., Picco, G.P.: Programming Wireless Sensor Networks:
Fundamental Concepts and State of the Art. ACM Computing
Surveys 43(11) (2011)

24. Mottola, L., Picco, G.P., Amjad, A.: Fine-grained software recon-
figuration in wireless sensor networks. In: Proc. of 5th European
Conf. on Wireless Sensor Networks (EWSN) (2008)

25. Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low
power wireless research. In: Proc. of the 5th Int. Conf. on Infor-
mation Processing in Sensor Networks (IPSN) (2005)

26. Römer, K.: Programming paradigms and middleware for sensor
networks. In: GI/ITG Workshop on Sensor Networks (2004)

27. Sugihara, R., Gupta, R.K.: Programming models for sensor net-
works: A survey. ACM Trans. on Sensor Networks 4(2) (2008)

28. Wang, M.M., Cao, J., Li, J., Das, S.: Middleware for wireless sen-
sor networks: A survey. J. of Computer Science and Technology
23(3), 305–326 (2008)

29. ZigBee Alliance: www.zigbee.org


