9,694 research outputs found

    TITAN: A knowledge-based platform for Big Data workflow management

    Get PDF
    Modern applications of Big Data are transcending from being scalable solutions of data processing and analysis, to now provide advanced functionalities with the ability to exploit and understand the underpinning knowledge. This change is promoting the development of tools in the intersection of data processing, data analysis, knowledge extraction and management. In this paper, we propose TITAN, a software platform for managing all the life cycle of science workflows from deployment to execution in the context of Big Data applications. This platform is characterised by a design and operation mode driven by semantics at different levels: data sources, problem domain and workflow components. The proposed platform is developed upon an ontological framework of meta-data consistently managing processes and models and taking advantage of domain knowledge. TITAN comprises a well-grounded stack of Big Data technologies including Apache Kafka for inter-component communication, Apache Avro for data serialisation and Apache Spark for data analytics. A series of use cases are conducted for validation, which comprises workflow composition and semantic meta-data management in academic and real-world fields of human activity recognition and land use monitoring from satellite images.Universidad de Málaga. Andalucía TECH

    Social media analytics: a survey of techniques, tools and platforms

    Get PDF
    This paper is written for (social science) researchers seeking to analyze the wealth of social media now available. It presents a comprehensive review of software tools for social networking media, wikis, really simple syndication feeds, blogs, newsgroups, chat and news feeds. For completeness, it also includes introductions to social media scraping, storage, data cleaning and sentiment analysis. Although principally a review, the paper also provides a methodology and a critique of social media tools. Analyzing social media, in particular Twitter feeds for sentiment analysis, has become a major research and business activity due to the availability of web-based application programming interfaces (APIs) provided by Twitter, Facebook and News services. This has led to an ‘explosion’ of data services, software tools for scraping and analysis and social media analytics platforms. It is also a research area undergoing rapid change and evolution due to commercial pressures and the potential for using social media data for computational (social science) research. Using a simple taxonomy, this paper provides a review of leading software tools and how to use them to scrape, cleanse and analyze the spectrum of social media. In addition, it discussed the requirement of an experimental computational environment for social media research and presents as an illustration the system architecture of a social media (analytics) platform built by University College London. The principal contribution of this paper is to provide an overview (including code fragments) for scientists seeking to utilize social media scraping and analytics either in their research or business. The data retrieval techniques that are presented in this paper are valid at the time of writing this paper (June 2014), but they are subject to change since social media data scraping APIs are rapidly changing

    Database integrated analytics using R : initial experiences with SQL-Server + R

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Most data scientists use nowadays functional or semi-functional languages like SQL, Scala or R to treat data, obtained directly from databases. Such process requires to fetch data, process it, then store again, and such process tends to be done outside the DB, in often complex data-flows. Recently, database service providers have decided to integrate “R-as-a-Service” in their DB solutions. The analytics engine is called directly from the SQL query tree, and results are returned as part of the same query. Here we show a first taste of such technology by testing the portability of our ALOJA-ML analytics framework, coded in R, to Microsoft SQL-Server 2016, one of the SQL+R solutions released recently. In this work we discuss some data-flow schemes for porting a local DB + analytics engine architecture towards Big Data, focusing specially on the new DB Integrated Analytics approach, and commenting the first experiences in usability and performance obtained from such new services and capabilities.Peer ReviewedPostprint (author's final draft
    corecore