99 research outputs found

    Real-Time Navigation for Bipedal Robots in Dynamic Environments

    Full text link
    The popularity of mobile robots has been steadily growing, with these robots being increasingly utilized to execute tasks previously completed by human workers. For bipedal robots to see this same success, robust autonomous navigation systems need to be developed that can execute in real-time and respond to dynamic environments. These systems can be divided into three stages: perception, planning, and control. A holistic navigation framework for bipedal robots must successfully integrate all three components of the autonomous navigation problem to enable robust real-world navigation. In this paper, we present a real-time navigation framework for bipedal robots in dynamic environments. The proposed system addresses all components of the navigation problem: We introduce a depth-based perception system for obstacle detection, mapping, and localization. A two-stage planner is developed to generate collision-free trajectories robust to unknown and dynamic environments. And execute trajectories on the Digit bipedal robot's walking gait controller. The navigation framework is validated through a series of simulation and hardware experiments that contain unknown environments and dynamic obstacles.Comment: Submitted to 2023 IEEE International Conference on Robotics and Automation (ICRA). For associated experiment recordings see https://www.youtube.com/watch?v=WzHejHx-Kz

    Contextualized Robot Navigation

    Get PDF
    In order to improve the interaction between humans and robots, robots need to be able to move about in a way that is appropriate to the complex environments around them. One way to investigate how the robots should move is through the lens of theatre, which provides us with ways to analyze the robot\u27s movements and the motivations for moving in particular ways. In particular, this has proven useful for improving robot navigation. By altering the costmaps used for path planning, robots can navigate around their environment in ways that incorporate additional contexts. Experimental results with user studies have shown altered costmaps to have a significant effect on the interaction, although the costmaps must be carefully tuned to get the desired effect. The new layered costmap algorithm builds on the established open-source navigation platform, creating a robust system that can be extended to handle a wide range of contextual situations

    Human-robot spatial interaction using probabilistic qualitative representations

    Get PDF
    Current human-aware navigation approaches use a predominantly metric representation of the interaction which makes them susceptible to changes in the environment. In order to accomplish reliable navigation in ever-changing human populated environments, the presented work aims to abstract from the underlying metric representation by using Qualitative Spatial Relations (QSR), namely the Qualitative Trajectory Calculus (QTC), for Human-Robot Spatial Interaction (HRSI). So far, this form of representing HRSI has been used to analyse different types of interactions online. This work extends this representation to be able to classify the interaction type online using incrementally updated QTC state chains, create a belief about the state of the world, and transform this high-level descriptor into low-level movement commands. By using QSRs the system becomes invariant to change in the environment, which is essential for any form of long-term deployment of a robot, but most importantly also allows the transfer of knowledge between similar encounters in different environments to facilitate interaction learning. To create a robust qualitative representation of the interaction, the essence of the movement of the human in relation to the robot and vice-versa is encoded in two new variants of QTC especially designed for HRSI and evaluated in several user studies. To enable interaction learning and facilitate reasoning, they are employed in a probabilistic framework using Hidden Markov Models (HMMs) for online classiffication and evaluation of their appropriateness for the task of human-aware navigation. In order to create a system for an autonomous robot, a perception pipeline for the detection and tracking of humans in the vicinity of the robot is described which serves as an enabling technology to create incrementally updated QTC state chains in real-time using the robot's sensors. Using this framework, the abstraction and generalisability of the QTC based framework is tested by using data from a different study for the classiffication of automatically generated state chains which shows the benefits of using such a highlevel description language. The detriment of using qualitative states to encode interaction is the severe loss of information that would be necessary to generate behaviour from it. To overcome this issue, so-called Velocity Costmaps are introduced which restrict the sampling space of a reactive local planner to only allow the generation of trajectories that correspond to the desired QTC state. This results in a exible and agile behaviour I generation that is able to produce inherently safe paths. In order to classify the current interaction type online and predict the current state for action selection, the HMMs are evolved into a particle filter especially designed to work with QSRs of any kind. This online belief generation is the basis for a exible action selection process that is based on data acquired using Learning from Demonstration (LfD) to encode human judgement into the used model. Thereby, the generated behaviour is not only sociable but also legible and ensures a high experienced comfort as shown in the experiments conducted. LfD itself is a rather underused approach when it comes to human-aware navigation but is facilitated by the qualitative model and allows exploitation of expert knowledge for model generation. Hence, the presented work bridges the gap between the speed and exibility of a sampling based reactive approach by using the particle filter and fast action selection, and the legibility of deliberative planners by using high-level information based on expert knowledge about the unfolding of an interaction

    TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation

    Full text link
    Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex outdoor terrain. To this end, we present TerrainNet, a vision-based terrain perception system for semantic and geometric terrain prediction for aggressive, off-road navigation. The approach relies on several key insights and practical considerations for achieving reliable terrain modeling. The network includes a multi-headed output representation to capture fine- and coarse-grained terrain features necessary for estimating traversability. Accurate depth estimation is achieved using self-supervised depth completion with multi-view RGB and stereo inputs. Requirements for real-time performance and fast inference speeds are met using efficient, learned image feature projections. Furthermore, the model is trained on a large-scale, real-world off-road dataset collected across a variety of diverse outdoor environments. We show how TerrainNet can also be used for costmap prediction and provide a detailed framework for integration into a planning module. We demonstrate the performance of TerrainNet through extensive comparison to current state-of-the-art baselines for camera-only scene prediction. Finally, we showcase the effectiveness of integrating TerrainNet within a complete autonomous-driving stack by conducting a real-world vehicle test in a challenging off-road scenario

    EVORA: Deep Evidential Traversability Learning for Risk-Aware Off-Road Autonomy

    Full text link
    Traversing terrain with good traction is crucial for achieving fast off-road navigation. Instead of manually designing costs based on terrain features, existing methods learn terrain properties directly from data via self-supervision, but challenges remain to properly quantify and mitigate risks due to uncertainties in learned models. This work efficiently quantifies both aleatoric and epistemic uncertainties by learning discrete traction distributions and probability densities of the traction predictor's latent features. Leveraging evidential deep learning, we parameterize Dirichlet distributions with the network outputs and propose a novel uncertainty-aware squared Earth Mover's distance loss with a closed-form expression that improves learning accuracy and navigation performance. The proposed risk-aware planner simulates state trajectories with the worst-case expected traction to handle aleatoric uncertainty, and penalizes trajectories moving through terrain with high epistemic uncertainty. Our approach is extensively validated in simulation and on wheeled and quadruped robots, showing improved navigation performance compared to methods that assume no slip, assume the expected traction, or optimize for the worst-case expected cost.Comment: Under review. Journal extension for arXiv:2210.00153. Project website: https://xiaoyi-cai.github.io/evora

    Multi robot collision avoidance in a shared workspace

    Get PDF
    • …
    corecore