1,054 research outputs found

    Single Channel ECG for Obstructive Sleep Apnea Severity Detection using a Deep Learning Approach

    Full text link
    Obstructive sleep apnea (OSA) is a common sleep disorder caused by abnormal breathing. The severity of OSA can lead to many symptoms such as sudden cardiac death (SCD). Polysomnography (PSG) is a gold standard for OSA diagnosis. It records many signals from the patient's body for at least one whole night and calculates the Apnea-Hypopnea Index (AHI) which is the number of apnea or hypopnea incidences per hour. This value is then used to classify patients into OSA severity levels. However, it has many disadvantages and limitations. Consequently, we proposed a novel methodology of OSA severity classification using a Deep Learning approach. We focused on the classification between normal subjects (AHI 30). The 15-second raw ECG records with apnea or hypopnea events were used with a series of deep learning models. The main advantages of our proposed method include easier data acquisition, instantaneous OSA severity detection, and effective feature extraction without domain knowledge from expertise. To evaluate our proposed method, 545 subjects of which 364 were normal and 181 were severe OSA patients obtained from the MrOS sleep study (Visit 1) database were used with the k-fold cross-validation technique. The accuracy of 79.45\% for OSA severity classification with sensitivity, specificity, and F-score was achieved. This is significantly higher than the results from the SVM classifier with RR Intervals and ECG derived respiration (EDR) signal feature extraction. The promising result shows that this proposed method is a good start for the detection of OSA severity from a single channel ECG which can be obtained from wearable devices at home and can also be applied to near real-time alerting systems such as before SCD occurs

    Sleep stage and obstructive apneaic epoch classification using single-lead ECG

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polysomnography (PSG) is used to define physiological sleep and different physiological sleep stages, to assess sleep quality and diagnose many types of sleep disorders such as obstructive sleep apnea. However, PSG requires not only the connection of various sensors and electrodes to the subject but also spending the night in a bed that is different from the subject's own bed. This study is designed to investigate the feasibility of automatic classification of sleep stages and obstructive apneaic epochs using only the features derived from a single-lead electrocardiography (ECG) signal.</p> <p>Methods</p> <p>For this purpose, PSG recordings (ECG included) were obtained during the night's sleep (mean duration 7 hours) of 17 subjects (5 men) with ages between 26 and 67. Based on these recordings, sleep experts performed sleep scoring for each subject. This study consisted of the following steps: (1) Visual inspection of ECG data corresponding to each 30-second epoch, and selection of epochs with relatively clean signals, (2) beat-to-beat interval (RR interval) computation using an R-peak detection algorithm, (3) feature extraction from RR interval values, and (4) classification of sleep stages (or obstructive apneaic periods) using one-versus-rest approach. The features used in the study were the median value, the difference between the 75 and 25 percentile values, and mean absolute deviations of the RR intervals computed for each epoch. The k-nearest-neighbor (kNN), quadratic discriminant analysis (QDA), and support vector machines (SVM) methods were used as the classification tools. In the testing procedure 10-fold cross-validation was employed.</p> <p>Results</p> <p>QDA and SVM performed similarly well and significantly better than kNN for both sleep stage and apneaic epoch classification studies. The classification accuracy rates were between 80 and 90% for the stages other than non-rapid-eye-movement stage 2. The accuracies were 60 or 70% for that specific stage. In five obstructive sleep apnea (OSA) patients, the accurate apneaic epoch detection rates were over 89% for QDA and SVM.</p> <p>Conclusion</p> <p>This study, in general, showed that RR-interval based classification, which requires only single-lead ECG, is feasible for sleep stage and apneaic epoch determination and can pave the road for a simple automatic classification system suitable for home-use.</p

    Noninvasive autonomic nervous system assessment in respiratory disorders and sport sciences applications

    Get PDF
    La presente tesis está centrada en el análisis no invasivo de señales cardíacas y respiratorias, con el objetivo de evaluar la actividad del sistema nervioso autónomo (ANS) en diferentes escenarios, tanto clínicos como no clínicos. El documento está estructurado en tres partes principales. La primera parte consiste en una introducción a los aspectos fisiológicos y metodológicos que serán cubiertos en el resto de la tesis. En la segunda parte, se analiza la variabilidad del ritmo cardiaco (HRV) en el contexto de enfermedades respiratorias, concretamente asma (tanto en niños como en adultos) y apnea del sueño. En la tercera parte, se estudian algunas aplicaciones novedosas del análisis de señales cardiorespiratorias en el campo de las ciencias del deporte. La primera parte está compuesta por los capítulos 1 y 2. El capítulo 1 consiste en una extensa introducción al funcionamiento del sistema nervioso autónomo y las características de las bioseñales analizadas a lo largo de la tesis. Por otro lado, se aborda la patofisiología del asma y la apnea del sueño, su relación con el funcionamiento del ANS y las estrategias de diagnóstico y tratamiento de lasmismas. El capítulo concluye con una introducción a la fisiología del ejercicio, así como al interés en la estimación del volumen tidal y del umbral anaeróbico en el campo de las ciencias del deporte.En cuanto al capítulo 2, se presenta un marco de trabajo para el análisis contextualizado de la HRV. Después de una descripción de las técnicas de evaluación y acondicionamiento de la señal de HRV, el capítulo se centra en el efecto de los latidos ectópicos, la arritmia sinusal respiratoria y la frecuencia respiratoria en el análisis de la HRV.Además, se discute el uso de un índice para la evaluación de la distribución de la potencia en los espectros de HRV, así como diferentes medidas de acoplo cardiorespiratorio.La segunda parte está compuesta por los capítulos 3, 4 y 5, todos ellos relacionados con el análisis de la HRV en enfermedades respiratorias. Mientras que los capítulos 3 y 4 están centrados en asma infantil y en adultos respectivamente, el capítulo 5 aborda la apnea del sueño. El asma es una enfermedad respiratoria crónica que aparece habitualmente acompañada por una inflamación de las vías respiratorias. Aunque afecta a personas detodas las edades, normalmente se inicia en edades tempranas, y ha llegado a constituir una de las enfermedades crónicasmás comunes durante la infancia. Sin embargo, todavía no existe un método adecuado para el diagnóstico de asma en niños pequeños. Por otro lado, el rol fundamental que desempeña el sistema nervioso parasimpático en el control del tono bronco-motor y la bronco-dilatación sugiere que la rama parasimpática del ANS podría estar implicada en la patogénesis del asma. De estemodo, en el capítulo 3 se evalúa el ANS mediante el análisis de la HRV en dos bases de datos diferentes, compuestas por niños en edad pre-escolar clasificados en función de su riesgo de desarrollar asma, o de su condición asmática actual. Los resultados del análisis revelaron un balance simpáticovagal reducido y una componente espectral de alta frecuencia más picuda en aquellos niños con un mayor riesgo de desarrollar asma. Además, la actividad parasimpática y el acoplo cardiorespiratorio se redujeron en un grupo de niños con bajo riesgo de asma al finalizar un tratamiento para bronquitis obstructiva, mientras que estos permanecieron inalterados en aquellos niños con una peor prógnosis.A diferencia de los niños pequeños, en el caso de adultos el diagnóstico de asma se realiza a través de una rutina clínica bien definida. Sin embargo, la estratificación de los pacientes en función de su grado de control de los síntomas se basa generalmente en el uso de cuestionarios auto-aplicados, que pueden tener un carácter subjetivo. Por otro lado, la evaluación de la severidad del asma requiere de una visita hospitalaria y de incómodas pruebas, que no pueden aplicarse de una forma continua en el tiempo. De este modo, en el capítulo 4 se estudia el valor de la evaluación del ANS para la estratificación de adultos asmáticos. Para ello, se emplearon diferentes características extraídas de la HRV y la respiración, junto con varios parámetros clínicos, para entrenar un conjunto de algoritmos de clasificación. La inclusión de características relacionadas con el ANS para clasificar los sujetos atendiendo a la severidad del asma derivó en resultados similares al caso de utilizar únicamente parámetros clínicos, superando el desempeño de estos últimos en algunos casos. Por lo tanto, la evaluación del ANS podría representar un potencial complemento para la mejora de la monitorización de sujetos asmáticos.En el capítulo 5, se analiza la HRV en sujetos que padecen el síndrome de apnea del sueño (SAS) y comorbididades cardíacas asociadas. El SAS se ha relacionado con un incremento de 5 veces en el riesgo de desarrollar enfermedades cardiovasculares (CVD), que podría aumentar hasta 11 veces si no se trata convenientemente. Por otro lado, una HRV alterada se ha relacionado independientemente con el SAS y con numerosos factores de riesgo para el desarrollo de CVD. De este modo, este capítulo se centra en evaluar si una actividad autónoma desbalanceada podría estar relacionada con el desarrollo de CVD en pacientes de SAS. Los resultados del análisis revelaron una dominancia simpática reducida en aquellos sujetos que padecían SAS y CVD, en comparación con aquellos sin CVD. Además, un análisis retrospectivo en una base de datos de sujetos con SAS que desarollarán CVD en el futuro también reveló una actividad simpática reducida, sugiriendo que un ANS desbalanceado podría constituir un factor de riesgo adicional para el desarrollo de CVD en pacientes de SAS.La tercera parte está formada por los capítulos 6 y 7, y está centrada en diferentes aplicaciones del análisis de señales cardiorespiratorias en el campo de las ciencias del deporte. El capítulo 6 aborda la estimación del volumen tidal (TV) a partir del electrocardiograma (ECG). A pesar de que una correcta monitorización de la actividad respiratoria es de gran interés en ciertas enfermedades respiratorias y en ciencias del deporte, la mayor parte de la actividad investigadora se ha centrado en la estimación de la frecuencia respiratoria, con sólo unos pocos estudios centrados en el TV, la mayoría de los cuales se basan en técnicas no relacionadas con el ECG. En este capítulo se propone un marco de trabajo para la estimación del TV en reposo y durante una prueba de esfuerzo en tapiz rodante utilizando únicamente parámetros derivados del ECG. Errores de estimación del 14% en la mayoría de los casos y del 6% en algunos sugieren que el TV puede estimarse a partir del ECG, incluso en condiciones no estacionarias.Por último, en el capítulo 7 se propone una metodología novedosa para la estimación del umbral anaeróbico (AT) a partir del análisis de las dinámicas de repolarización ventricular. El AT representa la frontera a partir de la cual el sistema cardiovascular limita la actividad física de resistencia, y aunque fue inicialmente concebido para la evaluación de la capacidad física de pacientes con CVD, también resulta de gran interés en el campo de las ciencias del deporte, permitiendo diseñar mejores rutinas de entrenamiento o para prevenir el sobre-entrenamiento. Sin embargo, la evaluación del AT requiere de técnicas invasivas o de dispositivos incómodos. En este capítulo, el AT fue estimado a partir del análisis de las variaciones de las dinámicas de repolarización ventricular durante una prueba de esfuerzo en cicloergómetro. Errores de estimación de 25 W, correspondientesa 1 minuto en este estudio, en un 63% de los sujetos (y menores que 50 W en un 74% de ellos) sugieren que el AT puede estimarse de manera no invasiva, utilizando únicamente registros de ECG.<br /

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature

    Machine learning approaches for predicting sleep arousal response based on heart rate variability, oxygen saturation, and body profiles.

    Get PDF
    OBJECTIVE: Obstructive sleep apnea is a global health concern, and several tools have been developed to screen its severity. However, most tools focus on respiratory events instead of sleep arousal, which can also affect sleep efficiency. This study employed easy-to-measure parameters-namely heart rate variability, oxygen saturation, and body profiles-to predict arousal occurrence. METHODS: Body profiles and polysomnography recordings were collected from 659 patients. Continuous heart rate variability and oximetry measurements were performed and then labeled based on the presence of sleep arousal. The dataset, comprising five body profiles, mean heart rate, six heart rate variability, and five oximetry variables, was then split into 80% training/validation and 20% testing datasets. Eight machine learning approaches were employed. The model with the highest accuracy, area under the receiver operating characteristic curve, and area under the precision recall curve values in the training/validation dataset was applied to the testing dataset and to determine feature importance. RESULTS: InceptionTime, which exhibited superior performance in predicting sleep arousal in the training dataset, was used to classify the testing dataset and explore feature importance. In the testing dataset, InceptionTime achieved an accuracy of 76.21%, an area under the receiver operating characteristic curve of 84.33%, and an area under the precision recall curve of 86.28%. The standard deviations of time intervals between successive normal heartbeats and the square roots of the means of the squares of successive differences between normal heartbeats were predominant predictors of arousal occurrence. CONCLUSIONS: The established models can be considered for screening sleep arousal occurrence or integrated in wearable devices for home-based sleep examination

    Continuous intraocular pressure monitoring in patients with obstructive sleep apnea syndrome using a contact lens sensor

    Get PDF
    Purpose To analyse nocturnal intraocular pressure (IOP) fluctuations in patients with obstructive sleep apnea syndrome (OSAS) using a contact lens sensor (CLS) and to identify associations between the OSAS parameters determined by polysomnographic study (PSG) and IOP changes. Method Prospective, observational study. Twenty participants suspected of having OSAS were recruited. During PSG study, IOP was monitored using a CLS placed in the eye of the patient. The patients were classified according to the apnea-hypopnea index (AHI) in two categories, severe (>30) or mild/moderate (<30) OSAS. We evaluated several parameters determined by the IOP curves, including nocturnal elevations (acrophase) and plateau times in acrophase (PTs) defined by mathematical and visual methods. Results The IOP curves exhibited a nocturnal acrophase followed by PTs of varying extents at which the IOP remained higher than daytime measurement with small variations. We found significant differences in the length of the PTs in patients with severe OSAS compared to those with mild/moderate disease (P = 0.032/P = 0.028). We found a positive correlation between PTs and OSAS severity measured by the total number of apneic events (r = 0.681/ 0.751 P = 0.004/0.001) and AHI (r = 0.674/0.710, P = 0.004/0.002). Respiratory-related arousal and oxygen saturation also were associated significantly with the IOP PT length. Conclusions Periods of nocturnal IOP elevation lasted longer in severe OSAS patients than those with mild/moderate OSAS and correlate with the severity of the disease. The length of the nocturnal PT is also associated to respiratory parameters altered in patients with OSAS

    Automatic sleep apnea detection and sleep classification using the ECG and the SpO2 signals

    Get PDF
    Dissertation for a Masters Degree in Computer and Electronic EngineeringThe present work describes the aspects to implement a system that can be used as a swift and accessible screening tool in patients whose complaints are compatible with OSAS (Obstructive Sleep Apnea Syndrome). This system only uses two signals, electrocardiogram (ECG) and the saturation of oxygen in arterial blood flow (SPO2). This system would be applied for the ambulatory automatic screening of OSAS, which currently are done in a Hospital environment, with a substantial waiting list. The system also would overcome the time consuming visual sleep scoring that contributes for the mentioned waiting list. We have developed a system that automatically detects OSAS based on the ECG and SpO2. However this system has to be paired up with another that detects the awake/sleep/REM periods (also based on the ECG), which is also part of this work. This last component has proved to produce results that are complex to classify,for which there is still a lack of research work. However we have described the necessary algorithms, and have used state-of-the-art signal processing tools, such as wavelets
    corecore