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Abstract

Current human-aware navigation approaches use a predominantly metric representation

of the interaction which makes them susceptible to changes in the environment. In order

to accomplish reliable navigation in ever-changing human populated environments, the

presented work aims to abstract from the underlying metric representation by using Qual-

itative Spatial Relations (QSR), namely the Qualitative Trajectory Calculus (QTC), for

Human-Robot Spatial Interaction (HRSI). So far, this form of representing HRSI has been

used to analyse different types of interactions offline. This work extends this representa-

tion to be able to classify the interaction type online using incrementally updated QTC

state chains, create a belief about the state of the world, and transform this high-level

descriptor into low-level movement commands. By using QSRs the system becomes invari-

ant to change in the environment, which is essential for any form of long-term deployment

of a robot, but most importantly also allows the transfer of knowledge between similar

encounters in different environments to facilitate interaction learning. To create a robust

qualitative representation of the interaction, the essence of the movement of the human in

relation to the robot and vice-versa is encoded in two new variants of QTC especially de-

signed for HRSI and evaluated in several user studies. To enable interaction learning and

facilitate reasoning, they are employed in a probabilistic framework using Hidden Markov

Models (HMMs) for offline classification and evaluation of their appropriateness for the

task of human-aware navigation.

In order to create a system for an autonomous robot, a perception pipeline for the

detection and tracking of humans in the vicinity of the robot is described which serves

as an enabling technology to create incrementally updated QTC state chains in real-time

using the robot’s sensors. Using this framework, the abstraction and generalisability of the

QTC based framework is tested by using data from a different study for the classification

of automatically generated state chains which shows the benefits of using such a high-

level description language. The detriment of using qualitative states to encode interaction

is the severe loss of information that would be necessary to generate behaviour from it.

To overcome this issue, so-called Velocity Costmaps are introduced which restrict the

sampling space of a reactive local planner to only allow the generation of trajectories

that correspond to the desired QTC state. This results in a flexible and agile behaviour
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generation that is able to produce inherently safe paths. In order to classify the current

interaction type online and predict the current state for action selection, the HMMs are

evolved into a particle filter especially designed to work with QSRs of any kind. This

online belief generation is the basis for a flexible action selection process that is based on

data acquired using Learning from Demonstration (LfD) to encode human judgement into

the used model. Thereby, the generated behaviour is not only sociable but also legible

and ensures a high experienced comfort as shown in the experiments conducted. LfD

itself is a rather underused approach when it comes to human-aware navigation but is

facilitated by the qualitative model and allows exploitation of expert knowledge for model

generation. Hence, the presented work bridges the gap between the speed and flexibility

of a sampling based reactive approach by using the particle filter and fast action selection,

and the legibility of deliberative planners by using high-level information based on expert

knowledge about the unfolding of an interaction.

II



Declaration

I, Christian Dondrup, declare that this thesis and the work presented in it are my own
and has been generated by me as the result of my own original research.

I confirm that this work was done wholly while in candidature for a research degree
at the University of Lincoln and that this thesis has not previously been submitted for a
degree or any other qualification at this University or any other institution. I also confirm
that where I have consulted the published work of others, this is always clearly attributed
and that where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work and I have acknowledged
all main sources of help. I confirm that where the thesis is based on work done by myself
jointly with others, I have made clear exactly what the other authors and I contributed
myself which can be found in Appendix A. Parts of this work have been published as:
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—The most exciting phrase to hear in science, the one

that heralds the most discoveries, is not ‘Eureka!’ but

‘That’s funny. . . ’

Isaac Asimov, Professor of Biochemistry/Author

1
Introduction

Automation has always played a big role in the progress of humanity like the invention of

the steam engine leading to the industrial revolution. In the digital age, robots became

ever more popular to do work that is either highly repetitive, requires precise movements,

or is simply too dangerous for humans to fulfil. Recently, there are also more and more

social robots available on the consumer market like Pepper and NAO from Aldebaran1

or Paro2 to only name a few. Hence, there is no doubt that robots are moving into our

homes and workplaces even further than they already have. Thus, the field of Human-

Robot Interaction (HRI) has grown significantly since its birth in the early 1990s. By

now, HRI is a vast field encompassing all kinds of possible interactions like tutoring (e.g.

Vollmer et al. 2009), teaching (e.g. Chang et al. 2010), therapy of children with autism

(e.g. Robins et al. 2005), elder care (e.g. Broekens et al. 2009), rehabilitation (e.g. Gross

et al. 2016), or acceptance in general (e.g. Weiss et al. 2008) to name only a few popular

1http://www.aldebaran.com
2http://www.parorobots.com/
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examples. This thesis focuses on the subfield of Human-Robot Spatial Interaction (HRSI)

which is the study of human(s) and mobile robot(s) locomotion in a confined shared space

and the social signals governing this interaction. Hence, HRSI is the overarching term for

applications like human-aware navigation, human-robot joint motion, etc.

HRSI has gained ever more importance since one of the first publications on human-

aware navigation by Simmons (1996), because moving safely in the presences of humans

does not only increase the robots acceptance (e.g. Gross et al. 2009) but also arguably

makes navigation in populated environments more efficient. Hence, the safe navigation

in the presence of humans is of utmost importance in such environments (Steinfeld et al.

2006). Nowadays, robots are able to navigate safely around static and dynamic obstacles.

However, safe in the context of HRSI does not only mean collision avoidance, but also

producing movement that is perceived as safe by the human – which comes down to factors

like simply giving the human more space when avoiding (e.g. Pacchierotti et al. 2006)

or more subtle factors like producing legible movements according to the definition by

Lichtenthäler et al. (2012): “A robot’s behaviour is legible, if a human can predict the

next actions of the robot and the robot behaviour fulfils the expectations of a human

interaction partner”. For a robot to be a useful tool in daily life, however, it has to be

deployed over long periods of time and therefore has to be able to cope with changes

in its environment. To this end, the presented thesis aims at describing a human-aware

navigation approach that is able to deal with an ever changing world, while still making

informed decisions about the actions to be executed. This deliberation in the face of

constant change has so far not been addressed by the HRSI community.

Possible interactions in HRSI are manifold and range from “simple” avoidance to more

complicated scenarios like guiding or joint tasks like carrying an object between human and

robot. This thesis focuses on the avoidance of humans in everyday environments, which is

the main field of application for human-aware navigation approaches. Two typical example

interactions for this kind of interaction on which the final evaluation of the presented work

focuses in particular are

Pass-by A human and a robot walk along a corridor in opposite directions. At some

point both will meet and have to communicate their goal, negotiate who goes to which

side, who starts the avoidance, or gives up their right of way in cases of partially blocked
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corridors. During the interaction, the behaviour of both has to be legible to the interaction

partner and should respect social norms regarding the execution of the movement like

distance kept, speed, acceleration, etc., but also has to be goal-directed in order to fulfil

the robots primary task at the location it is travelling to.

Path crossing At a crossroads of two corridors, both human and robot try to reach

goals on trajectories perpendicular to each other. Both agents will only be aware of each

other at a very late point in time due to the walls of the building hiding their approach.

When they meet they have to communicate their goal and negotiate who lets the other

pass first. Similar to the pass-by, the behaviour of both has to be legible to the interaction

partner and should respect social norms regarding the execution of the movement like

distance kept, speed, acceleration, etc., but also has to be goal-directed in order to fulfil

the robots primary task at the location it is travelling to.

Looking at these two examples, it becomes obvious that negotiation plays a vital role

in human-aware navigation. This can for example be achieved via prompting (Peters 2011)

or legible movement (Lichtenthäler et al. 2012) to communicate the intention of the robot

and ensure successful HRSI. In addition to the communicative character of motion, the

distance between the two agents and the speed and manner at which they travel greatly

influences the perceived interaction and its task efficiency. Using the various factors that

can be influenced by the robot, e.g. speed, acceleration, distance kept, trajectory executed,

HRSI seeks to optimise the following criteria according to Kruse et al. (2013)

Comfort is the absence of annoyance and stress for humans in interaction with robots.

This also includes perceived safety as it reduces the humans’ stress level.

Naturalness is the similarity between robots and humans in low-level behaviour patterns.

Sociability is the adherence to explicit high-level cultural conventions.

The presented thesis aims at improving this experienced comfort and the perceived

sociability of the robot while interacting with the human. This can be achieved in a

number of ways like modelling geometric constraints (e.g. Ohki et al. 2010), learning from

data (e.g. Luber et al. 2012), etc. but these approaches almost exclusively rely on metric
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representations of the interactions or the space where they take place (Kruse et al. 2013)

which makes them very susceptible to error if this underlying metric representation of the

world changes significantly. This work, on the other hand, aims to present an approach

that is robust to changes in the environment and thus also allows for the easy transfer

of knowledge facilitating interaction learning. Apart from the obvious benefits of the

knowledge transfer, the motivation for this lies in the very nature of human populated

environments – wherever there are humans, the environment is bound to change over time.

As mentioned above, in order to allow robots to reach their full potential they have to be

able to cope with, model (Krajnik et al. 2014), or even exploit changes (Santos et al. 2016)

and cannot rely on a static representation of the environment that might become outdated.

One way of coping with change is to abstract from the underlying metric representation

of the environment completely and build a qualitative model that represents the essence

of a location, action, or interaction. To this end, this work introduces Qualitative Spatial

Relations (QSR) for the use in HRSI to facilitate knowledge transfer.

There are of course other approaches that are agnostic to the actual environment like

cost functions or social force models based on the distance to the human (e.g. Sisbot et al.

2007). The vast majority of these systems, however, are purely reactive which can easily

lead to illegible behaviour because they frequently re-plan their actions which often results

in contrasting behaviours from one second to the other. Due to the missing representation

of the environment, it is therefore impossible to follow a deliberative planning approach

that would facilitate legible behaviour by expressing some form of commitment to a specific

path. These deliberative approaches on the other hand, in addition to the assumption of an

a-priori known static environment, are very costly because they have to consider the whole

environment when planning the next n best actions. To bridge this gap between the legible

behaviour produced by deliberative and the flexibility, speed, and robustness to change

of the reactive approaches, this work aims at using a qualitative representation of the

interactions between a human and a robot. Hence, the system encodes the future unfolding

of an interaction qualitatively and uses a dynamic belief and behaviour generation based

on this model which is flexible enough to switch between different robot behaviours given

a significant change in human behaviour but is also legible, perceived as safe, and ensures

a high experienced comfort of the human interaction partner.
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Figure 1.1: The HRSI loop functioning as a guidance throughout this thesis by showing
the interplay between the human and the behaviour generation framework. Starting with the
perception of the human behaviour and the qualitative state generation, the belief generation
using an online classifier, the model of the interaction initialised with prior knowledge from
observation and/or demonstration used for the classification process, and the generation of
behaviour based on the model and the current belief of the world. This figure is taken apart
and constructed from the bottom up in the following chapters to visualise their contribution to
the system.

Using QSRs for HRSI is a novel approach to representing these interactions in a versa-

tile, human-readable, and generalisable way that was first introduced by Hanheide et al.

(2012) who used it for the analysis of interactions. This thesis builds on a similar descrip-

tion of the interaction, extends it to a state where it can be used for online belief and

behaviour generation and shows how to use it for the control of a mobile robot. Thus,

this framework allows to generalise between different people in similar situations across

different environments, for the possibility of having different models for different groups

of people or individuals, e.g. patients and staff in an elder care home, and to encode

knowledge about the future unfolding of the interaction into an otherwise often reactive

process. Hence, the approach is not only able to generate safe behaviour in the presence of

humans but also shows commitment to a chosen action without requiring costly planning

over a large state space and, therefore, works in real-time. A conceptual overview of the

proposed system can be seen in Figure 1.1. The probabilistic qualitative model needs to

be initialised from recorded data of similar interactions to ensure safe and legible robot

navigation. The robot itself has to be able to perceive humans in order to classify the

interaction type and generate a belief about the current state of the interaction based on

this model. The resulting belief can then be used for low-level behaviour generation in the

form of velocities sent to the robot’s wheels. This figure represents the separate method

chapters of this work by colour coding boxes that are described in conjunction and is used

to guide the reader throughout the chapters by visualising their individual contribution

to the overall system and showing how the system develops from the bottom up.
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Last, but not least, in order to achieve the desired legibility, safety, and experienced

comfort, this work presents another popular principle of robotics which is currently un-

derused in HRSI – Learning from Demonstration (LfD). While there are many other

approaches to achieve these goals, such as tuning cost functions (e.g. Lu et al. 2013),

defining environmental constraints (e.g. Morales et al. 2015), or learning from data sets

(e.g. Ziebart et al. 2009), LfD offers the unique opportunity to include human judgement

into the robot’s action selection. To this end, the robot is remote controlled by a human

during a learning phase and the resulting qualitative states are then used to generate a

model of the interaction and state to action mappings. This way no reasoning about any

constraints has to be undertaken – the robot only relies on the expert knowledge encoded

in the representation used. This results in a fast and flexible approach to human-aware

navigation.

1.1 Aims and Objectives

Before formulating the aims and objectives of this work it is important to clarify the

terminology used throughout the remainder of this thesis. The first distinction to make

is between the terms behaviour and task where for the remainder of the thesis the word

behaviour refers to how the robot navigates in the presence of a human and the word task to

the abstract high-level goal the robot is trying to achieve, e.g. delivering a parcel, surveying

and area, or driving to its charging station. Therefore, the task describes the main purpose

of the robot which leads it to navigate through the populated environment where behaviour

describes how it reacts to the presence of humans while navigating. When it comes to the

evaluation of the system, apart from showing the technical feasibility of a human-aware

navigation approach based on QSRs, the presented systems aims to fulfil certain HRSI

criteria. In accordance with Kruse et al.’s (2013) definitions, this human-aware navigation

system aims to increase the experienced comfort of the human interaction partner by

increasing the perceived safety and decreasing the experienced stress and annoyance. This

stress and annoyance can be caused by several environmental factors, but with regards

to navigation the main influence, apart from perceived safety, stems from the robot’s

sociability and naturalness of the movement. The latter, however, is more focused on

low-level motor control which is not the focus of this work. Hence, naturalness will not be
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investigated. Moreover, in addition to Kruse et al.’s (2013) definitions, the legibility of the

robot’s movement according to Lichtenthäler et al. (2012) is considered arguing that by

ensuring the interaction partner can predict the robot’s movements and the robot fulfils

their expectations the annoyance and stress during the interaction is reduced which in

turn also increases the experienced comfort. Therefore, when speaking of comfort in the

context of the approach presented here, it refers to achieving perceived safety, legibility,

and sociability. Apart from these more HRSI oriented metrics the robot has to fulfil its

task which is the sole reason for it to navigate the environment in the first place. In order

to do so, the behaviour also has to be efficient with regards to the distance travelled and

the travel time to ensure that the robot is able to reach its navigation goal where the task

is performed given time and battery constraints. Hence, the system developed for this

thesis not only aims to ensure a high experienced comfort but also task efficiency.

To summarise and formalise above introduction and building on the mentioned criteria

of comfort and efficiency, the aim of the presented work is to build a generative frame-

work for HRSI focusing on human-aware navigation that is able to abstract from metric

representations of the world and, therefore, becomes robust to change in the environment

and allows for the easy transfer of knowledge. Additionally, the system has to be flexi-

ble regarding changes in the behaviour of the human and adapt to that change while at

the same time generate safe, legible, and sociable trajectories showing commitment to a

certain action to prevent the confusion caused by purely reactive approaches. In order

to achieve this legibility, safety, and adherence to social norms the system ought to be

able to be trained from observation or demonstration to include human judgement in the

generated qualitative models to avoid relying on constraints based on metric information

like many other approaches. Moreover, and most importantly for a system deployed on a

mobile robot, it has to be task efficient and work in real-time by avoiding costly planning

with a large look-ahead using only the robot’s on-board sensors where real-time in this

use case does not refer to hard real-time but to a minimal delay of ∼ 300ms between

sensor output and the generation of the corresponding reaction by the robot. From this

and above introduction, the following objectives are derived.

7



1.1. Aims and Objectives Chapter 1. Introduction

Obj. 1. Robust qualitative interaction models In order to achieve robustness to

change and facilitate knowledge transfer, the interaction has to be encoded qualitatively –

abstracting from the underlying metric representation of the environment and interaction.

This entails using models that are descriptive enough to unambiguously describe different

interactions between a human and a robot which in conjunction with a probabilistic rep-

resentation can be used to reliably classify different encounters. The specific requirements

to such a model are:

Obj. 1.1 Abstracting from the metric environment representation to generate a purely

qualitative model that is robust to changes in the environment and allows easy

knowledge transfer.

Obj. 1.2 Representing the qualitative character of motions of both agents including changes

in direction, stopping or starting to move, etc. It is known that small movements

used for prompting (Peters 2011) are essential for a robot to interpret the intention

of the human and to react in a socially adequate way.

Obj. 1.3 Representing the relevant attributes of HRSI situations in particular proxemics

(Hall 1969), i.e. the distance between the interacting agents. This is required for

behaviour generation, to analyse the perceived safety of the interaction, and to

attribute intention of the implicitly interacting agents.

Obj. 1.4 Ability to generalise over a number of individuals and situations. A robot re-

quires this ability to utilise acquired knowledge from previous encounters of the same

or similar type. A qualitative framework that is able to create such a general model,

which still holds enough information to unambiguously describe different kinds of

interactions but abstracts from metric space, facilitates learning and reasoning.

Obj. 1.5 A tractable, concise, and theoretically well-founded model is necessary for the

representation and underlying reasoning mechanisms in order to be deployed on an

autonomous robot.

Obj. 1.6 Facilitating decision processes by having a clear association between human and

robot state where the robot state has to be produced and can therefore not be used

for classification and prediction. Since the robot is meant to make decisions based

on the human’s state, this is paramount for a generative qualitative framework.
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Obj. 2. Comfortable and task effecient behaviour generation In order to increase

the acceptance of a mobile robot in populated environments its movements have to ensure

high experienced comfort by being safe, legible, and sociable. This entails the commitment

to a specific action, and adherence to social norms like distances kept or driving on a

specific side of a corridor but the behaviour also has to be task efficient by minimizing the

distance and time travelled to allow the robot to fulfil its primary goal. This dilemma of

task driven versus social robot behaviour requires:

Obj. 2.1 Legibility and sociability meaning that the robot’s behaviour has to be pre-

dictable by and has to fulfil the expectations of its human interaction partner and

adhere to social norms. In the case of legibility, this includes a certain degree of

commitment to an action to avoid constant re-planing and the resulting changes in

behaviour. In terms of sociability, the robot should adhere to social conventions like

driving on the left or right of the corridor, etc.

Obj. 2.2 Safe movement has to be ensured. The perceived safety of the human should

never be compromised if not explicitly required by the task.

Obj. 2.3 Task efficient movement is required to fulfil the primary task of the robot. If

the robot’s task is time critical, the travel time has to be kept at a minimum while

still ensuring the safety of the human interaction partners encountered en route and

maintaining a high degree of legibility and sociability.

Obj. 2.4 Fast and flexible action selection is required to adapt the behaviour of the robot,

should the humans’ behaviour change significantly, to still meet expectations and

ensure legibility. In such a case, the belief of the current state of the world has

to be adapted to best represent the actual state of the world, resulting in dynamic

reclassification of the interaction type and an action selection policy change. Thus,

the system has to be flexible and reactive in nature to be predictable and fulfil

expectations.

Obj. 3. Autonomy The created human-aware navigation framework has to be deploy-

able to an autonomous mobile robot. This requires seamless integration with the robotic

hardware like sensors and actuators using standardised software components to allow for
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easy deployment and the ability to autonomously and in real-time decide on the next best

action to perform. The specific requirements for such a system are:

Obj. 3.1 Working in real-time is require both on the processing and behaviour generation

side in order to react to the human’s presence and to adapt the robot’s behaviour.

As mentioned above, real-time does not refer to hard real-time but to a minimal

delay between sensor input and behaviour output to generate an impression of in-

stantaneous reactions to sensor input.

Obj. 3.2 Relying on on-board sensors and processing alone is a constraint of most real-

world environments which are either too large to put up additional sensors, have

ethical restrictions against surveillance, bad WiFi connectivity, etc. Hence, all the

perception and decision making has to be done on the robot.

Obj. 3.3 Generated behaviour has to be tailored to the hardware by taking acceleration

limits, turning angles, top speed, etc. into account.

Whenever, one of these objectives is addressed specifically throughout the document it

is highlighted in bold and italic and the number is referenced like [Obj. 1] or [Obj. 1.1].

1.2 Main Contributions

This section lists the novel contributions of this thesis to the field of HRSI in order to fulfil

the listed objectives and create an autonomous system for human-aware navigation using

QSRs on a mobile robot.

One of the novel contributions of this thesis is the use of Qualitative Spatial Rela-

tions (QSR) to abstract from the metric environment representation [Obj. 1.1]

creating an environment agnostic interaction model for Human-Robot Spatial Interaction

(HRSI) focussing on human-aware navigation. This is based on the interaction model pre-

sented in Chapter 3 introducing the QSR used which is a combination of two well known

Qualitative Trajectory Calculus (QTC) variants, i.e. Qualitative Trajectory Calculus –

Basic (QTCB) and Qualitative Trajectory Calculus – Double-Cross (QTCC), into a new

model that is able to represent the qualitative character of the motions [Obj. 1.2]

of human and robot and, therefore, facilitates decision making processes [Obj. 1.6] .
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This new QTC model is then used in a probabilistic representation which is trained from

real-world data gathered in two different experiments generalising over a number of

individuals and situations [Obj. 1.4] . A distance threshold is used to switch between

the two variants of QTC which allows to implicitly represent this relevant attribute of

HRSI [Obj. 1.3] via the transition from one variant to the other. Thus, the model is able

to highlight the interaction between the two agents involved in close vicinity to each other

which, apart from reducing noise, can be used in later chapters to generate behaviour

suitable for human-aware navigation [Obj. 2] . Additionally, it allows implicitly

modelling a discrete distance threshold without losing any of the qualitative properties of

the underlying tractable, concise, and theoretically well-founded [Obj. 1.5] cal-

culi. The model is evaluated using data from two different experiments to show that it

can reliably classify different HRSI encounters and is, therefore, a suitable representation.

In order to use this model relying only on the robot’s hardware [Obj. 3.2] ,

the combination of existing detection and tracking approaches for human perception in

the vicinity of the robot and the automated incremental generation of QTC state

chains in real-time [Obj. 3.1] is described in Chapter 4. The perception framework

tailored to the capabilities of the robot [Obj. 3.3] presented in Section 1.3.2 uses all

available sensors producing people tracks in real-time [Obj. 3.1] . This system is

used to automatically generate QTC state chains for every tracked person in order to clas-

sify the type of HRSI encounter the robot ought to engage in. These generated state chains

are the basis for the classification and behaviour generation approaches described in the

following chapters. As a proof of concept a small experiment using a mobile robot in a real-

world office environment, only relying on the robots on-board sensors [Obj. 3.2] ,

shows how these generated QTC state chains can be classified using the Hidden Markov

Models (HMMs) trained from data of a previous experiment. Thus, the evaluation not

only shows that it is possible to use the robot’s on-board sensors to generate a meaningful

QTC representation but also that this particular QSR allows to transfer knowledge

gathered from different sensors and in a different environment [Obj. 1.4] to

bootstrap the classification system.

Using the generated QTC state chains, Chapter 5 describes the generation of move-

ment commands [Obj. 2] for a mobile robot from QSRs, representing a novel approach

to human-aware navigation. Using this high-level QTC based representation, low-level
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command velocities that can be send to the robot’s wheels are generated using so-called

Velocity Costmaps which restrict the sample space of a local planner to generate trajec-

tories that produce the desired QTC state. These Velocity Costmaps introduced in this

chapter, on the one hand, produce trajectories that are safe and also perceived as

safe [Obj. 2.2] by the human interaction partner and, on the other hand, are still able

to minimise time and distance travelled towards the goal to generate task effi-

cient behaviour [Obj. 2.3] . These costmaps are based on either hand crafted rules as

done in Chapter 5 or a learned conditional probability table as shown in Chapter 6 which

allows incorporating human judgement via Learning from Demonstration (LfD). The Ve-

locity Costmaps are evaluated in simulation and a real-world proof-of-concept experiment

to show that this approach is able to generate behaviour that conforms with the desired

QTC state.

Finally, to generate a fully autonomous system [Obj. 3] that is not dependant

on hand-crafted action selection rules or a-priori knowledge about the interaction type, a

particle filter for QSRs which builds on a prediction and observation model that is generic

enough to allow the use with any kind of QSR is introduced in Chapter 6. In the case at

hand, it uses an evolved version of the QTC model described in Chapter 3 which consists

of a conglomerate of different QTC states using different variants of the calculus to cre-

ate a representation that is meaningful enough to unambiguously distinguish

different types of interactions without relying on the robot’s state for classi-

fication [Obj. 1.6] but only taking the human observation into account. These models

are learned from observation during a training phase where the robot is remote controlled

by either a participant or an experimenter while another experimenter or participant in-

teracts with it. The best action for the robot is selected from a conditional probability

table that describes the joint probability for each possible action given the current belief.

Compared to Chapter 5, where these were hand-crafted rules, the conditional probability

tables for action selection are learned from demonstration using an “Inverse Oz of Wizard”

experiment set-up to incorporate human judgement into the behaviour model to

ensure sociability and legibility [Obj. 2.1], and safety [Obj. 2.2] which is shown

in the experiment section of this chapter.

The whole system is evaluated in a two-part user study in Chapter 6 with the first

part representing the learning phase where the robot is remote controlled by a partic-

12



1.3. Context Chapter 1. Introduction

ipant while interacting with the experimenter, recording the generated QTC states for

the activity model and the conditional probability table for action selection. The second

part evaluates the learned models and belief generation for fast and flexible action

selection [Obj. 2.4] using a separate set of participants and a fully autonomous robot

that has no prior knowledge about the interaction type showing that it is able to generate

comfortable and task efficient behaviour [Obj. 2] .

Publications The presented thesis is based on a number of published conference and

journal articles. To disambiguate the contribution of the author of this thesis to the papers

it is based on, please refer to Appendix A for a comprehensive list of publications that

are either described in detail in the following chapters or are referenced throughout this

thesis.

Additionally, all presented approaches are freely available as open source or pre-

compiled Debian packages.3 Please refer to Appendix B for a collection of links to the

software repositories, websites with videos showing the working system and instructions

on how to use it.

1.3 Context

To paint a clear picture of the scope and the underlying motivation for this work, it is

important to understand the background it is based on in terms of projects, hardware

and software. Hence, this section describes the European Project it was part of, the robot

hardware which has been used for all the experiments described in the following chapters,

and the most important characteristics of the Robot Operating System (ROS) as the

underlying middleware that influenced design decisions for the presented approaches. The

content of this section, therefore, describes the context of this thesis and should give

an insight into target deployment areas, the influence of the robot appearance on the

participants, and the software principles at the foundation of the presented system.

3Available under the MIT license where possible or BSD and GPL when using third party software.
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1.3.1 The STRANDS Project

The presented work is part of a European FP-7 project called Spatio-Temporal Represen-

tation and Activities for Cognitive Control in Long-Term Scenarios (STRANDS)4, grant

agreement No. 600623, which greatly influenced its outcome by defining the area of ap-

plication. The STRANDS project focuses on long-term deployments of robots and the

resulting opportunities and challenges. Environments might change for example and the

robot should be able to cope with or even exploit the change to enhance its performance

and information gain. To quote the STRANDS proposal:

“STRANDS aims to enable a robot to achieve robust and intelligent behaviour

in human environments through adaptation to, and the exploitation of, long-

term experience. Our approach is based on understanding 3D space and how

it changes over time, from milliseconds to months. We will develop novel ap-

proaches to extract quantitative and qualitative spatio-temporal structure from

sensor data gathered during months of autonomous operation. Extracted struc-

ture will include reoccurring geometric primitives, objects, people, and models

of activity. We will also develop control mechanisms which exploit these struc-

tures to yield adaptive behaviour in highly demanding, real-world security and

care scenarios.”

These real-world scenarios are a security scenario where the robot is operating as

a night-watchman patrolling an office building and a care scenario where the robot is

deployed in an elder care home to assist the administrative and therapy staff. Since the

security scenario does not involve much HRSI the main target of application of this thesis

is the care scenario in an elder care home in Vienna, Austria. This care home called

Haus der Barmherzigkeit5 is home to 350 patients and has a total of 465 staff. All of the

patients suffer either from a mobility or cognitive impairment like Dementia, caused by

e.g. Alzheimer’s or Cardiovascular disease, which makes legible and safe robot behaviour

even more important due to people needing more time to comprehend the robot’s goal

or needing more space to feel safe due to them struggling to walk or using a wheelchair.

Apart from that, the robot can also never be an obstacle in case a patient has to be

4http://www.strands-project.eu
5http://www.hausderbarmherzigkeit.at
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Figure 1.2: The representation of the environment used for navigation showing the static
parts of the Lincoln Centre for Autonomous Systems Research (L-CAS) office as black dots
or lines on the metric map. The green arrows surrounded by the red octagons visualise the
so-called waypoints in the topological map that is overlaying the metric map. The black lines
connecting waypoints are called edges and together they describe the topology of the environ-
ment. The robot shown in blue travels between waypoints at which it seeks to fulfil tasks along
edges. Image taken from Krajńık et al. (2016)

transported to the Emergency unit in her/his bed or in case of fire. Thus, the creation

of robust behaviour is of utmost importance which is hard to near impossible to achieve

using metric approaches in changing environments. Hence, the qualitative representation

of HRSI has to be able to cope with change and generalise to new environments.

The robot is deployed in both scenarios for several weeks at a time starting with 14

days during the first year up to 120 days during the last year and is expected to work

autonomously without any expert intervention.6 During these times the robot is providing

different services to the visitors, staff, and patients of the care home as described by Gerling

et al. (2016) which include an info terminal to look up e.g. the lunch menu or the weather,

a bellbot service that guides visitors to a chosen target location, and as a pacemaker in a

walking group for dementia patients as described by Hebesberger et al. (2016). To get from

one location to the other, the robot has to navigate through the populated areas of the

building, which is where the presented approach could find its application by interacting

with patients, staff, and visitors.

This navigation between different locations in the environment is based on a metric

map, i.e. a 2D grid representing a discretised view of the world where each cell in the

grid represents if it is occupied or free, and a topological map that represents a high-level

description of the environment via so-called waypoints and edges connecting them (see

6At the time of writing this thesis, the robot was in its third deployment for a total of 90 days.
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Figure 1.2). This navigation approach, especially the topological navigation is exploited

in Chapter 6 to incorporate the robot’s intention into the online belief generation.

There is so much more that could be said about the STRANDS project but that

would go beyond the scope of this thesis. The most important things to keep in mind

when reading about the presented work is the requirement of adapting to ever changing

environments to be able to produce legible, sociable, safe, and comfortable behaviour at all

times and that the robot travels between waypoints in the environment on almost straight

lines.

1.3.2 Linda the Robot

The STRANDS project uses a SCITOS G5 mobile base with a HRI super structure pro-

duced by the German company MetraLabs GmbH7. Since the main focus of the STRANDS

project is the durability of software for the long-term deployment of mobile robots, this

hardware was chosen due to its promising battery life and robustness. To quote the

STRANDS project coordinator from the MetraLabs website:

“The SCITOS platform has proven a robust and reliable general purpose re-

search platform, giving us hundreds of hours and kilometers of continuous au-

tonomous use. Metralabs have supported us throughout our challenging project

with excellent technical support and software updates as necessary.”

—Nick Hawes, Coordinator of the STRANDS Project

The mobile base of the SCITOS G5 consists of the battery pack, a two wheeled dif-

ferential drive plus a Caster wheel in the back for stability, an embedded PC, and two

WiFi antennas. It has a ground clearance of 20mm and can achieve a maximum speed

of 1.4m/s. The mobile base alone weighs 60kg and has a payload capacity of 50kg. For

navigation it is equipped with wheel encoders for odometry and a front facing SICK s300

laser range finder or Lidar8, mounted at a hight of ∼ 35cm, which is a class 1 laser product

and therefore inherently eye safe which is important for the application domains of the

STRANDS project. It has a range of 30m with a resolution of 3cm and a Field of View

(FoV) of 270◦ with an angular resolution of 0.5◦. However, due to the covers fitted to

7http://www.metralabs.com
8http://www.sick.com
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RGB-D

camera

RGB-D

camera

Laser

Bumper

Head

Touchscreen

Base

HRI 

Superstructure

(a) Linda the robot without the plastic cov-
ers. Showing the sensores, and the touch
screen and head. Behind the laser is the em-
beded PC and on eihter side of it the addi-
tional PCs. The top camera is mounted on
the Pan-Tilt Unit (PTU)

(b) Linda the robot with her plastic covers.
This is the way the robot was used in all de-
scribed experiments. The light on top of the
robot is used to find its charging station at
night time and is turned off during all other
tasks.

Figure 1.3: Linda the robot, used in all described experiments that use a real robot.

the robot (see Figure 1.3b), this FoV is restricted to −1.96rad ≤ ρ ≤ 1.96rad, which is

roughly 224◦, with ρ = 0 being directly in front of the robot. The scanning frequency of

the Lidar is 125Hz which corresponds to one full scan every 80ms.

The HRI super structure is built on top of the mobile base and consists of an acrylic

glass bowl resembling a robotic head mounted on an aluminium pillar (see Figure 1.3a).

This acrylic bowl contains a pair of actuated eyes with 5 Degrees of Freedom (DoF) – pan

and tilt of the head, opening and closing of the eye lids, and pan of the eyes themselves –

to give it an anthropomorphic feature as suggested by Weiss, Mirnig & Förster (2011) and

Förster et al. (2011). Additionally, the head comprises a ring of blue Light Emitting Diodes

(LEDs) which can be used to indicate internal states of the robot by blinking, pulsing,

etc. In addition to the head, the superstructure also comprises a 15′′ touch screen, hosting
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stereo speakers. This screen is on the “back” of the robot, meaning that it cannot be used

to signal oncoming humans, but only following persons which is used in the bellbot and

walking group scenario described in Section 1.3.1. To try and enhance the legibility of

the navigation even further the robot deployed to the elder care home was also fitted with

visual light indicators and uses its head to look into the direction of travel. For a detailed

evaluation of this system please refer to the work by May et al. (2015).

Regarding the sensors of the robot, in addition to the Lidar and the wheel encoders,

it has a tactile sensor in form of a rubber bumper around the base of the robot that,

if pressed, cuts the power to the motors immediately and, thereby, makes it inherently

safe for the deployment in populated areas which is why it was awarded with the EU CE

certificate.9 For computer vision approaches, it offers two Asus-Xtion RGB-D cameras10

of which one of them is mounted underneath the robot’s head, facing forwards and down

to detect obstacles in 3D space in front of the robot in case of objects that are above or

below the height of the laser. The second camera is mounted on a Pan-Tilt Unit (PTU)

on top of the robot’s head which allows it to pan from −180◦ to 180◦ and tilt from −45◦

to 45◦. These cameras offer a FoV of 58◦ horizontally and 45◦ vertically and provide a

resolution of 640× 480 pixels for depth and RGB. The depth sensor has a range of 0.5m

to ∼ 7m.

The robot base including the super structure has a hight of 1.72m, measured from the

head mounted camera, and a diameter of 61cm measured in the bottom of the robot. The

weight of the whole system is roughly 75kg. Due to this rather impressive size and weight

the robot’s maximum velocity is limited to 0.55m/s in accordance to Butler & Agah’s

(2001) work to not cause discomfort by reducing the stress stemming from a fast moving

large object and increasing the perceived safety.

Computation-wise, the robot in its basic form hosts a 2nd generation Intel Core i7-

2640M CPU @ 2.80GHz with 4 cores, 8GB of RAM, a 500 GB HDD, and no dedicated

graphics card. During the course of the project, two additional PCs were added where

each of them comprises a 4th generation Intel Core i7-4770T CPU @ 2.50GHz with 8 cores,

16GB of RAM, and a 125GB SSD. These PCs, called side PCs, are connected via a Local

Area Network and each of them hosts one of the cameras and is therefore responsible for

9http://www.gov.uk/guidance/ce-marking
10http://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/
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the vision processing of the images that are recorded by that camera. To this end, the

PCs also have a NVidia GeForce GT640 with 2GB dedicated memory. The robot achieves

a run time of roughly 6 hours until the batteries are drained and then charges about 8

hours until they are full again. The robot is able to charge itself via a charging station

that it can drive on to which allows to deploy it for several weeks continuously.

At this point, no studies about the appearance of the robot have been published and

this has also not been evaluated during the course of this thesis. Judging from qualitative

feedback from the two deployment sites, the shape and especially the eyes of the robot

facilitate anthropomorphisation. Patients and staff at the care home often asked if the

robot doesn’t feel well when it is not around due to repairs and it has been kissed and

hugged on several occasions. Therefore, for the remainder of this thesis, it is assumed

that its appearance does not have a negative effect on the outcomes of the conducted

studies. On the other hand, it has also not been investigated if it had a positive effect

on participant reactions. Last, but not least, all the robots in the project (each partner

has their own robot which only differ in colour) have been given names either by the

researchers or the patients in the care home. Thus, the robot used for the experiments is

from here on referred to as Linda the robot or simply Linda11, whereas the robot at the

care home is called Henry.

1.3.3 The Robot Operating System

This section only briefly describes the main principles of the Robot Operating System

(ROS) to not go beyond the scope of this thesis. From the ROS webpage12:

“The Robot Operating System (ROS) is a flexible framework for writing robot

software. It is a collection of tools, libraries, and conventions that aim to

simplify the task of creating complex and robust robot behavior across a wide

variety of robotic platforms.”

ROS itself is a middleware that is used for the communication of different programs

which are called nodes in ROS terminology. It follows a data push approach for communi-

cation between the nodes using so-called publishers which make a message available on a

11http://twitter.com/lindastrands
12http://ros.org
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topic and the subscribers receive the message from the topic as soon as it is published. An

easy example is the Lidar node that grabs the scan array from the hardware and publishes

it to a topic. As soon as the message is published, all the subscriber nodes get notified in

a callback and receive the message. This spares the user from constantly polling for data.

In addition to this it also offers remote function calls via so-called services and actions.

An action unlike a service is a non-blocking remote function call that can be interrupted,

publishes feedback while it is running, and can have several different outcomes like suc-

cessful, preempted, or aborted and return computed data at the same time. These actions

are used, for example, for navigation where the argument to the so-called goal of the

action is a tuple of (x, y, θ) for the position and orientation. The feedback given is the

current position of the robot while driving and in the end it returns one of the specified

outcomes based on if navigation was successful, has been preempted by the user, or failed

(was aborted).

This framework allows for the seamless integration of several different components and

is the most popular middleware for robotics research at the time of writing this thesis.

Hence, by using ROS, standardised software components are created which increases the

reusability. Therefore, the presented approach consists of several nodes using topics, ser-

vices, and actions to communicate with each other which have been used on their own for

other publications as well (e.g. Lightbody et al. 2015).

1.3.4 Software Management

All the approaches presented here have been implemented in ROS Indigo for Ubuntu

14.04 and are freely available for academic purposes under MIT, BSD, or GPL license

(depending on the package) from the STRANDS github repositories (see Appendix B).

A continuous integration server not only runs automated tests on this software but also

generates Debian packages for easy installation across all the robots in the project and

every interested third party. Each chapter, therefore, represents a collection of several

nodes that can be used for the described purpose as a collection or separately for other

applications.
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—Outside of a dog, a book is a man’s best friend. Inside

of a dog, it’s too dark to read.

Groucho Marx

2
Background and Related Work

To paint a clearer picture of the current state-of-the-art in HRSI in general and human-

aware navigation in particular, this chapter describes related approaches to those presented

in this thesis. This includes motion prediction, path planning, and activity modelling and

recognition. The list may be incomplete as it only represents the most closely related

approaches.

All robots deployed in human populated areas face the same challenges of navigating

reliably and safely in the presence of humans while producing trajectories that are legible

(Lichtenthäler & Kirsch 2016), avoid stress and annoyance, and are goal-directed. Some

of the most commonly known examples for these kind of robots are Rhino (Burgard et al.

1999), Robox (Arras et al. 2003), Minerva (Thrun et al. 2000), Rackham (Clodic et al.

2006), Mobot (Nourbakhsh et al. 2003), and Cice (Macaluso et al. 2005) and an overview

of related systems has been given by Jensen et al. (2005). This chapter shows approaches

that have been used in the past to create behaviour that increases a robot’s acceptance

when used in these kind of scenarios and, therefore, form the background for the presented
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work. Please also refer to Kruse et al. (2013) for an excellent review of this and other less

related topics of human-aware navigation.

2.1 Proxemics

The most commonly used principle in HRSI is the so-called proxemics which is a term

describing interpersonal distances and was coined by Hall (1969). This theory divides the

space around a human into four distinct zones which are themselves divided into a close

and far phase:

Intimate Space 0cm - 45cm Used for love-making and wrestling, comforting and pro-

tecting

Close Phase 0cm - 15cm The vision is blurred, vocalisations are only whispers.

The use of distance receptors is greatly reduced except for olfaction and sensa-

tion of radiant heat which are stepped up. Arms can encircle and the pelvis is

easily accessible.

Far Phase 15cm - 45cm The hand can reach and grasp extremities of the other

person but the heads, thighs, and pelvises are not easily brought into contact

any more. It allows to focus the eye easily and peripheral vision includes the

outline of the head and shoulders. Heat and odour of the other person’s breath

might be detected.

Personal Space 45cm - 1.22m For interaction among close friends and family.

Close Phase 45cm - 76cm One can hold or grasp the other person and perceive

their features without visual distortion. Additionally, the three dimensional

qualities of objects like the nose are pronounced.

Far Phase 76cm - 1.22m This distance is often referred to as keeping someone at

arm’s length which means that this space defines the distance from outside the

easy touching distance by one person to a distance where they can touch each

other’s fingers. The other persons features are clearly visible. Communication

requires a moderate voice level. No heat be it body or breath can be perceived

any more and olfaction is not present either except for strong cologne.
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Social Space 1.22m - 3.7m For interaction among strangers or acquaintances.

Close Phase 1.22m - 2.1m Touching each other is impossible without special effort

undertaken by both persons like leaning in and stretching their arms towards

each other. Conversation is conducted at a normal voice level and can be

overheard by others up to a distance of 6m. The visual focus extends to the

nose and parts of both eyes or nose, mouth, and one eye.

Far Phase 2.1m - 3.7m The fine details of the face like the capillaries are lost but

the skin texture, hair, and condition of teeth and clothes are all readily visible.

No odour can be detected.

Public Space >3.7m For public figures, audiences, lectures, or actors in a play.

Close Phase 3.7m - 7.6m It is for the first time possible to take evasive or defensive

action against the other person in time. The voice has to be loud but not at

full volume to be heard. The vision covers the whole face but fine details of the

skin or face are not visible any more. Moreover, only the white of the eyes is

visible.

Far Phase >7.6m Subtle shades of meaning conveyed by the normal voice are lost

as are the details of facial expression and movement which requires so-called

“over acting” by actors in a play for example. Hence, voice, facial expressions,

and movement must be exaggerated. The foveal vision takes in more and more

of the other until she is entirely within the small circle of sharpest vision.

An illustration of these spaces can be seen in Figure 2.1 which shows the 4 different zones

without the close and far phase.

In general interaction among strangers happens in the Public Space or beyond. In-

trusions into the Personal or Intimate Space without consent are perceived as rude or

even threatening and therefore create annoyance and stress. If this is unavoidable, like

in crowded lifts or public transport, specific avoidance strategies are adopted like keeping

ones arms to the side as close as possible, staring into the distance or the mirror in a

lift, and avoiding every form of enjoyment resulting from the close contact. However, all

these values are based on Caucasian and Hispanic North Americans and are highly cul-

tural dependent. As described by Alessandra (2000) these zones can also depend on the
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PUBLIC SPACE

SOCIAL SPACE

PERSONAL
SPACE

INTIMATE

 SPACE

 1.5 ft
(0.45 m)

  4 ft
(1.2 m)

12 ft
(3.6 m)

25 ft
(7.6 m)

Figure 2.1: An illustration of Proxemics showing the 4 different spaces without the close and
far phase. This representation is based on the assumption that these spaces have the same
dimension in all directions. Image source: http: // en. wikipedia. org/ wiki/ Proxemics

social status of the person or their age and gender as presented by Aiello & Aiello (1974).

As guidelines for distances to keep in HRSI, these zones have been used and investigated

heavily.

Looking at existing approaches for human-aware navigation, many works adopt the

zones defined by Hall (1969) to achieve socially acceptable avoidance manoeuvres as can

be seen from, e.g. Pacchierotti et al. (2005) and (2006) who investigated these distances,

and most of the works on social cost functions listed below. In addition to human-aware

navigation, there is also work on these distances in regards to other aspects of HRSI such as

the investigation of the optimal approach distance for a robot (e.g. Torta et al. 2011) where

the optimal approach distance and angle for communication between a small humanoid

robot13 and a sitting person is investigated. Torta et al. (2011) present an attractor

based navigation framework that includes the definition for a Region of Approach which

is optimal to communicate between the two agents. In the conducted experiment, where

a NAO robot is approaching a sitting person from different angles, with the purpose of

starting a conversation, until that person presses a button to stop the robot at a distance

perceived as suitable to achieve the task, Torta et al. (2011) show that an approach from

the front is preferable over an approach from the side and found that the distance at

13NAO - http://www.aldebaran.com/en/humanoid-robot/nao-robot
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which the participants stopped the robot to have a conversation loosely correlates with

the close phase of the social space as defined by Hall (1969). Another example, focusing

on the long-term habituation effects of approach distances is the work by Walters et al.

(2011). They use a standing participant and a mobile service robot instead of a NAO in

an otherwise similar experimental setting as Torta et al., i.e. the robot approaches the

participant from the front and is stopped via a button when it is close enough to have

a conversation, and inspect the long-term effect on this most suitable approach distance.

Similarly, in Chapter 3 the optimal distances for the human-aware navigation model are

investigated but only in regards to the quality of the resulting model not using any form

of self-assessment as was in the above approaches.

In addition to promexics being influenced by the social status and age of the person,

the angle of approach of, and the familiarity to the robot as described above, the actual

performance of the robot during an interaction influences the human interaction partner’s

proxemics preferences as well. Mead & Mataric (2015) conducted and experiment in which

the human participant explained certain objects to a mobile robot via speech and gestures

from a fixed location. The robot, however, altered its position during the trials. After

an object had been explained, the robot would change its distance to the human before

the next object explanation phase started. After each explanation, the robot signalled

success or failure of understanding the explanation to the participant where the success

rate depended on the distance to the human and was modelled as a normal distribution

with its peak at 2.25m distance to the human and a standard deviation of 1.0m. Before

and after the experiment, to evaluate if the proxemics preferences of the participants

changed, Mead & Mataric (2015) had the robot approach the participant until they said

“stop” when they thought that the robot would be at an appropriate distance for the

task. Comparing the measurements from before and after the experiment, they found

that humans indeed adapt their proxemics preferences to the area of peak performance of

the robot whereas in the control condition where the success rate was modelled uniformly

this effect did not appear.

Despite the variability described above, proxemics is one of the most popular principles

in HRI and HRSI due to the simple fact that the distance an interaction partner keeps

is paramount to increase perceived safety and thereby the experienced comfort to which

end proxemics provides hard thresholds as guidelines for these distances. The resulting
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simplicity facilitates easy decision making under uncertainty based on a small set of fixed

numbers. These distances, however, are only based on a very select population of North-

American Caucasian and Hispanic participants and have been obtained via questionnaires

and are not related to robotics. Hence, the results have to be treated with caution because

they are highly culturally dependent and also change based on various different factors

as discussed above. Nevertheless, proxemics is used in HRI to select interaction distances

and in human-aware navigation to define the minimum distance the robot ought to keep

during the encounter with a human because proxemics allows to make assumptions about

the perceived safety of the executed behaviour of the robot without any additional prior

knowledge. Moreover, in the case of human-aware navigation, it is often not possible to

deduce the ethnicity, cultural and social background, age, gender, and other factors that

influence the human’s proxemics preferences from the robot’s sensors during the time of

an avoidance manoeuvre. Hence, proxemics offers a good initial guess of distances which

are used in most cost based approaches, as described in the following, where they increase

the costs of the robot’s path when coming close to a human. In summary, the benefits of

using Hall’s (1969) model in HRI are the initial hypothesis about appropriate distances

to keep during interactions without knowing anything about the interaction partner and

the simple usage of hard thresholds where the variability of these values, depending on

the person in question, is the major drawback that has to be considered. For avoidance

manoeuvres in human-aware navigation, however, this drawback is mostly neglected due

to the fact that it is impossible to acquire any knowledge about the interaction partner

before or during the interaction. For these reasons, proxemics is used in many of the

following approaches and also, to a certain extent, in the presented thesis. Hence, this

principle ought to be kept in mind mainly as stating that a robot should keep a certain

distance from a human while navigating, preferably greater than 1.22m, to not violate the

personal space.

2.2 Human-Aware Path Planning

HRSI in general and human-aware navigation and joint motion in particular, is concerned

with planning paths or trajectories that are legible (Lichtenthäler & Kirsch 2016), per-

ceived as safe, natural, and sociable leading to increased experienced comfort as defined by
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(a) 2D continuous Gaussian as created ac-
cording to Equation 2.1. Values used are
xh = yh = 0 and σ = 1.

(b) The discretised version of the
left image projected on a costmap.
x, y represent the grid cells and z
has been transformed into the cost
value.

Figure 2.2: Example of a Gaussian as used for many human-aware navigation approaches.

Kruse et al. (2013). Most current approaches focus on this increase in experienced comfort

and the majority of those approaches focus on distance, i.e. proxemics, in particular to

reduce stress and annoyance during the interaction. This can either be done by defining

forbidden zones which the robot is not allowed to enter (e.g. Huang et al. 2010, Lam

et al. 2011) which has the negative effect of the robot not being able to plan a path

in confined spaces like narrow corridors, or cost function or potential fields (e.g. Sisbot

et al. 2007, Tranberg Hansen et al. 2009, Kirby et al. 2009, Svenstrup et al. 2010, Scan-

dolo & Fraichard 2011, Lu et al. 2013, Lu et al. 2014) which allow the robot to traverse

through the human’s personal space at high costs if required by the environment. These

cost functions are mainly based on the Gaussian function

G(x, y) =
1

2πσ2
e−

(x−xh)2
+(y−yh)2

2σ2 (2.1)

with x, y being a continuous distribution with xh, yh at its centre and σ describing the

standard deviation and, therefore, determining the width of the resulting distribution.

This approach is used as a comparison in some of the following experiments and, therefore,

shall be described in a little more detail. The resulting 2D Gaussian distribution can be

seen in Figure 2.2a and represents the continuous cost function. Since the vast majority

of navigation approaches do not operate in continuous space, this cost function has to
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be discretised and projected to a costmap as can be seen in Figure 2.2b. This costmap

represents an array of grid cells or pixels where each grid cell represents a discrete position

in the world and the cost value that is associated with it. Hence, x, y are mapped to the

position of the grid cells whereas z is used as the cost value for this specific cell. In order

to achieve discretisation one could use the z-value of the center point of the grid cell, but

in most cases the z-values are integrated in small increments within the boundaries of

the grid cell to get a more precise representation because they vary non-linearly. Since

a Gaussian function is continuous and will never produce 0 values, the costs are usually

cut of at a distance of 3σ from the human position xh, yh where in practice z ≈ 0.0.

Additionally, these Gaussians can be shaped to allow for space in front of the human

while walking (e.g. Ziebart et al. 2009, Kruse et al. 2010, Scandolo & Fraichard 2011). This

resulting cost function is then used in path planning to allow the planner to intrude into

the human’s personal space if the costs for every other trajectory would be higher. Thus,

these approaches integrate human-awareness with the environment by simply summing up

costs for path planning.

In addition to the cost functions above, some approaches also seek to explicitly try

to avoid the area behind a human to prevent discomfort (e.g. Sisbot et al. 2007, Pandey

& Alami 2010, Scandolo & Fraichard 2011) which shows that the proxemics zones might

not be of equal space, but also depend on the orientation of the human. In this thesis,

the only assumption made is that a certain distance threshold to the human has to be

kept and/or used to trigger certain behaviours like avoidance before entering the personal

space. The actual unfolding of the interaction will be based on the model learned from

demonstration which means that no geometric reasoning like Gaussians are required. For

the sake of completeness, there are also approaches that seek to avoid as much HRSI

as possible by avoiding populated areas (e.g. Diego & Arras 2011) which is an approach

that is not addressed here as the target deployment area does not allow for this kind of

solutions.

Naturalness, as one of the other important factors in HRSI, describes the similar-

ity of the low-level movement of the robot (e.g. jerk, ossiclation, accelaration, etc.) to

the movements of a human. In contrast to appearance and the motion of the robot’s

limbs, according to Kruse et al. (2013), there is no “uncanny valley” (Mori 1970) when it

comes to robot navigation. Several approaches like near-minimum jerk (e.g. Arechavaleta
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et al. 2008), maintaining formation for approaching a group (e.g. Althaus et al. 2004), or

adapting the robot’s speed instead of altering its path (e.g. Kruse et al. 2012, Lichtenthäler

et al. 2013) have been proposed. Since this thesis does not aim at presenting a framework

for natural robot motion with respect to speed, acceleration, and jerk, these works are only

mentioned as examples towards the bigger picture of HRSI. Similarly, sociability such as

social norms (e.g. walking on the right of a corridor (e.g. Helbing 1991, Kirby et al. 2009))

or using prompting to elicit a reaction and communicate ones intention (e.g. Peters 2011)

are commonly investigated. This seems to be especially important for approaching hu-

mans (e.g. Butler & Agah 2001, Althaus et al. 2004, Dautenhahn et al. 2006, Koay

et al. 2007, Takayama & Pantofaru 2009, Kessler et al. 2011, Mumm & Mutlu 2011)

but of course also when avoiding humans (e.g. Helbing 1991, Kirby et al. 2009, Pandey

& Alami 2010). This sociability will be determined by the human expert during the LfD

phase in the presented thesis. Hence, no explicit reasoning is necessary.

In addition to the cost functions described above which are directly related to the

position of the human, there are also other cost functions depending on the environment

and the human’s interaction with it that can be used for path planning. Some common

examples are listed in the following, however, none of these are considered for the presented

work but can be used for global path planning which can then easily be combined with the

developed approach. A standard way to achieve legible and safe paths is object padding

where static obstacles in the map are inflated to achieve larger obstacle clearance while

navigating (e.g. Kirby et al. 2009, Svenstrup et al. 2010, Morales et al. 2015), avoid paths

that are occluded by obstacles and can therefore not be observed (e.g. Chung et al. 2009),

or avoid appearing out of a hidden zone and surprising the human (e.g. Sisbot 2008).

Speaking about visibility, other approaches also explicitly seek to ensure that the robot

only moves where it can be observed by the human (e.g. Sisbot et al. 2007, Scandolo

& Fraichard 2011, Kessler et al. 2011). Lastly, the interaction between humans and/or

the environment can be taken into account by avoiding paths that would lead the robot

through a so-called interaction area between a group of people or between a person and

an object like a television she is interacting with (e.g. Scandolo & Fraichard 2011, Rios-

Martinez et al. 2012). Most of these approaches use a deliberative structure and a global

path planner which makes them less flexible than fast reactive planners. Hence, these
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approaches could be combined with the reactive framework presented in this thesis in a

holistic navigation system.

Path planning for mobile robots itself aims at finding a safe and short path which, in

the majority of cases, is done by some form of sampling based approach, or A∗ or Dijkstra’s

algorithm. HRSI does not aim to find the shortest or most energy efficient path in the way

that human-unaware navigation does but tries to adhere to the numerous social norms

and conventions using the cost functions introduced above and thereby arguably makes

navigation in human-populated environments safer and more efficient. Path planning is

either done globally over the representation of the entire environment or locally using

computationally cheap sampling based approaches.

Global path planning using the previously given cost functions is very costly com-

putation-wise, but as a deliberative approach is able generate smoother and more legible

trajectories. This can even be enhanced by using temporal global planning, which predicts

the motion of humans in the vicinity of the robot and therefore allows an informed choice

of trajectory (e.g. Tadokoro et al. 1995, Kushleyev & Likhachev 2009, Ohki et al. 2010,

Kollmitz et al. 2015). However, if there is a significant change in behaviour of the human,

this plan has to be recreated which makes these approaches almost intractable for large

numbers of humans as they do not scale well. An example of global planning to proactively

approach a human to initiate interaction which aims at overcoming the tractability issue

has been described by Carton et al. (2012) and Carton et al. (2013) who use a combination

of static and dynamic path planning. The static path is generated using Bézier curves for

enhanced readability of the path increasing the robot’s legibility. To deal with dynamic

obstacles the velocity profile of said path is adjusted. This cumulates in an optimisation

problem with the goal of reaching the target location given a maximum time limit to be

able to “intercept” the human interaction partner. If this cannot be achieved, a new path

is generated. In order to keep this approach tractable and real-time, the optimisation is

approximated via a rule-based brute force search by iteratively updating the start and

end point of the curve (depending on robot and human position), and the velocity profile

(depending on the position of dynamic obstacles).

Local planning, on the other hand, is computationally cheap and is mostly done using

a sampling based approach, i.e. generating a set a of candidate trajectories and scoring

them based on predefined metrics such as obstacle collision or cost of a grid cell, as can
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be seen from a survey by Fraichard (2007) where this thesis relies on the commonly used

Dynamic Window Approach (DWA) local planner by Fox et al. (1997). Local planning,

however, comes at the disadvantage of being a reactive approach which can result in

illegible trajectories. To overcome this, a reciprocal scheme can be assumed because

according to Ducourant et al. (2005) humans also take the actions of their counterpart

into consideration when planning their paths. This has been used to create avoidance

manoeuvres for mobile robots which assume that the human will partake in this avoidance

motion for single humans (e.g. Kluge & Prassler 2004, Van den Berg et al. 2008) and crowds

(e.g. Trautman & Krause 2010, Trautman et al. 2013). The work presented here seeks to

create a reactive approach that is able to predict the future unfolding of the interaction

and takes the movements of the human into account when planning the robot’s actions.

Hence, it is closely related to the reciprocal local planning approaches mentioned here but

uses a qualitative description, abstracting from the metric environment to make it robust

to change.

Examples for path planning approaches that abstract from the underlying metric map

are trajectory learning by Feil-Seifer & Mataric (2011) – which uses Gaussian Mixture

Models created from observed trajectories to abstract from the concrete metric represen-

tation whereas Garrido & Yu (2014) used HMMs and trajectory key points. Both of these

approaches use different forms of abstraction to create a general model for HRSI, but are

still relying on a metric representation and are therefore very environment dependent.

Heat maps are another form of abstraction that still focuses on metric space. Avrunin

& Simmons (2014) used recorded trajectories of humans approaching an experimenter to

create a so-called “Value Map” which can be used to represent the most commonly used

paths for a specific configuration. A different form of abstraction is representing metric

space via grid cells or a lattice as done by Kushleyev & Likhachev (2009), which allowed

them to represent interaction in a dynamic system by a so-called time-bound lattice, using

motion primitives. This interesting approach however, has only been employed for multi-

robot environments and never in HRSI. All these approaches are more or less related to

the presented work but still rely on metric information in some regards.

Concerning qualitative approaches to path planning, examples for qualitative route

planning can be found in work by Johansson et al. (2011), Meena et al. (2012a), and

Meena et al. (2012b) where dialogue is used to generate a route graph to navigate an
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environment using semantic information like store and street names or house numbers.

This approach can also be combined with pointing gestures to disambiguate the given

instructions as shown by Buss et al. (2011). However, these approaches only generate a

global path towards a goal and heavily rely on the availability of semantic information in

the environment or map and cannot be used for human-aware navigation directly. Hence,

all these approaches still rely on the underlying metric path planner to deal with static

and dynamic obstacles along the path generated from the graph.

From all this follows that all the representations previously or currently used in HRSI

path planning are based on metric space and Cartesian coordinates whereas this thesis

aims at providing a qualitative model that abstracts from the actual coordinate system,

environment, and metric space by representing the interaction as a sequence of states that

both agents passed through. This naturally allows to incorporate the human’s actions

into the robot’s path planning and decision making and to abstract from the environment

making it robust to change.

2.3 Activity Modelling and Prediction in HRSI

Predicting the movement of humans in the vicinity of the robot is essential for all delib-

erative systems and the approach presented here and requires either knowledge about the

environment and usual human movement (i.e. prediction based on geometric reasoning)

or data from previous interactions or observations of humans (i.e. prediction based on

machine learning). The works by Feurtey (2000) and Rios-Martinez (2013) give an in

depth overview of the prediction of human paths, though not in the context of robotics so

they do not take sensor limitations and real-time requirements into account.

Prediction based on geometric reasoning follows constraints in the usual movement

of humans given a certain environment and obstacles. Tadokoro et al. (1995) use grid

cells with an assigned probability – according to previous observations – of possible state

transitions, meaning the likelihood of a human moving from one grid cell to the other.

Ohki et al. (2010) presented a similar approach also based on grid cells and their transition

probability derived from the personal space of the human. Similar to the mentioned

cost functions human movement can also be predicted using social forces (e.g. Hoeller

et al. 2007). In both cases, social forces and grid cells, the position of the human has to
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be expressed with uncertainty which is usually achieved by using elliptical Gaussians to

represent the possible future position of the human. Looking at groups of people, their

motion can similarly be predicted using social force models of attraction and repulsion

(e.g. Martinez-Garcia et al. 2005). All these approaches however, except for the work by

Tadokoro et al. (1995) only rely on the geometry of the environment and are not based

on any actual observations of human movement in it.

Prediction based on learning means the collection of data in order to build models of

interactions which can be used for creation of new samples – the prediction. These ap-

proaches are highly related to the proposed probabilistic qualitative representation which

works in a similar manner, but currently almost all of these approaches are exclusively

based on map coordinates instead of abstract, qualitative states. Some of the more closely

related works are on Motion Patterns, Feature Based Markov Decision Processes, and

Short Term Trajectory Libraries. Bennewitz (2004) and (2005) use motion patterns as

inputs for HMMs to not only predict the immediate future state of a human during inter-

action but also possible trajectories the human takes through a previously observed office

environment. Ziebart et al. (2009) learn cost functions of the environment that explain

previously observed behaviour and employ it in a Markov Decision Process which enables

them to plan paths that balance time-to-goal and pedestrian disruption in known and un-

known environments. This transferral of knowledge is due to its qualitative and abstract

nature – also one of the main qualities of the proposed model. Chung & Huang (2010)

observed pedestrians and created a library of short-term trajectories which they clustered

to create pedestrian movement policies to predict how humans will move to avoid obstacles

or each other.

All these approaches have in common that they not only rely on map coordinates

or trajectories to represent the interaction, but also only represent the human side of

it. Hence, none of these models allow prediction of how the robot’s behaviour could

influence the human’s behaviour during the interaction, which is a crucial factor in HRSI.

In contrast to all other approaches listed in this section, the approach presented in the

following allows abstraction from metric space completely and absolutely by employing

a qualitative representation that does not represent any metric information. Moreover,

this model, by providing information about the movement of the two agents in relation
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to one another, allows assumptions to be made about how their spatial behaviour might

influence each other during the interaction, based on previous observations.

The field of modelling activities or interactions as Qualitative Spatial Relations (QSR),

is of growing popularity and an overview of the most relevant applications can be found

in Cohn & Renz’s (2008) work. Using QSRs is a novel approach to HRSI introduced by

Hanheide et al. (2012), where they use QTC to analyse the movement of a human and

a robot and the work by Bellotto (2012) and (2013), where motion was generated based

on hand-crafted QTC state chains on which this thesis builds. There are no examples

of using QSRs for human-aware navigation or human-robot joint motion. Compared to

the mentioned approaches, this thesis automatises the generation of movement behaviour,

learns the models from interaction, employs them for belief generation to determine the

current interaction type and the current state of the world, and uses a state-of-the-art

motion planner to generate inherently safe behaviour using a flexible and fast action

selection process. Moreover, none of the previous generative approaches have considered

the environment, so while they are human-aware, they might have the robot drive into

obstacles.

A recent PhD thesis by Schiffer (2015) describes QSRs for reasoning about object

positions and possible goals for robot movement but not for the generation of low-level

movement commands to control a robot during the interaction. Schiffer uses a combina-

tion of the so-called cardinal directions and distances as described by Clementini et al.

(1997) which allows representing the position of an object in relation to a different ob-

ject or reference frame using directions like North-West and distances like close or far

with different granularities. While this can be used to describe the position of humans in

the vicinity of the robot qualitatively, it does not represent any movement which is the

most important component of HRSI. Another representation that describes the positions

of an object in relation to a second object is the well known Region Connection Calculus

(RCC) by Randell et al. (1992). This claculus represents relative positions using con-

nections, i.e. disconnected, edge connected, partially overlapping, tangential proper part,

inverse tangential proper part, non-tangential proper part, inverse non-tangential proper

part, overlapping, and equal. The main problem of this representation for HRSI is that

all of the states except for disconnected have to be prevented in robot navigation. Thus,
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unifying all of the motion of human and robot under this one label is not suitable for

HRSI.

Robot navigation, however, has been attempted using QSRs before. Kuipers & Byun

(1991) for example describe an approach for exploration, mapping and navigation in large

scale environments, and Liu & Daneshmend (2012) and Wagner & Hübner (2004) describe

qualitative navigation approaches. All of these rely on landmarks in the environment in

order to be able to generate movement commands for the robot and are not concerned with

a reactive behaviour for human-aware navigation. Hence, there is no specific background

apart from the mentioned work by Bellotto (2012) and (2013) on this form of HRSI that

can be given.

When looking at recognising activities, the vast majority of approaches require the

complete sequence of actions to recognise the activity reliably. This would mean, in the

presented case the interaction of avoiding an oncoming human would only be classified

as a pass-by encounter after it has been completed. Poppe (2010) and Ke et al. (2013)

for example show a vast range of solutions for the problem of RGB-video-based activity

recognition. Since Linda the robot is equipped with an RGB-D camera, a quick overview

of RGB-D based activity recognition methods is given. This overview is by no means

complete as it is not the main focus of this thesis, but paints a picture of the general field.

Faria et al. (2014) and (2015) use dynamic Bayesian mixture models, whereas Wang et al.

(2014) follow a bio-inspired approach of neural networks to classify activities. Sung et al.

(2011) and (2012) use recordings of unstructured office environments for a similar task.

More closely related to the approach presented in Chapter 3, different forms of HMMs

can be used for activity recognition (e.g. Oliver et al. 2002, Wojek et al. 2006, Coppola

et al. 2015, Piyathilaka & Kodagoda 2015) where Coppola et al. (2015) follow also a

similar approach of using QSRs, namely a 3D variant of QTC. As mentioned earlier, all

these approaches require the full sequence of actions to classify the activity. To be able

to generate behaviour, however, the classification of the activity and the generation of the

belief of the world has to happen in real-time using incrementally updated state chains.

There are of course many more publications on activity modelling and recognition but

since this thesis focuses on HRSI and to not go beyond its scope, only the most relevant

ones have been listed above.
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2.4 Learning from Demonstration in HRSI

While there are examples of using data collected from human-human interaction such as

the work by Weiss, Mirnig, Buchner, Förster & Tscheligi (2011) where they investigate

different approach strategies of a participant to engage in a conversation with another

human and derive rules and guidelines for robotic navigation, this transferral comes with

certain risks. Human interaction partners react differently towards being approached by

a robot compared to another human and the robot has different movement constraints

depending on its physical body and motors. Hence, Weiss, Mirnig, Buchner, Förster &

Tscheligi (2011) only devise guidelines because the behaviour cannot be transferred as is.

To still be able to incorporate human expert knowledge and judgement, Learning from

Demonstration (LfD) has emerged as a popular principle in robotics, creating policies from

example state to action mappings (e.g. Argall et al. 2009). To this end, a human controls

the robot to demonstrate a certain task or behaviour which the robot ought to repeat.

In HRSI, however, there are only very few examples that make use of this approach.

One example being Yuan et al. (2010) who use trajectories recorded while being guided

through an unknown environment to achieve reliable navigation exploiting the human’s

knowledge about said environment. Remotely related to this, an approach of learning

from observing a human performing an action is later used to create the activity model

for online recognition. To acquire the set of robot actions, the robot is remote controlled

by a participant similar to work by Lichtenthäler et al. (2013) where a näıve participant

is tele-operating the robot to record the preferred trajectories in path-crossing situations

using a similar calculus than the presented work. Thus, both of these approaches make

use of the knowledge and experience of the human demonstrator where the first uses the

acquired model to replay trajectories and the second to classify the recorded trajectories

offline. Neither uses them for action selection or online classification.14

2.4.1 Wizard of Oz

An integral part of LfD is the human demonstrator. As mentioned in Section 1.2, to

achieve objectives [Obj. 2.1] and [Obj. 2.2], the inverse Oz of Wizard method is used. The

Wizard of Oz method in general has first been used in Human-Computer Interaction (HCI)

14To the author’s best knowledge there are no other examples of LfD in HRSI.
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Table 2.1: Pros and cons of the Wizard of Oz study design

Pros Cons

• Focus on evaluation of human
behaviour
• Fast system response
• No uncertainty in decision making
• Repeatable experiment set-up due to
deterministic wizard behaviour
• Safe robot behaviour due to human
decision making
• No implementation of sensing and
decision making required

• No evaluation of robot behaviour
• Robot only functions as a mediator
• No evaluation of possible robotic de-
cision making processes
• No evaluation of possible behaviour
generation algorithms
• No error detection in autonomous

robotic system
• Assumes technology that does not

and might never exist

by Kelley (1984) to simulated system responses and, therefore, focus on the evaluation of

the human behaviour. In HRI, the Wizard of Oz is a widely used principle – as can be seen

from a recent survey by Riek (2012) – where the robot behaviour is controlled completely

or in parts by a hidden human operator. Hence, the name Wizard of Oz has been chosen

because the operator is hidden behind the metaphorical curtain, controlling the robot,

having the participant belief that the system is fully autonomous. Such an experimental

set-up is best suited to investigate human behaviour assuming technology that does not

yet exists but might in a few years time. It therefore investigates human behaviour as

the independent variable given the robot behaviour as the dependent variable (Steinfeld

et al. 2009). A non-exhaustive list of pros and cons of this form of study design can be

found in Table 2.1.

For the presented work, this particular form of study design is not suited because the

aim is to create a system that is able to autonomously navigate in the presences of humans.

Replacing the robot’s behaviour generation with a human wizard could only be used to

evaluate the human side of the interaction with the robot (e.g. Mead & Mataric 2015) but

the work presented in this thesis focuses on the robot side of the interaction. According

to Steinfeld et al. (2009), the Oz of Wizard method can be used to investigate the robot

behaviour as the independent variable simulating the human as the dependent variable.

This simulation can either be virtual/procedural or by using an experimenter taking the

role of the participant. This methodology is especially used in cases of high risk for

the human interaction partner, to further rapid development processes by omitting time

consuming lengthy user studies, and to test robot behaviour prior to more exhaustive user
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trials. In the presented work, this technique has been used to validate certain steps of the

development before going into the evaluation phase. However, its main application lies in

LfD where the Oz of Wizard, or to be more precise the Inverse Oz of Wizard as defined by

Lichtenthäler et al. (2013) is used. Where the Oz of Wizard simulates the human and uses

an autonomous robot system, the Inverse Oz of Wizard substitutes the robots autonomy

with a näıve participant remote controlling the robot while it interacts with the simulated

human. This can be used to find robot behaviour considered suitable by the participant

in the situation created by the simulated human. Hence, for LfD the experiment creates

the situation the robot is supposed to be taught a new behaviour for by the participant

using their expert knowledge and best judgement.
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—One often meets his destiny on the road he takes to

avoid it.

Master Oogway, Kung Fu Panda

3
Probabilistic Qualitative Models for HRSI

Abstracting from the metric representation of a task or an environment is the main purpose

of Qualitative Spatial Relations (QSR) which makes it a powerful tool for classification of

and reasoning over the essence of the represented entity. Looking at HRSI, the essence

of the interaction between a human and a robot can be defined as the direction of their

movement over a certain interval of time and the order in which it occurs. An easy example

is a pass-by situation where both agents approach each other on a straight line, then one

or both start moving to either the left or right side while continuing their approach, pass

each other, and move away towards their original goal. Using such a representation does

not include any information about the environment which fulfils the objective of having an

environment agnostic interaction model and therefore makes it transferable to any kind of

environment or indeed even interacting agents as long as they engage in a similar encounter.

However, this qualitative model still has to be descriptive enough to unambiguously classify

different interactions. As mentioned in Chapter 2, most currently available representations

for HRSI use some form of metric representation which can be clusters of trajectories (e.g.
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Feil-Seifer & Mataric 2011), Gaussian cost models (e.g. Tranberg Hansen et al. 2009, Kirby

et al. 2009, Sisbot et al. 2007, Lu et al. 2013, Scandolo & Fraichard 2011, Svenstrup

et al. 2010), social forces (e.g. Martinez-Garcia et al. 2005, Tamura et al. 2012), grid cells

(e.g. Tadokoro et al. 1995, Ohki et al. 2010), and so forth. These representations can either

be learned or based on geometric constraints, but they all make the assumption that the

environment will not change significantly. The representation introduced in this chapter

abstracts from this metric space and unifies “similar” encounters, such as meeting people

head on in a corridor of any shape or size, into a common model to reduce the complexity

of subsequent learning approaches. Finally, this qualitative representation is used in a

probabilistic model to allow for the learning and classification of different interactions and

the subsequent behaviour generation based on the learned models.

A specific requirement to motion planning involving more than one dynamic agent,

apart from the perceived saftey and sociability is the incorporation of the other agents

intentions and movements into the robot’s decision making to increase its legibility. Ac-

cording to Ducourant et al. (2005), who investigated human-human spatial behaviour,

humans also have to consider the actions of others when planning their own. Hence,

spatial movement is a reciprocal process that is as much about communication and coor-

dination of movements between two agents – at least when moving in close vicinity to one

another, e.g. entering each other’s social space (Hall 1969) – as it is about the execution

of trajectories. This requires the representation used to not only model the behaviour of

the robot or the human, but of both in relation to each other to be able to tie a specific

robot state to the state of the human and equally important to tie the human behaviour

to the actions of the robot which is necessary for any form of action selection process.

To summarise, the above descriptions lead to certain requirements for a model of HRSI

that need to be fulfilled in order to equip a mobile robot with an understanding of the

interaction and the intention of its counterpart. As described in the objectives:

Representing the qualitative character of motions [Obj. 1.2] of both agents in-

cluding changes in direction, stopping or starting to move, etc.

Representing the relevant attributes of HRSI situations [Obj. 1.3], in particular

proxemics (Hall 1969), i.e. the distance between the interacting agents.

Ability to generalise [Obj. 1.4] over a number of individuals and situations.
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A tractable, concise, and theoretically well-founded model [Obj. 1.5] is necessary

for the representation and underlying reasoning mechanisms.

The presented work, therefore, builds on the Qualitative Trajectory Calculus (QTC)

inspired by Hanheide et al.’s (2012), and Bellotto’s (2012) and (2013) work using these

qualitative state descriptors to model HRSI. According to a survey of human-aware nav-

igation by Kruse et al. (2013), using these kind of QSRs for the representation of HRSI

is a novel concept which is why this chapter goes into detail about the two used versions

of the calculus in question and also how they are combined for the more efficient use in

HRSI. This combination is employed to model distance thresholds implicitly using the

probabilistic representation presented in Section 3.4.

The QTC belongs to the broad research area of qualitative spatial representation and

reasoning (Cohn & Renz 2008), from which it inherits some of its properties and tools. The

calculus was developed by Van de Weghe (2004) to represent and reason about Moving

Point Objects (MPO) in a qualitative framework. One of the main intentions was to enable

qualitative queries in geographic information systems, but QTC has since been used in

a much broader area of applications (e.g. Ducourant et al. 2005, Iliopoulos et al. 2014).

There are several versions of QTC, depending on the number of factors considered (e.g.

relative distance, speed, direction, etc.) and on the dimensions, or constraints, of the space

where the points move. The two most important variants for this work are QTCB which

represents movement in 1D and QTCC representing movement in 2D. QTCB and QTCC

were originally introduced in the definition of the calculus by Van de Weghe (2004) and

are shown here to explain their functionality and their use in the computational model.

Chapter Contributions To summarise, the main contributions in this Chapter are the

combination of two well known QTC variants into a new model that abstracts from the

metric information of the environment and interaction [Obj. 1.1] by represent-

ing the qualitative character of the motions [Obj. 1.2] and therefore generalises

to a wide variety of situations [Obj. 1.4] . This model is able to switch between the

used variants of QTC based on a distance threshold which allows to implicitly represent

an absolute distance measure [Obj. 1.3] via the transition from one variant to the

other. Thus, the model is able to highlight the interaction between two MPO in close

vicinity to each other which, apart from reducing noise, can be used in later chapters to
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Figure 3.1: This chapter’s contribution to the system shown in Figure 1.1. The interaction
of human and robot is observed using external sensors (visualised by the grey cone) and the
data is used to initialise and test the model. This is the basis for all following approaches that
are based on the information encoded in the model.

generate behaviour suitable for human-aware navigation. Additionally, the conceptual dis-

tance between single symbols is introduced for all used QTC variants and the definitions

for legal state chains are formalised. This new, tractable and concise QTC model,

based on the two underlying well-founded variants of the calculus [Obj. 1.5]

is then used in a novel combination with a probabilistic representation which is trained

from real-world data gathered in two experiments. Figure 3.1 shows how this contribution

fits into the big picture of the overall proposed system by generating a model from the

observation of a human and a robot interacting with each other.

The model is evaluated by using it to classify certain encounters from the collected

data and shows good results when it comes to reliability and, therefore, proves to be suited

to represent HRSI.

The work presented in this chapter has been published in two conference and one

journal publication. Please refer to Appendix A.1 for the author’s contributions to those

papers.

3.1 The Qualitative Trajectory Calculus

In order to qualitatively describe the movement of the two Moving Point Objects (MPO) k

and l, a frame of reference is needed. In the case of QTC, the relative motion of these two

points is expressed using qualitative symbols, therefore, the frame of reference for point k

is point l and vice-versa. To obtain a more accurate description of their relative movement,

each QTC state describes a time interval T = [tn−1, tn]. Hence to describe the movement

of k during the interval T in relation to l, the position of ktn is compared to its previous

position ktn−1 and put into relation to ltn−1 . For example, using the Euclidean distance

d(·), if d(ktn−1 , ltn−1) > d(ktn , ltn−1), point k moved towards l from tn−1 to tn. This process

42



3.1. The Qualitative Trajectory Calculus Chapter 3. Qualitative Models

is then repeated with k and l swapped to generate the QTC state. Thereby, QTC describes

the velocity vector of each point for the interval T which is later on exploited to generate

robot behaviour.

In its original definition by Van de Weghe (2004), QTC operates in continuous space

and assumes full observability. This assumption, however, does not hold true when using

deterministic sensor data. For this reason, the interval T is from here on assumed to only

consist of the to discrete time-steps tn−1 and tn where the resulting QTC state of the

interval T is assigned to tn. As a consequence, for the time series T = [t0, t1, . . . , tn] a list

of n− 1 QTC states Q = [Q1, . . . , Qn] is generated.15 This approach is commonly called

uni-directional discrete QTC. In the remainder of this work, when referring to QTC,

it refers to this uni-directional discrete version. For the sake of completeness, another

approach to handle discrete data is bi-directional discrete QTC which uses the time points

T = [tn−1, tn, tn+1] to calculate the relative movement of the MPO k and l at time tn, for

example d(ktn−1 , ltn) > d(ktn , ltn) > d(ktn+1 , ltn) for k approaching l. This would result

in n − 2 QTC states Q = [Q1, . . . , Qn−1] for the time series T = [t0, t1, . . . , tn−1, tn]. In

work by Iliopoulos et al. (2014), the authors argue that this represents continuous QTC

better than the uni-directional representation but make no case why. The uni-directional

version of QTC has been chosen for this work as it simplifies the generation of QTC states,

does not require tn+1 to calculate tn which is only possible by knowing the movements

a-priori, and still represents the interaction between human and robot well enough to

reliably classify different types of encounters and generate appropriate robot behaviour

as can be seen in the remainder of this work. For a full description of continuous space

QTC please refer to Van de Weghe’s (2004) work and to Delafontaine’s (2011) work for

the uni-directional and bi-directional discrete versions of QTC.

3.1.1 QTC Basic

The simplest version of QTC is called Qualitative Trajectory Calculus – Basic (QTCB)

and represents the 1D relative motion of the two MPO k and l from tn−1 to tn. It uses a

3-tuple of qualitative relations (q1 q2 qν), where each element can assume any of the values

{−, 0,+} as follows:

15Assuming no additional post-processing of the generated state sequence like the collapsing of similar
adjacent states as described later on.

43



3.1. The Qualitative Trajectory Calculus Chapter 3. Qualitative Models

k

l

Figure 3.2: The QTCC double cross. The respective QTCB and QTCC relations for k and

l are (−+) and (− + − 0). The dashed line connecting k and l is used as a directed line
−→
k l

or
−→
l k to generate QTCC states.

q1) movement of k with respect to l

− : k is moving towards l

d(ktn−1 , ltn−1) > d(ktn , ltn−1)

0 : k is stable with respect to l

d(ktn−1 , ltn−1) = d(ktn , ltn−1)

+ : k is moving away from l

d(ktn−1 , ltn−1) < d(ktn , ltn−1)

q2) movement of l with respect to k: as above, but swapping k and l

qν) relative speed of k with respect to l

− : k is slower than l∣∣∣−→νktn∣∣∣ < ∣∣∣−→νltn∣∣∣
0 : k has the speed of l∣∣∣−→νktn∣∣∣ =

∣∣∣−→νltn∣∣∣
+ : k is faster than l∣∣∣−→νktn∣∣∣ > ∣∣∣−→νltn∣∣∣

To create a more general representation, the simplified version QTCB11 is used which

consists of the 2-tuple (q1 q2) as can be seen in Figure 3.2. Hence, this simplified version is

ignorant of the relative speed of the two agents and restricts the representation to model
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Figure 3.3: Conditional Neighbourhood Diagram (CND) of QTCB11. Given continuous
observation it is impossible for k to transition from moving towards l to moving away from l
without passing through the 0-state of being stationary even if it is only for an infinitisimal
interval. Hence, whereas + and − always described intervals in time, 0 states can be of
infisitinimal length. Also, note that due to the original formulation by Van de Weghe (2004),
there are no direct transitions in the CND between some of the states that, at a first glance,
appear to be adjacent (e.g. (−0) and (0−)). The dashed lines represent a conceptual distance
of dc = 2 (both symbols change) whereas the solid lines represent a distance of dc = 1 (see
Section 3.3).

moving apart or towards each other or being stable with respect to the last distance.16

Therefore, the state set SB = {(q1, q2) : qj ∈ {−, 0,+}} for QTCB11 has |SB| = 32 possible

states and |τB| = |{s s′ : s, s′ ∈ SB ∧ s 6= s′}| = 32 legal transitions as defined in the

Conditional Neighbourhood Diagram (CND) shown in Fig. 3.3. From here on, Van de

Weghe’s (2004) notation s1  s2 for valid transitions according to the CND is adopted

throughout the remainder of this work. Given the continuous observation assumption, by

restricting the number of possible transitions a CND reduces the search space for subse-

quent states, and therefore the complexity of temporal QTC sequences (see Section 3.3

for a detailed explanation).

16Since this representation only concerns distance, a (0 0) QTC state does not mean that the MPO are
not moving but that their distance did not change. Hence, parallel movement at the same speed would
still result in (0 0) or even (0 0 0) including the relative speed.
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k l

t1 t2 t1t2, t3
t3

Figure 3.4: Example of a typical passby situation in a corridor. The respective QTCC state
chain is (−− 0 0)t1  (− 0 0 0)t2  (− 0+0)t3 . t0 is not shown because at least two discrete
points in time are necessary to generate a QTC state. Hence, the state for t1 describes the
movement of k and l for [t0, t1].

3.1.2 QTC Double-Cross

The other version of the calculus used in the model, called Qualitative Trajectory Calculus

– Double-Cross (QTCC) for 2D movement, extends the previous one to include also the side

the two points move to, i.e. left, right, or straight, and the absolute angle of k compared to

l, with respect to the reference line
−→
k l or

−→
l k connecting them (see Figure 3.2). Figure 3.4

shows an example human-robot interaction in a corridor, encoded in QTCC . In addition

to the 3-tuple (q1 q2 qν) of QTCB, the relations (q3 q4 qα) are considered, where each

element can assume any of the values {−, 0,+}. Let ktn−1 , ktn , ltn−1 , ltn be discrete points

in 2D space and −−→νktn =

 xktn

yktn

 ,
−→
k l =

 xltn−1

yltn−1

 be normalised vectors with origin(
xktn−1

, yktn−1

)
and similarly for −→νltn and

−→
l k with origin

(
xltn−1

, yltn−1

)
(see Figure 3.5),

then:

q3) movement of k with respect to
−→
k l from tn−1 to tn

− : k is moving to the left side of
−→
k l

atan2(−−→νktn )− atan2(
−→
k l) > 0

0 : k is moving along
−→
k l

atan2(−−→νktn )− atan2(
−→
k l) = 0

+ : k is moving to the right side of
−→
k l

atan2(−−→νktn )− atan2(
−→
k l) < 0

q4) movement of l with respect to
−→
l k from tn−1 to tn: as above, but using −→νltn and

−→
l k
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α
ktn-1

ktn

→
kl

→νktn
ltn-1

(a) Movement of k with respect to l.

α

ktn-1

ltn
→
lk

→νltnltn-1

(b) Movement of l with respect to k.

Figure 3.5: Movement of the two MPOs k and l for T = [tn−1, tn] as seen in Figure 3.2.

qα) the angle of k compared to the angle of l

− :
∣∣∣atan2(−−→νktn )− atan2(

−→
k l)

∣∣∣ < ∣∣∣atan2(−→νltn )− atan2(
−→
l k)

∣∣∣
0 :

∣∣∣atan2(−−→νktn )− atan2(
−→
k l)

∣∣∣ =
∣∣∣atan2(−→νltn )− atan2(

−→
l k)

∣∣∣
+ :

∣∣∣atan2(−−→νktn )− atan2(
−→
k l)

∣∣∣ > ∣∣∣atan2(−→νltn )− atan2(
−→
l k)

∣∣∣
Similar to QTCB, the simplified version of QTCC , QTCC21 is used. This simplified

version inherits from QTCB the ability to model if the agents are moving apart or towards

each other or are stable with respect to the last distance and in addition is also able to

model to which side of the connecting line the agents are moving. The resulting 4-tuple

(q1 q2 q3 q4) representing the state set SC = {(q1, q2, q3, q4) : qj ∈ {−, 0,+}}, has |SC | = 34

states, and |τC | = |{s s′ : s, s′ ∈ SC ∧ s 6= s′}| = 1088 legal transitions as defined in the

corresponding CND by Delafontaine (2011) shown in Figure 3.6 and detailed in Section 3.3.

For simplicity, from here on when speaking of QTCB and QTCC it refers to the simpli-

fied versions of QTC, i.e. QTCB11 and QTCC21 respectively, as defined by Van de Weghe

(2004). The reasoning behind all this simplification is purely based on the size of the state

space. Using the full QTCC tuple (q1, q2, qν , q3, q4, qα) results in 36 = 729 states which

requires more training data and would quickly become intractable. Even though Dela-

fontaine (2011) showed that only 305 of these states are achievable using agents moving

in 2D space abiding by the known laws of physics, this state space is still large compared

to the 81 states used in the simplified version of QTCC . Moreover, the results in Sec-

tion 3.6 show that even this reduced state space is descriptive enough to reliably classify

the current interaction and generate appropriate behaviour.
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Figure 3.6: The Conditional Neighbourhood Diagram (CND) of the simplified Qualitative
Trajectory Calculus – Double-Cross (QTCC) (image taken from (Delafontaine 2011)). Note
that, similar to the CND for QTCB, due to the original formulation of CNDs, there are no
direct transitions between some of the states that at first glance look adjacent, e.g. (− 0 +−)
and (−+0−). The grey level of the connecting lines represents the conceptual distance between
the state from 1 dark grey to 4 light grey, see legend in bottom left.

3.2 Combined Qualitative Trajectory Calculus

A crucial missing factor in order to be able to use this representation also for behaviour

generation is absolute distance because proxemics, as defined by Hall (1969), is an impor-

tant metric in human-human interaction that should also be considered in human-robot

interaction (e.g. Pacchierotti et al. 2005). While the original definition of QTCC can be

used to identify HRSI encounters as shown in Dondrup, Bellotto & Hanheide (2014a), to

also implicitly model a distance threshold ds, QTCB and QTCC are combined into one
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unified model called Qualitative Trajectory Calculus – Basic/Double-Cross (QTCBC).17

As shown in Bellotto et al.’s (2013) work, QTCB and QTCC can be combined using

hand crafted and simplified state chains and transitions to represent and reason about

HRSI. In (Dondrup, Bellotto & Hanheide 2014b, Dondrup, Bellotto, Hanheide, Eder &

Leonards 2015), however, QTCBC is formalised and automatised, ultimately enabling the

model to use real-world data to learn the transitions between the two variants of QTC

instead of predefining them manually as in Bellotto et al.’s (2013) work.

This approach is not only used for noise reduction and to highlight the interaction

of human and robot in close vicinity but also to trigger state changes during behaviour

generation. Using the transition from QTCB to QTCC a simple “approach” can change

to “approach and avoid” which is paramount for the solution to this problem presented in

Chapter 5. In the following, this combination of the two variants is presented as the basis

for the encoding of HRSI.

The set of possible states for QTCBC is a simple unification of the fused QTC variants.

In the presented case the integrated QTCBC states are defined as:

SI = SB ∪ SC (3.1)

with |SI | = |SB|+ |SC | = 90 states. This results in

SI = {(q1 q2 q3 q4) : q1, q2 ∈ {−, 0,+} ; q3, q4 ∈ {−, 0,+, ∅}} (3.2)

where q3, q4 ∈ {−, 0,+} ∀ d(k, l) ≤ ds and q3, q4 ∈ {∅} ∀ d(k, l) > ds.
18

The transitions of QTCBC include the unification of the transitions of QTCB and

QTCC – as specified in the corresponding CNDs (see Figures 3.3 and 3.6) – but also the

transitions from QTCB to QTCC

τBC = {sb  sc : sb ∈ SB, sc ∈ SC} (3.3)

17The combined variants are QTCB11 and QTCC21 which results in QTCB11C21, from here on referred
to as QTCBC for simplicity.

18The ∅ might also be omitted in state descriptors, e.g. (+ + ∅∅)⇔ (++).
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(- -)

(- - - -)

(- - + +)

(0 0 - -)

(0 0 + +)

(+ +)

(+ + - -)

(+ + + +)

QTCCQTCB QTCB

Figure 3.7: Conceptual temporal sequence of QTCBC for a pass-by encounter. From left to
right: approach, pass-by on the left or right side, moving away. Dashed lines represent instants
where the distance threshold ds is crossed.

and from QTCC to QTCB

τCB = {sc  sb : sb ∈ SB, sc ∈ SC} (3.4)

This leads to the definition of QTCBC transitions as

τI = τB ∪ τC ∪ (τBC ∪ τCB) (3.5)

To preserve the characteristics and benefits of the underlying calculus τBC and τCB

are simply regarded as an increase or decrease in granularity, i.e. switching from 1D to

2D or vice-versa. As a result there are two different types of transitions:

1. Pseudo self-transitions where the values of (q1 q2) do not change, plus all possible

combinations for the 2-tuple (q3 q4): |SB| · 32 = 81, e.g. (++)  (+ + −−) or

(+ +−−) (++).

2. Legal QTCB transitions, plus all possible combinations for the 2-tuple (q3 q4): |τB| ·

32 = 288, e.g. (+0) (+ +−−) or (+0−−) (++).

Resulting in

|τBC |+ |τCB| = 2 · (81 + 288) = 738 (3.6)
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transitions between the two QTC variants. This leads to a total number of QTCBC

transitions of:

τI = |τB|+ |τC |+ (|τBC |+ |τCB|)

= 32 + 1088 + 738

= 1858

As for the set of states SI , these transitions depend on the previous and current

Euclidean distance of the two MPO d(k, l) and ds representing an arbitrary distance

threshold

τi ∈



τB if d(k, l)t−1 > ds ∧ d(k, l)t > ds,

τBC else if d(k, l)t−1 > ds ∧ d(k, l)t ≤ ds,

τCB else if d(k, l)t−1 ≤ ds ∧ d(k, l)t > ds,

τC otherwise

(3.7)

Since the actual quantitative distance threshold ds is not explicitly included in the

QTCBC tuple, it is modelled implicitly via the transition between the two enclosed vari-

ants. As a result, ds can be chosen freely or learned from observation and even altered

at runtime depending on the environment or the person to interact with. This threshold

is later on used to trigger certain behaviours in the robot like starting the avoidance ma-

noeuvre or stopping to let the human pass and has to be chosen carefully during training

and then adjusted to achieve the desired robot behaviour. A conceptual example of a

pass-by interaction encoded in QTCBC can be seen in Figure 3.7.

3.3 Conceptual Neighbourhood and Distance

The principle of conceptual neighbourhood and distance is a widely used approach in

Qualitative Spatial Relations (QSR) to make assumptions about the similarity of two

states. Using RCC3 an easy example which defines the 3 states of Disconnected (dc),

Partially Overlapping (po), and Equal (e). The continuous neighbourhood diagram for

this representation can therefore be defined as dc ↔ po ↔ e which means that dc can

never transition to e without going through po in between. Assigning a cost of 1 for each
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transition between states, the conceptual distance between dc and e is 2 whereas in all

other cases it is 1.

Looking at the slightly more complicated case of QTC, the Conditional Neighbour-

hood Diagram (CND) of the variant, i.e. QTCB in Figure 3.3 or QTCC in Figure 3.6,

can be used to find the conceptual distance dc. In all variants of QTC, the concep-

tual distance depends on the number of symbols that changed from one state to the

other. Looking at the case of QTCB with SB = {(q1, q2) : qj ∈ {−, 0,+}}, it is apparent

that dc ∈ [0, 1, 2] as there are only 2 symbols that can change. Hence, for QTCC with

SC = {(q1, q2, q3, q4) : qj ∈ {−, 0,+}} the conceptual distance is dc ∈ [0, 1, 2, 3, 4] where in

both cases dc = 0 represents that the states are equal. From this definition it follows that

the value the symbol changes to is irrelevant for the distance dc because symbols jumping

from − to + or the other way around are invalid and therefore “impossible” which holds

true for continuous space. For HRSI, resulting from the discrete nature of the incoming

sensor data, another conceptual distance measure φ is introduced in this thesis. This

measurement describes the conceptual distances not between states but between symbols

which is required for the observation model presented in Chapter 6 and used in the formal

definitions of valid QTC state chains later on. QTC by definition is zero-dominated which

means that each of the symbols can either transition to 0 or out of 0. This results in the

symbol 0 representing either an interval of time in which the MPO was stationary, or an

infinitesimal instant of time where the MPO transitioned from − to + by passing through

the 0 state or vice-versa. Since there are 3 different symbols, the CND for each of the

QTC symbols can be expressed similar to RCC3 as − ↔ 0↔ +. Hence, their distance is

defined as φ ∈ [0, 1, 2].

In QTCBC with SI = {(q1 q2 q3 q4) : q1, q2 ∈ {−, 0,+} ; q3, q4 ∈ {−, 0,+, ∅}}, 4 symbols

have to be considered. Therefore,

φ
(
qi, q

′
i

)
, 3 ∀

(
qi ∈ ∅ ⊕ q′i ∈ ∅

)
(3.8)

where qi and q′i are the symbols of two QTC states at position i and ⊕ symbolises an

exclusive or. Otherwise, if qi = q′i = ∅, φ = 0. As a result, for QTCBC the distance is

defined as φ ∈ [0, 1, 2, 3] where 0 indicates that the symbol did not change and 3 signifies

the transition from or to ∅. The latter is necessary to prevent ∅ from replacing 0 as the
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intermediate state. Since every symbol can transition to and from the ∅ in every step, it

would otherwise be equivalent with the 0 representing a different meaning. In reality, the ∅

transition is only possible if d(kt, lt) > ds∧d(kt+1, lt+1) ≤ ds∨d(kt, lt) ≤ ds∧d(kt+1, lt+1) >

ds but conceptually, the ∅ is a symbol like all the others so transitions have to be punished

by a high conceptual distance value φ.

An example for this conceptual distance on a symbol level would be (− − + 0) →

(−−−+) which is an illegal transition according to the original QTC definition but might

happen using sensor data. The conceptual distance

Φ (Q1, Q2) =
n∑
i=1

φ(qi, q
′
i); qi ∈ Q1, q

′
i ∈ Q2 (3.9)

with n = |Q1| = |Q2| would be Φ((−−+ 0), (−−−+)) =
∑

(0, 0, 2, 1) = 3.

Apart from conceptual distance, looking at the CNDs in figures 3.3 and 3.6 it becomes

apparent that they do not represent a fully connected graph and therefore there are certain

transitions that are illegal in QTC in addition to the transition − ↔ + mentioned above.

This means that each symbol has to either remain unchanged or transition to the 0-state

or out of it. In addition to that, due to physical constraints of the real world, certain

symbols are not allowed to change at the same time even though they do not violate the

− ↔ 0↔ + rule. One example for such an illegal transition is (− 0 0 0)↔ (0−0 0) which

means that k stops approaching l at the same time that l starts approaching k. On the

first glance this seems like a reasonable real-world action but keeping the nature of QTC

in mind, a 0-state is the only state that can either be an interval in time or just an instant

whereas both − and + have to be intervals in time due to inertia and the impossibility of

infinite acceleration. Thus, given continuous observation and limited acceleration of the

MPOs it is physically impossible for k to stop moving at the exact instant in time that

l starts to move. However, there is no limit on how many symbols can transition to or

out of the 0-state at the same time only the combination of one symbol changing to 0 and

another changing from 0 to + or − is illegal. The following rule for legal transitions can

be defined

Definition 3.1. Let Q be a QTC state and Q′ the successive QTC state, then Q  Q′

represents a valid transition if and only if, ∃φ(qi, q
′
i) 6= 2 ∀ qi ∈ Q, q′i ∈ Q′ and if for any

qi ∈ Q, qi = {+,−} → q′i = 0, then Q′ = {q′i : q′i ∈ {0, qi}, qi ∈ Q}.
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Apart from the creation of valid transitions based on Definition 3.1, the conceptual

distance is also used for another important aspect of QTC that hasn’t been mentioned so

far – QTC does not represent absolute time but only a series of events in chronological

order. This is achieved by collapsing equal adjacent states in the chain into one state.

Thus, if Φ = dc = 0 the two states are merged into one and thereby the resulting state chain

is shortened significantly and makes it impossible to infer the duration of the interaction.

Definition 3.2. Let Q be a QTC state chain, then Q represents a valid state chain if

and only if, @(Qi, Qi+1) ∈ Q : Qi = Qi+1 ∀ (Qi, Qi+1) ∈ Q.

As mentioned, this robs QTC of the ability to represent absolute time, which has

benefits and detriments. The most obvious benefit is the resulting generalisability being

able to represent, for example, an overtaking action in QTCB. This action would always

be described as (−+)→ (0 0)→ (+−) regardless of the actual time it took k to overtake l.

Hence, it is very straightforward to use this representation to classify all kinds of overtaking

actions in all kinds of scenarios or application domains – be it one car overtaking the other,

pedestrians walking, or celestial objects in outer space because it is completely agnostic of

discrete speed or time values. When it comes to human-aware navigation, time and speed,

however, play a vital role in the interaction, but only for behaviour generation and not

necessarily for classification. The following chapters outline how this problem is tackled

for the behaviour generation, while it can safely be ignored for classification as can be seen

from the evaluation in this chapter.

As mentioned in the beginning, robotic systems work on discrete sensor data which is

why in this case the uni-directional QTC has been chosen for all the introduced variants.

Looking at above definitions, keeping in mind that 0 is also a transitional state that can

only last a short instant of time, it becomes apparent that discrete sensors will most

likely never produce 0 QTC states. For a moving agent, the transitional 0 state when

“−” transitions to “+” or vice-versa will never be observed and even if the agent is

standing still the sensor noise will always produce false movement by oscillating around

its actual position. Sensor noise and oscillation around either the connecting line or the

two perpendicular lines in Figure 3.2 is also the reason for not observing 0 states when one

agent is moving on a straight line towards the other for example. Hence, using discrete data

from real-world sensors which are subject to noise will never result in any 0 states. These
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0 states, however, hold important information, e.g. there is a big difference in approaching

someone head-on or moving to either side while doing so regarding communication and the

need for avoidance, therefore, in the following and the remainder of the thesis a so-called

quantisation factor is used, i.e. an agent has to diverge from either of the connecting lines

by a certain distance for it to be counted as a non-0-state because minute oscillations can

safely be ignored. Additionally, the incoming sensor data is smoothed by averaging over a

certain time interval to reduce the noise. Of course, this still does not guarantee that valid

state chains are produce but only that it will contain 0 states as well. In the following, a

mechanism to cope with these illegal transitions is introduced and the quantisation and

smoothing factor effect will be investigated in the evaluation in Section 3.5.

3.4 Probabilistic Activity Models

In order to allow reasoning and classification based on the described QTC representations,

a probabilistic model and training from real-world data is required. Hence, this probabilis-

tic representation has to be able to learn QTC state chains and the corresponding emission

and transition probabilities from observed trajectories of human and robot. In the case

of QTCBC these transitions are defined according to Equation 3.7. Using real-world data,

this representation also has to be able to deal with discrete observations instead of the de-

sired continuous space and compensate for illegal transitions using emissions of transitional

states.

Hanheide et al. (2012) proposed a probabilistic model of state chains, using a Markov

Chain and QTCC to analyse HRSI. However, illegal transitions as defined in Definition 3.1,

are not taken into account which results in an illegal state chain, given the original defini-

tion of QTCC . As a first step towards modelling HRSI using qualitative states, Hanheide

et al.’s (2012) work shows that even a simple Markov Chain of illegal QTCC state tran-

sitions is well suited to describe certain encounters in HRSI such as different types of

pass-by interactions. In this section, this model is taken a step further and evolved into

a Hidden Markov Model (HMM) representation of QTCB, QTCC , and QTCBC . This

enables not only the representation of actual sensor data by allowing for uncertainty in

the recognition process but also to reliably classify different HRSI encounters, e.g. pass-by

(see Figure 3.11a) and overtaking scenarios (see Figure 3.11b).
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Figure 3.8: The HMM transition matrix T for QTCBC . The top left box τB represents the
QTCB transitions, the bottom right τC the QTCC transitions. The boxes of τBC and τCB
represent the transitions between the two. “Start” is the artificial start state and “End” the
artificial end state. The start state can not directly transition into end and end only allows
self transitions.

A Hidden Markov Model (HMM) is defined as the 5-tuple H(T,E, I,O, S) and consists

of the transition probabilities T , the emission probabilities E, an alphabet of input symbols

I (i.e. the states of the HMM) an alphabet of output symbols O (i.e. the emissions), and

the start probabilities S (Fink 2008). In the case of QTC the alphabet of input symbols

is equal to the alphabet of output symbols I = O and describes the QTC states of the

used variant. For the presented models this amounts to |SB| = 9 for QTCB, |SC | = 81

for QTCC , and |SBC | = 90 for QTCBC . Resulting from the two alphabets having the

same size, the transition and emission matrix of probabilities are both N × N matrices

where N = |I| is the number of states. The transition matrix T describes the transition

probabilities from one state to the other meaning that Ti,j is the transition probability of

state si to state sj with s ∈ I. The entries Ei,j of the emission matrix E, on the other

hand, describe the probability with which symbol oj is emitted by state si with oj ∈ O.

As a result the state (− 0+−) does not have to emit itself, but could emit any of the other

states depending on the trained matrix E. Lastly, the start probabilities S describe the

probability of the first symbol of an observation sequence to be producible by this specific

HMM. If the first symbol in the observation sequence has 0.0 probability in S the HMM

is not able to produce it and will classify it as a rejected sequence. For the presented case
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of QTC, an artificial start and end state are inserted into the training and test sequences

so that S is set to 1.0 for the artificial start state and to 0.0 for the remaining states. The

reasoning behind this will become apparent at the end of this section.

Usually, assuming no a-priori knowledge, both T and E are initialised uniformly before

the start of the training process, meaning that every transition and emission is equally

likely. In the case of QTC, however, Definitions 3.1 and 3.2 can be used to restrict T

to only allow legal transitions which are modelled uniformly and remove self-transitions.

As a result, if this approach would have been used for Hanheide et al.’s (2012) work, the

Markov Chain representation would break if the training data contains illegal transitions

which, due to the deterministic nature of the sensor data, is almost a certainty. To create a

valid representation, the emission matrix E is used to allow each state to also emit a state

that represents a legal transition. Hence, to allow for uncertainty in the actual recognition

process and deal with the resulting QTC state classification errors that arise from the

discretisation of actual robot and human movement into the respective qualitative states,

the “correct” emissions (e.g. the QTCC state (− 0 + −) actually emits (− 0 + −)) to

occur is modelled with 95% probability and the model accounts for classification errors

with 5%. For QTCB and QTCC this process is relatively straight forward. For QTCBC on

the other hand, the transition matrix T as shown in Figure 3.8 is created by combinig the

transition matrices for QTCB and QTCC and the transitions τBC and τCB as described

in Section 3.2. The emission matrix for QTCBC follows the same rules as for the other

QTC variants.

To represent different HRSI behaviours, the HMM needs to be trained from actual ob-

served data (see Figure 3.9, showing an example of a trained state chain using QTCC). For

each different behaviour to be represented, a separate HMM is trained, using Baum-Welch

training (Expectation Maximisation) (Fink 2008) to obtain the appropriate transition and

emission probabilities for the respective behaviour. The training process allows for pseudo-

transitions and emissions by “adding-one”, i.e. T = T + 1
n+1 with n being the number of

training sequences and equivalently for the emissions E, to overcome the problem of a lack

of sufficient amounts of training data and unobserved transitions therein. To create the

training set the recorded data is transformed into QTC state chains of the desired variant

plus the artificial start and end state. By using this start state and pseudo transitions, the

model implicitly accounts for unobserved start states without having to model pseudo start
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Figure 3.9: QTCC states for pass-by situations created by the HMM representation. Edge
width and numbers represent the transition probabilities. The colour of the nodes represents
the a-priori probability of that specific state to be present in any observed chain (from white
= 0.0, e.g. “S”, to dark grey = 1.0, e.g. “E”), i.e. its observation probability. All transition
probabilities below 0.15 have been pruned from the graph, only highlighting the most probable
paths within the model. Due to the pruning, the transition probabilities in the graph do not
sum up to 1.0.
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states (which would be another way of tackling this problem). An example state chain for

QTCBC taken from Figure 3.7 would be (−−∅ ∅)→ (−−−−)→ (+ +−−)→ (+ + ∅ ∅)

which does not contain the connecting state (0 0 − −) and therefore contains an illegal

transition (− − −−) 6 (+ + −−). Hence, after the training process, the emission for

(+ + −−) would also contain (0 0 − −) to ensure valid state chains by emitting this

intermediate state.

On a side note, the probabilistic model of QTCBC , since it contains the full subset of

QTCB and QTCC , is able to model both these variants as well. By setting ds = 0 or ds =

inf during the creation of state chains it models “pure” QTCB or QTCC , respectively.

3.5 Experiments

To evaluate the soundness and representational capabilities of the probabilistic model of

HRSI using QTC state chains, particularly QTCBC as this combines both QTCB and

QTCC , the HMM representation is trained using real-world data from two experiments.

These HMMs are then employed as classifiers to generate a comparative measurement to

make assumptions about the quality of the model and the distance thresholds ds. The two

experiments both investigate the movement of two agents in confined shared spaces. The

first experiment, referred to as “restaurant experiment”, features the mobile service robot

Linda and a human näıve to the goal of the experiment. The tasks were designed around a

hypothetical restaurant scenario eliciting incidental and spontaneous interactions between

human and robot.

The second experiment, later referred to as the “Bristol experiment”, features two

agents (both human) passing each other in a 2 meter wide corridor. The experimenter

was dressed up as a “robot”, masking her body shape, and her face and eyes were hidden

behind goggles and a face mask (see Figure 3.13). This “fake robot” received automated

instructions on movement direction and collision avoidance strategy from a simple program

via headphones. Similar to the “restaurant experiment”, the other person was a partici-

pant näıve to the goal of the experiment, but was given explicit instructions to cross the

corridor with as little veering as possible, but without colliding with the oncoming agent.

This second experiment does not feature a real robot but yields similar results using the

presented probabilistic model, as can be seen in Section 3.6. Both experiments feature
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two agents interacting with each other in a confined shared space and are well suited to

demonstrate the representational capabilities of the model, showing how the approach can

be effectively generalised or extended to other forms of spatial interaction.

The following sections describe the general aims and outlines of the experiments used.

This is meant to paint the bigger picture of the underlying assumptions and behaviours

of the robot/experimenter during the interactions and to explain some of the conditions

that were compared in the evaluation. Both experiments investigated different aspects of

HRSI and spatial interaction in general, which created data well suited for the analysis of

the presented probabilistic model utilising QTCBC and to investigate appropriate distance

thresholds ds.

3.5.1 Restaurant Experiment

This section presents a brief overview of the “restaurant experiment” set-up and tasks.

Note, the original aim of the experiment, besides the investigation of HRSI using an

autonomous robot in general, was finding hesitation signals in HRSI to gather feedback

about the quality of the interaction for possible reinforcement learning approaches, hence

the choice of conditions. Since the recorded data is appropriate for the desired evaluation

of QTC, it has subsequently been used for this purpose in addition to the investigation of

hesitation which has been described by Dondrup, Lichtenthäler & Hanheide (2014).

Experiment Design

In this experiment participants were put into a hypothetical restaurant scenario together

with Linda the robot (see Section 1.3.2). The experiment was situated in a large motion

capture lab surrounded by 12 motion capture cameras (see Figure 3.10), tracking the

x, y, z coordinates of human and robot with a rate of 50Hz and an approximate error of

1.5mm ∼ 2.5mm. The physical set-up itself was comprised of two large boxes (resembling

tables) and a bar stool (resembling a kitchen counter). The tables and the kitchen counter

were on different sides of the room and connected via a ∼ 2.7m long and ∼ 1.6m wide

artificial corridor to elicit close encounters between the two agents while still being able

to reliably track their positions (see Figure 3.11). The complete set-up was longer due to

the added tables and kitchen counter plus some space for the robot and human to turn.
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Figure 3.10: The “restaurant experiment” set-up showing the robot, the motion capture
cameras, the artificial corridor, and the “tables” and “kitchen counter”. The shown set-up
elicits close encounters between human and robot in a confined shared space to investigate
their interaction.

The specified width is taken from the narrowest point of this corridor. At the ends, the

corridor widens to ∼ 2.2m to give more room for the robot and human to navigate as can

be seen in Figure 3.11. The evaluation, however, only regards interactions in this specified

corridor.

For this experiment 14 participants (10 male, 4 female) were recruited who interacted

with the robot for 6 minutes each. All of the participants were employees or students

at the university and 9 of them have a computer science background; out of these 9

participants only 2 had worked with robots before. No compensation was paid. The

robot and human were fitted with motion capture markers on their head and shoulders to

track their x, y coordinates for the QTC representation – Figure 3.12 shows an example

of recorded trajectories.

The robot was programmed to move autonomously back and forth between the two

sides of the artificial corridor (kitchen and tables), using a state-of-the-art local (Fox

et al. 1997) and global planner (see Section 5.1 for a detailed explanation of the local
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(b) Overtaking encounter showing the
human and robot trying to reach the
same goal, having the human overtake
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Figure 3.11: Example of the two most common types of encounters in the “restaurant ex-
periment”. The blue arrow represents the trajectory of robot (“R”) and the red arrow shows
the trajectory of the human (reddish figure). Experimental set-up: kitchen on the left and two
tables on the right. Black lines represent the artifical corridor. The circle around the robot
represents a possible distance threshold ds.

planner) and self-localisation using Adaptive Monte-Carlo Localisation (AMCL) (Thrun

et al. 2005). Two different behaviours were implemented, i.e. adaptive and non-adaptive

velocity control, which were switched at random (p = 0.5) upon the robot’s arrival at the

kitchen. The adaptive velocity control gradually slowed down the robot, when entering the

close phase of the social space (Hall 1969), until it came to a complete stand still before

entering the personal space (Hall 1969) of the participant. The non-adaptive velocity

control ignored the human even as an obstacle (apart from an emergency stop when the

two interactants were too close, approx. < 0.5m, to prevent injuries), trying to follow

the shortest path to the goal, only regarding static obstacles. This may have yielded

invalid paths due to the human blocking it, but led to the desired robot behaviour of not

respecting the humans personal space. These two distinct behaviours were chosen because

they mainly differ in the speed of the robot and the distance it keeps to the human.

Hence, they produce very similar, almost straight trajectories which allows to investigate

the effect of distance and speed on the interaction while the participant was still able to

reliably infer the robot’s goal. As mentioned above, this was necessary to find feedback

signals in Dondrup, Lichtenthäler & Hanheide’s (2014) work.

Before the actual interaction, after being introduced to the robot and the lab environ-

ment, the human participant was told to play the role of a waiter together with a robotic
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Figure 3.12: The recorded trajectories of one of the participants (grey = human, black =
robot). The rough position of the corridor walls and the furniture is also depicted. The pink
lines on either side show the cut-off lines for the evaluation. The robots trajectories were not
bound to the cut-off lines but to the humans trajectories’ timestamps. The humans trajectories
themselves might not end at the cut-off line but before due to those regions being on the outside
limits of the tracking region, causing the loss of markers by the tracking system.

co-worker for a duration of 6 minutes. Being a waiter in this particular set-up comprised

the delivery of drinks (plastic bottles) from the kitchen to either table and clearing a table

(bringing all bottles from the table back to the kitchen). During the experiment, the par-

ticipants were instructed by the experimenter how many bottles they should deliver from

the kitchen to which table and which table to clear. The experimenter followed a pseudo

random approach in selecting the actions trying actively to illicit encounters between hu-

man and robot. The participants were not given any training time in order to create

instantaneous feedback. This scenario allowed to create a natural form of interaction be-

tween human and robot by sending the participants from the kitchen counter to the tables

and back to deliver drinks, while at the same time the robot was behaving in the described

way. This task only occasionally resulted in encounters between human and robot, but due

to the incidental nature of these encounters and the fact that the participants were trying

to reach their goal as efficiently as possible, a more natural and instantaneous participant

reaction was achieved. Figure 3.12 shows examples of these trajectories taken for one of

the participants and the robot.
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Figure 3.13: The “Bristol Experiment” set-up. Corridor from the participants perspective
before the start of a trial. Middle: experimenter dressed as “robot”. The visual marker was
attached to the wall behind the “robot” above her head.

3.5.2 Bristol Experiment

Besides investigating general HRSI concepts, the main aim of the “Bristol experiment”

was to investigate the impact and dynamics of different visual signal types to inform an

on-coming agent of the direction of intended avoidance manoeuvres in an artificial agent

in HRSI, hence the comparatively complex set-up of conditions.19 For the purpose of

the QTC analysis presented, however, just a specific set of conditions out of the ones

mentioned in the experiment description is chosen for the evaluation.

Experiment Design

In this experiment, 20 participants (age range 19-45 years with a mean age of 24.35)20

were asked to pass an on-coming “robotic” agent (as mentioned above, a human dressed

as a robot, from now on referred to as “robot”) in a wide corridor shown in Figure 3.13.

The corridor was located in the Bristol Vision Institute (BVI) vision and movement lab-

oratory, equipped with 12 Qualisys 3D-motion capture cameras. The set-up allows to

19A similar experiment was re-enacted by May et al. (2015) using the robot Linda (see Appendix A.4).
20No information about profession or gender were provided by the Bristol Vision Institute (BVI) who

conducted this experiment.
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Figure 3.14: Examples of visual signals sent by the “robot” agent. Visual signal onset
occurred 1.5s after the “go” signal encouraging the participant to start walking. 500ms after
the signal onset, signals could either then change to indicate a clear direction in which the
“robot” would avoid the participant or remain uninformative with respect to the direction of
movement of the “robot”.

track movement of motion capture markers attached to the participants and the robot in

x, y, z-coordinates over an area of 12m (long) x 2m (wide) x 2m (high) (see Figure 3.13)

with a frequency of 100Hz and an approximate error of 1mm.

Participants were asked to cross the laboratory toward a target attached to the centre

of the back wall (and visible at the beginning of each trial at the wall above the head

of the “robot”) as directly and with as little veering as possible, without colliding with

the on-coming “robot”, as soon as they see the “go” signal (see Figure 3.14). At the

same time, the “robot” would cross the laboratory in the opposite direction, thus directly

walk towards the participant. In 2/3 of the conditions, the “robot” would initiate an

automated “avoidance behaviour” to the left or right of the participant that could be

either accompanied by a visual signal indicating the direction of the avoidance manoeuvre

or be unaccompanied by visual signals (see Figure 3.14 for the type of signals). Note that

if neither robot nor participant were to start an avoidance manoeuvre, they would collide

with each other approximately midway through the laboratory. A compensation of 5 GBP

was paid upon completion of the experiment.
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The “robot”, dressed in a black long-sleeved T-shirt and black leggings, was wearing

a “robot suit” comprising of two black cardboard boards (71cm high x 46cm wide) tied

together over the agent’s shoulders on either side with belts (see Figure 3.13). The suit

was intended to mask body signals (e.g. shoulder movement) usually sent by humans

during walking. To also obscure the “robots” facial features and eye gaze, the “robot”

further wore a blank white mask with interiorly attached sunglasses.

A Nexus 10 Tablet (26cm x 18cm) was positioned on the cardboard suit at chest

height to display a “go” signal at the beginning of each trial to inform the participant

that they should start walking. The go signal was followed 1.5 seconds later by the onset

of visual signals (cartoon eyes, indicators, or a blank screen as “no signal”) as shown in

Figure 3.14. With exception of the “no signal”, these visual signals stayed unchanged in

a third of the trials, and in the other two thirds of trials, they would change 0.5s later

to signal the direction in which the robot would try to avoid the participant (the cartoon

eyes would change from straight ahead to left or right, the indicators would start flashing

left or right with a flash frequency of 2Hz). Note that no deception was used; i.e., if the

“robot” indicated a direction to the left or right, it would always move in this direction.

However, if the “robot” did not visually indicate a direction, it would still move to the

left or right in two thirds of trials. Only in the remaining trials, the “robot” would keep

on walking straight, thus forcing the participant to avoid a collision by actively avoiding

it. The participants were not informed about the possible signals beforehand to achieve a

more unbiased and instantaneous behaviour.

The actual/physical onset of the “robot’s” avoidance manoeuvres could start 700ms

before the visual directional signal was given (early), at the time of the visual direction

signal (middle), or 700ms after the onset of the visual direction signal (late). These three

conditions will later on be referred to as early, middle, or late, respectively.

3.5.3 Evaluation

The aim of the evaluation is to test the descriptive quality of the created probabilis-

tic sequential model utilising QTC state chains in general, to evaluate possible distance

thresholds or ranges of thresholds to be incorporated into the model, and to learn ap-

propriate transitions between the QTC variants for the QTCBC model. To this end, the
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models created from the recorded trajectories are employed as classifiers to generate com-

parative measurements, allowing to make statements about the representational quality

of the model itself. These classifiers use a range of distance thresholds to find those val-

ues appropriate for the switch from QTCB to QTCC and vice-versa. The goal of this

evaluation, therefore, is to evaluate the appropriateness of the presented QTC variants

in combination with the probabilistic model to represent HRSI. Hence, classification is

not only an important application for the model but it is also used as a tool to create a

comparative measurement for evaluation.

As a reminder, the different QTC variants that are used in the following are: i) QTCB

- 1D: represents approach, moving away, or being stable (− + 0) in relation to the last

position, ii) QTCC - 2D: in addition to QTCB, also includes to which side the agents are

moving, left of, right of, or along (− + 0) the connecting line, iii) QTCBC - 1D/2D: the

combination of both according to the Euclidean distance d(k, l) of the two agents and the

distance threshold ds, QTCB (1D) when d(k, l) > ds and QTCC (2D) when d(k, l) ≤ ds.

The 0 states mentioned in the following are therefore instances in time when the agent

was stable in its 1-dimensional and/or 2-dimensional movement.

The data of both experiments is used equally for evaluation. However, due to the

different nature of the investigated effects and signals and the resulting different set-ups

used, there will be slight differences in the evaluation process and therefore it will be split

in two parts according to the experiments. The used model on the other hand, will be the

same for both experiments to show its generalisability. The following presents the used

evaluation procedures for each study.

Restaurant Experiment Two virtual cut-off lines were defined on either side of the

corridor (see Figure 3.12) to separate the trajectories into trials and since only close

encounters between human and robot are of interest for the evaluation, only trajectories

inside the corridor were used. Out of these trajectories, 71 pass-by and 87 overtaking

encounters were manually selected and two different forms of noise reduction were used

to post-process the recorded data. The actual trajectories were smoothed by averaging

over the x, y coordinates for 0.1s, 0.2s, and 0.3s. The z coordinate is not represented

in QTC. To determine 0 QTC states – one or both agents move along
−→
k l or along the

two perpendicular lines (see Figure 3.2) – three different quantisation thresholds, i.e. 1cm,

67



3.5. Experiments Chapter 3. Qualitative Models

5cm, and 10cm, were used, respectively. Only if the movement of one or both of the agents

exceeded these thresholds it was interpreted as a − or + QTC state. This smoothing and

thresholding is necessary when dealing with discrete sensor data which otherwise would

most likely never produce 0 states due to sensor noise.

To find appropriate distance thresholds for QTCBC , distances on a scale from pure

QTCB (40cm) to pure QTCC (3m), in 10cm steps, were evaluated. The ds < 0.4m

threshold represents pure QTCB because the robot and human are represented by their

centre points, therefore, it is impossible for them to get closer than 40cm. On the other

hand, the ds ≥ 3m threshold represents pure QTCC because the corridor was only ∼ 2.7m

long. In the following these specific distance ranges will be denoted as ds = QTCB for

ds < 0.4m and ds = QTCC for ds ≥ 3m, respectively.

The evaluation includes pass-by vs. overtake, passing on the left vs. right, and adaptive

vs. non-adaptive velocity conditions.

Bristol Experiment Following a similar approach as described above, the recorded

data is split into separate trials, each containing one interaction between the “robot” and

the participant. To reduce noise caused by minute movements before the begin and after

the end of a trial, data points from before the start and after the end of the individual

trial were removed by defining cut off lines on either end of the corridor, only investigating

interactions in between those boundaries. Visual inspection for missing data points and

tracking errors by the author during post-processing yielded 154 erroneous datasets (too

few data points to show the actual avoidance) out of the 1439 trials in total which were

excluded from the evaluation. Similar to the restaurant data set, three different smoothing

levels 0.00s, 0.02s, and 0.03s were applied. Also four different quantisation levels, 0.0cm,

0.1cm, 0.5cm, and 1cm were used to generate QTC 0-states.21 Unlike the “restaurant

experiment”, one of the smoothing and quantisation combinations, i.e. 0.0s and 0.0cm,

represents unsmoothed and unquantised data. This was possible due to a higher recording

frequency and a less noisy motion capture system.

The evaluation includes distances on a scale from pure QTCB (40cm) to 3m, in 10cm

steps. As mentioned above, the two agents are represented by their centre points which

21Due to the higher recording frequency of 100hz the smoothing and quantisation values are lower than
for the restaurant experiment.
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makes it impossible form them to be closer together than ds < 0.4m. To stay in line with

the other experiment, the evaluation includes distances of up to 3m, but since the corridor

had a length of 12m, a pure QTCC representation (ds = inf) was added for comparison.

Similar to the “restaurant experiment”, in the following these specific distance ranges will

be denoted as ds = QTCB for ds < 0.4m and ds = QTCC for ds = inf, respectively.

Since overtaking scenarios were not part of the experimental design, these could not

be evaluated. Hence, the evaluation includes passing on the left vs. right and indicator

vs. no indicator separated according to their timing condition (i.e. early, middle, late),

and early vs. late regardless of any other condition where indicator comprises the cartoon

eyes as well as the flashing dot.

Statistical Evaluation To generate the mentioned comparative measurement to evalu-

ate the meaningfulness of the representation, the previously described HMM based QTCBC

representation was used as a classifier comparing different conditions. Using this measure-

ment, assumptions about the quality and representational capabilities of the model itself

can be made.

For the classification, k-fold cross validation with k = 5 was used which resulted in

five iterations with a test set size of 20% of the selected trajectories. This was repeated

ten times for the “restaurant experiment” and 4 times for the “Bristol experiment”22 – to

compensate for possible classification artefacts due to the random nature of the test set

generation – resulting in 50 and 20 iterations over the selected trajectories, respectively.

Subsequently, a normal distribution was fitted over the classification results to generate

the mean and 95% confidence interval and make assumptions about the statistical signifi-

cance. Being significantly different from the null hypothesis (H0; p = 0.5), the evaluations

presented in the following section imply that the model is expressive enough to represent

the encounter it was trained for. This validation procedure was repeated for all smoothing

and quantisation combinations.

22The number of repetitions for the “Bristol experiment” is lower due to the higher number of data
points and the resulting increase in computation time and decrease in feasibility.
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Figure 3.15: The true positive classification rates for the different smoothing times and
accuracy thresholds. Red represents the pass-by class, yellow represents the overtaking class.
The error bars represent the 95% confidence interval. Note: To better visualise the small
differences between the results, the bottom line does not represent 0 but µ = 0.5 (the null
hypothesis for the two-class problem).

3.6 Results

A comparison of the pass-by vs. overtake scenario using QTCC was used to evaluate

if the HMM based QTC representation is able to model HRSI in general. Using the

above mentioned validation process on the “restaurant” study data, classification rates

from µ = 0.8700 to µ = 0.9804 were achieved for the pass-by class and µ = 0.8600

to µ = 0.9527 for the overtaking class (see Figure 3.15). The best classification rate

was produced by the lowest filter settings with a (x, y) position averaging over 0.1s and

an accuracy threshold of 1cm. In this case, the model achieved a classification rate of

µ = .9804 ± .0066 with a standard deviation of σ = .0193 for the pass-by case and a

classification rate of µ = .9527 ± .0166 with a standard deviation of σ = .0488 for the

overtaking case. The specified mean intervals represent the 95% confidence intervals on

said mean value and the results can therefore be interpreted as being significantly different

from the null hypothesis. This means that the two classes are distinguishable because the

confidence interval is well above µ = 0.5.

The general classification accuracy seems to be loosely correlated to the spatial ac-

curacy used to determine which states count as 0-states in the QTCC representation,

therefore, indicating that this is the largest factor of data loss in the automatic construc-
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tion of QTCC states. Nevertheless, even the 10cm accuracy results are still significantly

different from the null hypothesis and therefore support the hypothesis that the HMM

approach is well suited to model QTCC state sequences and classify new data.

To verify the effectiveness of the probabilistic representation of QTCBC state chains

given different distance thresholds, the described classifiers were used to generate a com-

parative measure by evaluating the classification rate for the two experiments. Pass-by vs.

overtake and adaptive vs. non-adaptive velocity control is evaluated in the “restaurant

experiment”, passing on the left vs. passing on the right in both, and early vs. late and

indicator vs. no indicator in the “Bristol experiment”. Figure 3.7 shows a conceptual

example of a resulting QTCBC representation of a pass-by encounter which is the most

dominant in both experiments.

3.6.1 Results of Restaurant Experiment

Table 3.1a shows the minimum and maximum classification rates (µ) for the general pass-

by vs. overtaking case and the respective QTCBC thresholds (ds). For the majority of

the different smoothing levels (7 out of 9), the best classification results were achieved

using distance thresholds of QTCB ≤ ds ≤ 0.6m. The best result µ = 0.98 was achieved

using a distance of ds = 2.2m and smoothing values of 0.3s and a quantisation value of

1cm. Even though the lowest and highest classification rates for the different smoothing

and quantisation levels are significantly different from each other, they are all significantly

different from H0 as well. The overall worst results have been achieved using a smoothing

value of 0.1s and a quantisation level of 10cm as can also be seen in Figure 3.15. Using this

combination yields the highest number of 0-states compared to all the other combinations

due to the fact that for a movement to be recognised it has to diverge from the previous

position by 10cm which is very unlikely to happen in 0.1s.

The comparison of passing on the left vs. passing on the right, is shown in Table 3.1b.

All of the results show bad classification rates if ds ≤ 0.7m, and high classification re-

sults for values of ds ≥ 0.9m. Fig. 3.16a shows two typical results from the “restaurant

experiment” using the lowest and highest smoothing levels. The higher smoothing and

quantisation value combination, and the resulting reduced noise, show a steeper incline in

classification rates than the lowest value combination, which can be seen from the smaller
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Table 3.1: Classification results “restaurant experiment”
The mentioned confidence intervals represent the boundary cases and all the others can be
considered lower. Bold face numbers are mentioned in text.

(a) Head-on vs. Overtake. Maximum 95% confidence intervals
(p < 0.05) for min and max classification results: min: 0.0209, max:
0.0182

Smoothing 0.1s 0.2s 0.3s
Res. µ ds µ ds µ ds

1cm
min 0.90 0.7 0.89 1.0 0.91 0.7
max 0.97 QTCC 0.96 0.6 0.98 2.2

5cm
min 0.84 0.8 0.88 0.8 0.87 0.7
max 0.92 0.5 0.97 QTCB 0.94 QTCB

10cm
min 0.70 2.0 0.79 1.2 0.79 0.9
max 0.82 QTCB 0.87 0.5 0.89 0.4

(b) Head-on: Left vs. Right. Maximum 95% confidence intervals
(p < 0.05) for min and max classification results: min: 0.0221,
max: 0.0182

Smoothing 0.1s 0.2s 0.3s
Res. µ ds µ ds µ ds

1cm
min 0.50 QTCB 0.58 QTCB 0.52 QTCB

max 0.97 1.9 0.95 2.4 0.96 2.3

5cm
min 0.41 QTCB 0.41 QTCB 0.49 QTCB

max 0.90 2.9 0.93 2.8 0.94 2.9

10cm
min 0.50 QTCB 0.43 QTCB 0.52 0.5
max 0.92 QTCC 0.90 1.2 0.95 QTCC

(c) Head-on: Adaptive vs. Non-Adaptive. Maximum 95% confidence
intervals (p < 0.05) for min and max classification results: min:
0.0202, max: 0.0251

Smoothing 0.1s 0.2s 0.3s
Res. µ ds µ ds µ ds

1cm
min 0.46 1.4 0.48 1.8 0.47 0.5
max 0.66 QTCB 0.60 0.8 0.64 1.5

5cm
min 0.52 1.0 0.55 1.4 0.54 1.3
max 0.69 1.5 0.75 0.7 0.72 0.5

10cm
min 0.46 1.2 0.49 0.8 0.59 1.6
max 0.60 1.8 0.64 1.0 0.74 0.7

yellow area in the right half of Fig. 3.16a. Nevertheless, in all of the cases, a sudden increase

in performance (jumping from µ ≈ 0.5 to µ > 0.8) can be seen at 0.9m ≤ ds ≤ 1.2m.

The third case, adaptive vs. non-adaptive robot behaviour in pass-by encounters, is

shown in Table 3.1c. This behaviour did not result in different trajectories during the

interaction, but only differed in the time it took the robot to traverse the corridor. Due
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(a) Classification results for pass-by passing on the left vs. right, lowest and highest smoothing
parameters (see bold entries in Tab. 3.1b for min an max results). Left 1cm and 0.1s smoothing,
right 10cm and 0.3s smoothing. The yellow, vertical area shows possible ds where the left
boundary represents the first distance ds at which the two classes can be distinguished reliably
and the right boundary shows the first value of ds for which the classification results are not
significantly different from QTCC any more.
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(b) Classification results for pass-by adaptive vs. non-adaptive. Left: 5cm and 0.2s smoothing,
right: 1cm and 0.3s smoothing.

Figure 3.16: “Restaurant experiment” classification results. Dot: mean value, errorbar:
95% confidence interval, solid red line: H0, left dashed red line: intimate space, right dashed
red line: personal space according to the definition of Hall (1969). The blue, horizontal area
represents the 95% confidence interval of pure QTCC for comparison.
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to the Definition 3.2 QTC it is not able to represent absolute time, which makes it hard

to classify these two behaviours accordingly. The best results for each quantisation level

were achieved at distances of QTCB ≤ ds ≤ 0.7m, all lying on the diagonal of Table 3.1c.

Since time is a crucial factor in this condition, it is very dependent on the right smoothing

value combination. Figure 3.16b shows two exemplary results. The left hand side depicts

the best classification result with classification rates of up to µ = 0.748 for ds = 0.7m.

The right hand side shows the results for a smoothing level that did not yield the best

results for low but medium distance threshold of ds = 1.5m with a classification rate of

µ = 0.643.

3.6.2 Results of Bristol Experiment

Table 3.2 shows the evaluation of passing on the left vs. passing on the right using

QTCBC for the “Bristol experiment”. The early condition, shown in Table 3.2a, shows

its lowest classification rates for QTCB ≤ ds ≤ 0.6m, and the first occurrence of the

highest classification rates (up to 1.0) for 1.6m ≤ ds ≤ 2.3m. Reaching classification rates

of 1.0 was made possible by the increase in training data for the “Bristol Experiment”.

Similar to the early condition, the late condition, shown in Table 3.2b, shows its lowest

classification rates for QTCB ≤ ds ≤ 0.6m, due to the missing 2D information, and the

first occurrence of the highest classification rates for 1.5m ≤ ds ≤ 2.4m. In both cases,

50% of the lowest classification rates have been generated using pure QTCB, whereas all of

the highest classification rates have been reached without using pure QTCC . Classification

rates of 1.0 with p < 0.05 are reached in 94% of the cases in the early condition and 100%

in the late condition, using values of ds ≥ 1.6m and ds ≥ 1.5m respectively. Figure 3.17a

shows the two unsmoothed cases for early and late. The middle condition is not shown

here as it does not differ significantly from the two boundary cases.

Figure 3.17b shows the results for the comparison of the early and late condition. As

can be seen form the figure, the two conditions can be distinguished for distances of 0.8m ≤

ds ≤ 1.3m, regardless of the actual smoothing values used. The majority of the values

are not significantly different from H0 except for the mention range of ds. The influencing

factor here is the actual minimum distances the participants kept to the experimenter in

either condition. Fitting a normal distribution over the minimum distances kept in the
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Table 3.2: Classification results “Bristol Experiment”: Left vs. Right
The mentioned confidence intervals represent the boundary cases and all the others can be
considered lower. Bold face numbers are mentioned in text.

(a) Early condition. Maximum 95% confidence intervals (p < 0.05)
for min and max classification results: min: 0.0333, max: 0.0066

Smoothing 0.0s 0.02s 0.03s
Res. µ ds µ ds µ ds

0cm
min 0.49 0.6 0.50 0.6 0.52 QTCB

max 1.0 2.2 1.0 2.3 1.0 1.9

0.1cm
min 0.48 0.4 0.47 QTCB 0.52 QTCB

max 1.0 2.2 1.0 1.9 1.0 1.6

0.5cm
min 0.47 0.4 0.50 0.4 0.54 QTCB

max 1.0 2.0 1.0 1.6 1.0 1.6

1cm
min 0.58 0.4 0.47 QTCB 0.52 QTCB

max 0.99 2.0 1.0 1.6 1.0 1.7

(b) Late condition. Maximum 95% confidence intervals (p < 0.05)
for min and max classification results: min: 0.0327, max: 0.0036

Smoothing 0.0s 0.02s 0.03s
Res. µ ds µ ds µ ds

0cm
min 0.49 QTCB 0.49 QTCB 0.51 0.5
max 1.0 2.3 1.0 1.5 1.0 1.6

0.1cm
min 0.53 QTCB 0.52 0.5 0.54 0.6
max 1.0 2.3 1.0 2.4 1.0 1.6

0.5cm
min 0.56 0.5 0.51 QTCB 0.51 QTCB

max 1.0 2.0 1.0 2.0 1.0 1.6

1cm
min 0.54 0.4 0.49 QTCB 0.47 0.5
max 1.0 2.0 1.0 2.4 1.0 1.6

early and late condition yielded a significant difference (p < 0.05): early : 0.98m ± 0.02,

late: 0.92m±0.02, but the actual total difference between the mean values in the minimum

distances for early and late is only 0.06m; the slightly increased reaction time of 1.4s in

the early compared to the late condition is the determining factor for this difference. Both

these facts explain the improved classification rate in the mentioned range 0.8m ≤ ds ≤

1.3m. As above, the middle condition is not shown because it does not significantly differ

from the two other conditions. The minimum distances kept by the participant in the

middle condition are neither significantly different from the early nor the late condition.

Hence, classification cannot be achieved.

The results for the comparison of the indicator vs. no indicator conditions are very

parameter dependent when it comes to smoothing and quantisation. Figure 3.18a shows
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(a) Results for the left vs. right condition using unsmoothed data. Left: early condition,
right: late condition. Significant classification results have been achieved for values ds > 0.8m
regardless of the actual condition and reach optimal results for the classification using ds ≈ 1.5m,
see yellow, vertical area. The artefact at 2.1m can be explained by the physical set-up of the
experiment, i.e. the corridor width. The increased confidence interval at 2.1m is due to the
“robot” getting tangled up in the curtains once. Blue, horizontal area: 95% confidence interval
of pure QTCC for comparison.
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(b) Results for the early vs. late condition. Left: unsmoothed data, right: highest smoothing
values, i.e. 1cm and 0.03s. Significant classification results have been achieved for values
0.8m ≤ ds ≤ 1.3m regardless of the actual smoothing values, see yellow, vertical area. The good
classification result for QTCC with unsmoothed values might be due to artefacts from before the
start or after the end of the interaction and must be very minute movements since they disappear
when using even the lowest smoothing values.

Figure 3.17: Classification results for left vs. right and early vs. late. Dot: mean value,
errorbar: 95% confidence interval, solid red line: H0, left dashed red line: intimate space (Hall
1969), right dashed red line: personal space as defined by Hall (1969).
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(a) Results for indicator vs. no indicator in the late condition. Left: overall best results,
smoothing values: 1cm and 0.0s, right: typical result, smoothing values: 1cm and 0.02s. The
overall results are very dependent on the smoothing parameters. However, a significant jump
in classification rates can be observed for ds = 0.9 regardless of the actual smoothing values
which can be explained by the model highlighting the distance at which the actual avoidance by
the “robot” happened if there was any.
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(b) Results for indicator vs. no indicator in the early condition. Left: best result, smoothing
values, 0.1cm and 0.00s, right: typical result, smoothing values 0.01cm and 0.0s. Results are
very dependent on the smoothing parameters. Unsmoothed values contain too many artefacts to
be useful for classification.

Figure 3.18: Classification results for indicator vs. no indicator. Dot: mean value, errorbar:
95% confidence interval, solid red line: H0, left dashed red line: intimate space (Hall 1969),
right dashed red line: personal space as defined by Hall (1969). Blue, horizontal area: 95%
confidence interval of QTCC showing that QTCBC yields similar results for most values of ds
and significantly better results for certain distance values.
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the best result (left) and a typical result (right) for different smoothing and quantisation

values in the late condition. The distance ds = 0.9m represents a special case where

the classification rates jump to values significantly different from H0 for all smoothing

and quantisation value combinations. This can be explained by the minimum distance of

0.92m to 0.98m the participants kept to the robot at all times. Using a distance threshold

of ds = 0.9m therefore highlights this part of the interaction by suppressing “unnecessary”

information. The early condition is shown in Figure 3.18b and depicts the best result (left)

and a typical result (right) in the evaluation. Similar to the late condition, at ds = 0.9 the

classification results typically jump to values close to QTCC . In some cases QTCBC even

significantly outperforms QTCC for certain ds, see Fig. 3.18b left. The middle condition

just provides noise and is therefore unclassifiable via QTCB, QTCC , or QTCBC .

3.7 Discussion

This section focuses on the interpretation of the classification results presented in Sec-

tion 3.6. As described above, employing the probabilistic models as classifiers is used to

generate a comparative measure to make assumptions about the quality of the generated

representation where significant differences between the two used classes means that the

model was able to reliably represent this type of interaction. The general quality of using

QTC for the representation of HRSI and the different distances or ranges of distances for

the proposed QTCBC based model are evaluated to find suitable regions for the switch

between the two variants. Figure 3.15 shows that QTC in general is well suited to clas-

sify certain HRSI encounters. Thus, the following discusses the results for the different

comparisons and lists the limitations of the presented approach.

Limitations A possible limitation is that the presented computational model was not

evaluated in a dedicated user study but on two data sets from previous experiments.

However, a model of HRSI should be able to represent any encounter between a robot

and a human in a confined shared space. The two used experiments might not have been

explicitly designed to show the performance of the presented approach but provide the

type of interactions usually encountered in corridor type situations which represents a
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Figure 3.19: Comparing “Restaurant” and “Bristol” experiment results: Passing on the left
vs. passing on the right. The blue curve represents the “Restaurant” experiment classification
rates using the lowest smoothing values and the green curve represents the unsmoothed classi-
fication rate for the “Bristol” experiment, respectively. The curve has been obtained using a
smoothing spline (De Boor 1978) with a p-value of p = 0.99. Red line: H0, left dashed red line:
intimate space, right dashed red line: personal space as defined by Hall (1969), yellow area:
interval for QTCBC transitions from first classification result significantly different from H0

to first result not significantly different from pure QTCC . The better results for the “Bristol”
experiment can be explained by the larger amount of training data.

major part of human-aware navigation. Moreover, a similar model is used in a live system

in Chapter 6 which shows its application to real robot data.

The instructions given in the “Bristol Experiment”, to cross the corridor with as little

veering as possible, might have also influenced the participants behaviour when it comes

to keeping a safe distance and will therefore also have had an influence on their experi-

enced comfort during the interaction which may have led to unnatural behaviour on the

participant’s side. However, as Figure 3.19 shows, the left vs. right conditions yielded

similar results in both experiments which indicates that these instructions did not have a

significant influence on the participants spatial movement behaviour based on the resulting

QTC model.

The presented probabilistic QTCBC uses the distance d(k, l) at time tn−1 and tn to

determine if the representation should transition from QTCB to QTCC or vice-versa.

This might lead to unwanted behaviour if the distance d(k, l) oscillates around ds. In

practice, oscillation around ds will influence the generated robot behaviour and might lead

to the robot inching forwards or “twitching” to one side which can also be interpreted as
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prompting movements as described by Peters et al. (2011) to express the robots intention

to move.

A general limitation of QTC is that actual sensor data does not coincide with the

constraints of a continuous observation model represented by the CND. In the “restaurant”

data for example up to 521 illegal transitions were observed which indicates that raw sensor

data is not suitable to create QTC state sequences without post-processing. This, however,

was solved by using the proposed HMM based modelling adhering to the constraints

defined in the CND, only producing valid state transitions. The particle filter based

approach presented in Chapter 6, which works on Markov Chains, will need validated

QTC state chains which encompasses the inclusion of transition states that have never

been observed but are necessary to create legal transitions between the observed states.

This is automated in the pipeline presented in Chapter 4.

A major limitation is that important HRSI concepts such as speed, acceleration, and

distance, are hard to represent using QTC. While the not simplified version of QTCB

is able to represent relative speeds, it is neither possible to represent the velocity nor

acceleration of the robot or the human. Therefore, QTC alone is not very well suited to

make statements about comfort, naturalness, and sociability, as defined by Kruse et al.

(2013), of a given HRSI encounter. Section 3.2, however, showed that, using implicit

distance modelling is able to enrich QTC with such concepts, but many more are missing.

In fact Chapter 5 shows a way of how to outsource the generation of velocity commands

to pre-existing ROS components and use QTC to constraint the trajectory generation to

overcome the issue of having to generate speeds and accelerations.

Another limitation of QTC is the impossibility to infer which agent executes the actual

avoid action in the pass-by scenario. When interpreting the graph in Figure 3.9, it is not

clear if the human, the robot, or both are avoiding each other. Only the fact that the

human started the action is obvious, but it is not possible to infer if the robot participated

or not. This could eventually be countered by using the full, not the simplified version, of

QTCC including the relative angles. Even then, it might not be possible to make reliable

statements about that and it would also complicate the graph and deprive it of some of

its generalisation abilities.
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Head-on vs. Overtake The presented classification of pass-by vs. overtaking (see

Table 3.1a) shows that QTCB, QTCC , and QTCBC , regardless of the chosen ds, are able

to reliably classify these two classes. In the presented data, there are cases where pure

QTCB outperforms pure QTCC which is not surprising because the main difference of

overtaking and pass-by lies in the (q1 q2) 2-tuple of QTCB, i.e. both agents move in the

same direction, e.g. (−+), vs. both agents are approaching each other (−−). The 2D

information (q3 q4) of QTCC can therefore be disregarded in most of the cases and only

introduces additional noise. This indicates that QTCB would be sufficient to classify pass-

by and overtaking scenarios, but would of course not contain enough information to be

used as a generative model or to analyse the interaction. QTCBC allows to incorporate

the information about which side robot and human should use to pass each other and

the distance at which to start avoiding. Additionally, QTCBC also allows to disregard

information for interactants far apart, only employing the finer grained QTCC where

necessary, i.e. when close to each other. Since all of the found classification results were

significantly different from p = 0.5 – the null hypothesis (H0) for a two class problem – this

distance can be freely chosen to represent a meaningful value like Hall’s (1969) personal

space 1.22m. By doing so, the created model also becomes more concise and therefore

tractable as mentioned in the requirements for HRSI modelling in the beginning of this

chapter.

Left vs. Right The comparison of left vs. right pass-by actions in both experiments

shows that using pure QTCB does, unsurprisingly, yield bad results because the most

important information – on which side the robot and the human pass by each other –

is completely omitted in this 1-dimensional representation. Hence, all the classification

results show that an increase in information about the 2-tuple (q3 q4) representing the 2D

movement increases the performance of the classification. On the other hand, the results

of both experiments show that the largest increase in performance of the classifier happens

at distances of ds ≥ 0.7m and that classification reaches QTCC quality at ds ≥ 1.5m (see

yellow area in Figures 3.16a, 3.17a, 3.19), which loosely resembles the area created by the

far phase of Hall’s (1969) personal space and the close phase of the social space. These

results could stem from the fact that the personal space was neither violate by the robot

– be it fake or real – nor the participant. Judging from the data, the results indicate that
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information about the side (q3 q4) is most important if both agents enter, or are about to

enter, each others personal spaces as can be seen from the yellow areas in Figures 3.16a,

3.17a, and 3.19. The information before crossing this threshold can be disregarded and

is not important for the reliable classification of these two behaviours. As mentioned in

the requirements, recognising the intention of the other interactant is a very important

factor in the analysis of HRSI. Reducing the information about the side constraint and

only regarding it when close together, allows to focus on the part of the interaction where

both agents influence each others’ paths and therefore facilitates intention recognition,

based on spatial movement.

Figure 3.19 shows that the model gives consistent results over the two experiments in

the left vs. right condition which is the only one that could be compared in both. The blue

curve shows the classification results for the “restaurant experiment” whereas the green

curve shows the results for the “Bristol experiment”. Both curves show the same trends of

significantly increasing classification results from 0.7m ≤ ds ≤ 1.5m reaching their pinnacle

at 1.5m ≤ ds ≤ 2.0m. This implies that the model is valid for this type of interaction

regardless of the actual environment set-up and that the fact that an autonomous robot

was used in one of the experiments and a “fake robot” in the other does not influence the

data. More importantly, it also shows a suitable distance range for this kind of HRSI that

also encloses all the other found distance ranges from the other conditions and is therefore

a suitable candidate for QTCBC transitions ensuring that ds is chosen larger than the

lower bound.

Adaptive vs. Non-Adaptive Velocity Control Using a probabilistic model of pure

QTCC , it is not possible to reliably distinguish between the two behaviours the robot

showed during the “restaurant experiment”, i.e. adaptive vs. non-adaptive velocity control

as can be seen from the QTCC value in Figure 3.16b. However, the QTCBC results indicate

that using a very low distance threshold ds enables QTCBC to distinguish between these

two cases for some of the smoothing levels. Figure 3.16b shows that some of the QTCBC

results are significantly different from QTCC . Similar to pass-by vs. overtake, the main

difference between the adaptive and non-adaptive behaviour seems to lie in the (q1 q2)

2-tuple, i.e. both approach each other (−−) vs. human approaches and robot stops

(−0). On the other hand, the classification rate drops to p ≈ 0.5 (H0) at ds = 1.3m
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most likely due to the increase in noise. Nevertheless, apart from these typical results,

there is also an interesting example where this does not hold true and we see a slight

increase in classification rate at ds = 1.5m which was the stopping distance of the robot

(see Figure 3.16b, right). This shows that, even with QTCBC , the results for adaptive vs.

non-adaptive seem to be very dependent on the smoothing parameters (see Table 3.1c)

and therefore this problem cannot be considered solved. Incorporating another HRSI

concept, i.e. velocity or acceleration, might be able to support modelling of these kind of

behaviours, but this would decrease the generalisability of the model.

Early vs. Late In the “Bristol experiment”, the early vs. late (see Figure 3.17b)

avoidance manoeuvres were evaluated. Just to recapitulate, early means the “robot” ex-

ecuted the avoidance manoeuvre 700ms before the indicator and in the late condition

700ms after. The data shows that the model is able to represent this kind of interac-

tion for distances of 0.8m ≤ ds ≤ 1.3m. This is the distance the participants kept to

the robot/experimenter in both experiments and loosely resembles Hall’s (1969) personal

space. In this regard, these results are consistent with the other described interactions

showing that participants tried to protect their personal/intimate space. Except for the

unsmoothed evaluation, the only reliable classification using QTCBC was achieved inside

the mentioned range of 0.8m ≤ ds ≤ 1.3m. QTCB or QTCC alone did not highlight

the meaningful parts of the interaction and did not yield reliable results. Regarding the

unsmoothed case, the fact that all the smoothing levels resulted in a significantly worse

QTCC classification than in the unsmoothed case shows that the unsmoothed result is

most likely caused by artefacts due to minute movements before the start or after the

end of the experiment. These movements cannot be regarded as important for the actual

interaction and must therefore be considered unwanted noise.

Indicator vs. No Indicator The “Bristol experiment” also used indicators (be it

flashing lights or cartoon eyes) to highlight the side the “robot” would move to. In the

control condition no indicators were used. Modelling these two conditions shows for the

late condition that for ds ≥ 0.9m, which resembles the mean minimum distance kept by

the participant, the two cases can be reliably distinguished. The classification rate does

not improve significantly for greater distances or pure QTCC but, to reliably classify these
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two conditions is always possible regardless of the distance threshold chosen. Compared to

QTCBC at ds ≥ 0.9m, pure QTCC shows worse results for some of the smoothing levels.

This indicates that the most important part of the interaction happens at close distances

(the mean minimum distance of both agents ds ≈ 0.9m) and adding more information

does not increase the accuracy of the representation or even decreases it.

3.8 Summary

This chapter presented a HMM based probabilistic sequential representation of HRSI

utilising QTC, investigated the possibility of incorporating distances like the concept of

proxemics by Hall (1969) into the model, and showed how to learn transitions for the

combined QTC model and ranges of distances to trigger them, from real-world data. The

data form the two experiments provides strong evidence regarding the generalisability

[Obj. 1.4] and appropriateness of the representation, demonstrated by using it to classify

different encounters observed in motion-capture data. Thereby, a tractable and concise

representation [Obj. 1.5] was created that is general enough to abstract from metric

space [Obj. 1.1] but rich enough to unambiguously model the observed spatial

interactions [Obj. 1.2] between human and robot.

The QTC itself models the movement of two Moving Point Objects (MPO) in 1D

or 2D space depending on the variant of QTC that is chosen, i.e. QTCB or QTCC ,

respectively. This representation offers all the benefits of a well defined qualitative

calculus [Obj. 1.5] but also comes with certain detriments. It is not able to represent

absolute time, distance, or speed. The missing time component will be solved in later

chapters and the speed issue is addressed by the used motion planner. The distance,

however, has to be incorporated into the model itself. Instead of incorporating a discrete

distance value by including the quantitative distance between the agents into the QTC

state like in Lichtenthäler et al.’s (2013) work, the presented QTCBC combines QTCB and

QTCC and switched between them based on a distance threshold ds. Thereby, the model

implicitly includes this distance threshold and the transition between the two variants can

later on be used to trigger avoidance behaviours. Hence, QTCBC is able to model pure

QTCB or QTCC and is also able model the combination of both. These QTCBC states are
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then used in a probabilistic representation based on HMMs and are trained from real-world

data which, in the case of this evaluation, stems from two different experiments.

Using the two different experiments, regardless of the modelled interaction type, the

probabilistic sequential model using QTC is able to reliably classify [Obj. 1.2] most of

the encounters. However, there are certain distances after which the “richer” 2D QTCC

encoding about the side constraint does not enhance the classification and thereby becomes

irrelevant for the representation of the encounter. Hence, QTCB’s 1D distance constraint

is sufficient to model these interactions when the agents are far apart. On the other hand,

the results show that there are distances at which information about the side constraint

becomes crucial for the description of the interaction like in passing on the left vs. passing

on the right. Thus, there are intervals of distances between robot and human in which a

switch to the 2-dimensional QTC model is necessary to represent HRSI encounters. These

found distance intervals resemble the area of the far phase of Hall’s (1969) personal space

and the close phase of the social space, i.e. 0.76m to 2.1m (see Figure 3.19). Therefore,

the data shows that using the full 2D representation of QTCC is unnecessary when the

agents are further apart than the close phase of the social space (≈ 2.1m) and can therefore

be omitted. This not only creates a more compact representation but also highlights the

interaction in close vicinity of the robot, modelling the essence of the interaction, and

allows to freely choose a distance threshold for behaviour generation as long as ds ≥ 2.1m

holds true. The results indicate that this QTCBC model is a valid representation of HRSI

encounters and reliably describes the real-world interactions in the presented experiments.

As a welcome side effect of modelling distance using QTCBC , the results show that

the quality of the created probabilistic model is, in some cases, even increased compared

to pure QTCB or QTCC . Thereby, besides allowing the representation of distance and

the reduction of noise, it also enhances the representational capabilities of the model for

certain distance values and outperforms pure QTCC . This shows the effect of reducing

noise by filtering “unnecessary” information and focusing on the essence of the interaction.

Coming back to the requirements to a model of HRSI stated in the objectives in

Section 1.1 which were to

Abstract from the metric representation [Obj. 1.1] to create a trans-

ferrable and environment agnostic model, represent the qualitative char-
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acter of motions [Obj. 1.2] to recognise intention, represent the main

concepts of HRSI [Obj. 1.3] like proxemics (Hall 1969), be able to gen-

eralise [Obj. 1.4] to facilitate knowledge transfer, and devise a tractable,

concise, and theoretically well-found model [Obj. 1.5] that facilitates

decision processes [Obj. 1.6]

where the sequential model utilising QTCBC has shown to be able to achieve most of

these. Additionally, the representation relies on the well founded original variants

[Obj. 1.5] of the calculus and allows to implicitly represent one of the main con-

cepts of HRSI [Obj. 1.3] , distances. It does so by combining the different variants

of the calculus, i.e. the mentioned QTCB and QTCC , into one integrated model. The

resulting representation is able to highlight the interaction when the agents are in close

vicinity to one another, allowing to focus on the qualitative character of the movement

and therefore facilitates intention recognition. By eliminating information about the side

the agents are moving to when far apart, it also creates a more concise and tractable

representation [Obj. 1.5] . Moreover, the model also inherits all the generalisability

[Obj. 1.4] a qualitative representation offers.

The objective of creating a qualitative representation that is able to facilitate

decision processes [Obj. 1.6] by modelling a clear connection between human and robot

state has also been fulfilled due to QTC’s nature of representing both in the same state.

However, for classification the human and robot state were used equally in this evaluation.

For a generative framework where the robot state is deducted from the human state

using an action generation policy, the robot state cannot be used to classify the current

interaction type as it is not known a-priori. This problem is highlighted in Section 6.2

which introduces one possible solution in the context of particle filters for HRSI activity

recognition.

Concluding from the above statements, the probabilistic model of QTCBC is able to

qualitatively model the observed interactions between two agents, abstracting from the

metric 2D-space [Obj. 1.1] most other representations use, and implicitly incorpo-

rates the modelling of distance thresholds [Obj. 1.3] which, from the observations

made in the experiments, represent one of the main social measures used in modern HRSI,

proxemics (Hall 1969).
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In the following chapters, QTC is used as the basis for all HRSI models. The HMM

representation is used in Chapter 4 exactly as it is described here and in a slightly different

form in Chapter 6.
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—All we have to believe with is our senses, the tools

we use to perceive the world: our sight, our touch, our

memory. If they lie to us, then nothing can be trusted.

And even if we do not believe, then still we cannot travel

in any other way than the road our senses show us; and

we must walk that road to the end.

Neil Gaiman, Science Fiction and Fantasy Author

4
People Perception and QTC State Generation

The QTC based model described in Chapter 3 works over intervals of time and thus

requires the trace of positions of the robot and the trace of positions of the human(s) in

close vicinity to it. The robot’s position can easily be extracted from its self-localisation

via Adaptive Monte-Carlo Localisation (AMCL) (Thrun et al. 2005) and then merged

into a single track based on its timestamp. Regarding the trace of human positions, in

the experiments described in Section 3.5 only one human at a time was detected using a

sophisticated motion capture system and the detections were merged in to tracks during

post-processing. This is very precise but it is infeasible to have motion capture markers

attached to people living or working in a real-world environment, or very expensive cameras

in all of its corridors and rooms. Additionally, for a live system these detections would

have to be merged into a single track being able to deal with multiple humans at the same

time using data association. Thus, the basic challenge is the detection and tracking

of humans in the vicinity of the robot using its on-board sensors [Obj. 3.2]

and considering problems such as the robots ego-motion, varying ambient conditions, and

88



Chapter 4. People Perception

occlusion as mentioned by Fong et al. (2003). Due to the importance of these kind of

applications in HRI in general and HRSI in particular, there are several solutions to the

problem of detection and tracking of humans or body parts, as shown for example in

surveys by Gavrila (1999) or more recently by Walia & Kapoor (2014).

To detect people using Linda the robot, two specific body part detectors for human

upper bodies, via the head mounted RGB-D camera, and for legs, via the laser sensor

are used and described in this chapter. Mere detection of humans, however, as mentioned

above, is not enough to generate QTC states because each state is generated over a time

interval T = [tn−1, tn] which requires that two detections have to be attributed to the same

person. The easiest way of achieving this is to use a tracking algorithm such as a particle

or Kalman filter and a data association strategy appropriate for the given environment.

Hence, this chapter also describes the multisensor Bayesian tracking framework by Bellotto

& Hu (2010b) that allows merging subsequent detections of either of the detectors into

a single track increasing the reliability of the resulting estimate of the human position

by using multiple sensors and creating trajectories that can be used for QTC state chain

generation. This general purpose human detection and tracking system has already been

used in two other European projects (e.g. Linder et al. 2016) apart from STRANDS (e.g.

Hawes et al. 2016, Beyer et al. 2016, Duckworth et al. 2016) and can of course also feed

directly into reactive human-aware navigation approaches (e.g Lu et al. 2014). In the

presented case, however, it will be used for the incremental real-time generation of

QTC state chains [Obj. 3.1] .

The QTC state chains are generated in real-time between the robot and all tracked

humans in its vicinity in all QTC variants introduced in Chapter 3. Additionally, in

preparation for the online belief generation, i.e. state prediction and action selection, in

Chapter 6, QTCC states are also created between each human and the robot’s short term

goal. The motivation for this will be made clear in Section 6.2, which describes the basis

for the autonomous interaction classification and action selection. Moreover, this chapter

also introduces a method of creating valid QTC state chains according to Definitions 3.1

and 3.2 from discrete input data.

Detecting walking or standing pedestrians (e.g. Fod et al. 2002, Schulz et al. 2003) is

the most important enabling technology for HRSI and, therefore, a widely studied field due

to the advances in autonomous cars and robots. To this end, many successful full-body or
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Figure 4.1: Example output of the ROS based people perception pipeline, showing the tracker
and detector results in rviz. Red dots: laser scans, green spheres: leg detector detections,
green cubes and red rectangles in camera image: upper body detections, red/blue stick figures:
the resulting tracks based on the Kalman filtering of the detections. The green arrows represent
the direction of the motion vector of the detected person. The blue figure represents Linda’s
position produced by AMCL on the grey metric map.

partly occluded body detectors have been developed (e.g. Dalal & Triggs 2005, Sudowe &

Leibe 2011, Wojek et al. 2011, Spinello & Arras 2011). Most of these detectors, however,

suffer from high computational costs which is why currently used approaches, such as the

upper body detector by Mitzel & Leibe (2012), rely on the extraction of a Region of Interest

(ROI) to speed up detection. Moreover, given spatial constraints in narrow corridors, the

robot might not be able to observe a human from a far enough distance to see the entirety

of their body which is why full body detectors are more suited for outdoor applications

where space is not an issue. Therefore, the presented framework employs Mitzel & Leibe’s

(2012) upper body detector for the real-time detection of walking or standing humans.

The second detector used is a leg detector based on Arras et al.’s (2007) work and

has become a standard ROS component for people perception. Like detectors, human

tracking is an important part of a perception system for human spatial movement and

invaluable for QTC state chain generation. Hence, a variety of tracking systems have been

introduced by the robotics community (e.g. Feyrer & Zell 2000, Arras et al. 2008, Jaffari

et al. 2014, Linder et al. 2015). In order to use the wealth of provided sensors on a

modern mobile robot, the principle of sensor fusion (e.g. Feyrer & Zell 2000) is used in the

presented probabilistic real-time tracking framework which fuses the two mentioned sensors
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Figure 4.2: This chapter’s contribution to the system extending the framework shown in
Figure 3.1 to create the overall system from Figure 1.1. The novel contribution is highlighted
in red and the offline classification only used in this chapter in pink. The interaction of human
and robot is observed using the robot’s on-board sensors and automatically transformed into
valid QTC state chains. To show the generalisability of the model it is trained with data
collected in a previous study (see Section 3.5.2) and used to offline classify the interaction
type observed by the robot. This people tracking and state generation approach is the basis for
the classification, state prediction, and behaviour generation in later chapters and paramount
for the development of an autonomous system.

and employs an Extended or Unscented Kalman filter to track and predict the movements

of humans as initially presented by Bellotto & Hu (2010a) and (2010b). However, the

tracker itself does not rely on a specific detector for input and is very modular in design.

Figure 4.1 shows the example output of the tracking framework.

Chapter Contributions The main contribution of the work presented in this chapter

is the combination of existing detection and tracking approaches for human perception in

the vicinity of the robot by Mitzel & Leibe (2012), Arras et al. (2007), and Bellotto &

Hu (2010b) into a holistic ROS framework and the automated incremental generation of

QTC state chains at runtime. The presented framework is tailored to the capabilities of

Linda the robot using all available sensors producing people tracks in real time

[Obj. 3.1] to facilitate a fully autonomous system [Obj. 3] . This detection and

tracking framework is used to automatically generate QTC state chains for every tracked

person in order to classify the type of HRSI encounter the robot ought to engage in. These

generated state chains are the basis for the classification, belief and behaviour generation

approaches described in the following chapters. As a proof of concept a small experiment

using Linda in a real-world office environment, only relying on the robots on-board

sensors [Obj. 3.2] , shows how these generated QTC state chains can be classified using

the HMM models from the “Bristol experiment” (see Section 3.5.2). Thus, the evaluation

not only shows that it is possible to use the robot’s on-board sensors to gen-

erate a meaningful QTC representation [Obj. 3.2] but also that this particular
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QSR allows to transfer knowledge gathered from different sensors and in a

different environment [Obj. 1.4] , therefore, proving the QTC model to be environ-

ment, agent, sensor, and perspective agnostic [Obj. 1.1] considering that for the

creation of the model the robot and human were observed by external cameras whereas in

this experiment the robot uses its self-localisation and observes the human using its own

sensors. The contribution of this chapter to the overall proposed system can be seen in

Figure 4.2 which shows how the automatically generated state chains and the previously

created interaction model are used in an offline classification process to determine the type

of interaction the robot engaged in.

People perception is necessary to create an autonomous human-aware navigation system

which makes it a requirement for all the work described in this thesis but it was not the

main focus of it. Nevertheless, as an enabling technology that is not readily available due

to a lack of open source ROS implementations, this problem had to be solved which is why

it found its way into this thesis. To not go beyond the scope of this work, the evaluation

in this chapter only investigates if the created perception pipeline is suitable to generate

meaningful QTC state chains. For an evaluation of all the subsystems please refer to

their original publications by Mitzel & Leibe (2012) for the upper body detector, Arras

et al. (2007) for the leg detector, and Bellotto & Hu (2010b) for the Bayesian tracking

framework. Moreover, the performance of the presented perception pipeline in crowded

and dynamic environments has recently been evaluated in the context of a different project

by Linder et al. (2016).

The work presented in this chapter has been published at the Workshop on Machine

Learning for Social Robotics at the IEEE International Conference on Robotics and Au-

tomation (ICRA), 2015. Please see Appendix A.2 for the author’s contributions.

4.1 System Overview

This section presents the integrated system shown in Figure 4.3, consisting of the percep-

tion pipeline including the leg detector, upper body detector, the tracker, the qualitative

spatial representation module, and the library to create the QTC state chains online.
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Figure 4.3: Conceptual overview of the system architecture. The number of detectors is
variable due to the modular design of the tracker and its ability to merge several detections
from different sensors. The two detectors shown here are the ones used on Linda in all
the following experiments. From left to right, the detectors produce the raw and unfiltered
detections for possible legs and upper bodies using the helper functions to speed up the process
via ground plane estimation and using the ROS transformation tree to unify the results in the
same coordinate frame, the tracker uses data association and a Kalman filter to combine and
track the persons using the detections as input, the resulting tracks are used to create QTC
state chains using the so-called QSR Lib which QTC is part of. These state chains can than
be used for any kind of learning or classification approach.

4.1.1 Detectors

Robots use a range of sensors to perceive the outside world, enabling them to reason about

its future state and plan their actions. Linda, the robot used here, has two main sensors

that can be used for people detection, i.e. the head mounted Asus Xtion RGB-D camera

and the Sick s300 laser (see Section 1.3.2). Hence, the following presents two detectors

based on the RGB-D and laser scanner, respectively. Example output can been seen in

Figure 4.1.

Mitzel & Leibe’s (2012) so-called upper body detector uses the template shown in Fig-

ure 4.4 and the depth information of a RGB-D sensor to identify upper bodies (shoulders

and head) as depicted in Figure 4.5, designed to work for close range human detection

using head mounted cameras. This detector was originally based on stereo outdoor data;

subsequently an integrated tracking system using a Kinect like RGB-D sensor and the

mentioned detector was introduced by Jaffari et al. (2014). To reduce the computational

load, this upper body detector employs a ground plane estimation or calculation to deter-

mine a ROI most suitable for detection of upper bodies of a standing or walking person.

The actual depth image is then scaled to various sizes and the template is slid over the

ROI of the image generating a distance matrix which defines the distance of a given pixel

to the template. After using non-maximum suppression, bounding boxes are fitted around
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Figure 4.4: The upper body depth template learned from 600 upper bodies and used for
matching. Image taken from (Mitzel & Leibe 2012)

(a) The original RGB
image.

(b) The template is slid
over the depth images in
various sizes.

(c) The resulting distance ma-
trix showing the similarity between
depth image and template.

(d) The resulting
bounding boxes after
non-maximum suppres-
sion.

Figure 4.5: The upper body detection process. Images taken from (Jaffari et al. 2014)
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the found matches (see Figure 4.5 for a visualisation of that process). This detector works

in real time, meaning ≈ 25 fps which corresponds to the frame rate of the Asus Xtion.

The main advantage of this detector, compared to full body detectors, is that the camera

on Linda is mounted at a height of 1.72m which only allows it to see upper bodies in

normal corridor or room settings, such as offices or flats, due to the restrictions in space

and the field of view of the Asus camera. This is in fact true for a large variate of cur-

rently used research service robots because mounting a camera at head height facilitates

face recognition and therefore also HRI. Additionally, due to the restrictions in space in

the normal working environment of the robot, it can hardly ever see the floor using the

head-mounted camera which is why the ground plane calculation developed for this thesis

is based on the geometry of the robot and the position of the Pan-Tilt Unit (PTU) the

camera is mounted on instead of the depth image based estimation as described by Jaffari

et al. (2014).

Due to the very limited field of view of the RGB-D camera, a laser based leg detector by

Arras et al. (2007) is used in addition to that. Using laser scanners for people perception is

popular in mobile robotics (e.g. Fod et al. 2002, Schulz et al. 2003) because most currently

used platforms provide such a sensor, which also has a wider field of view than a camera

and is less dependent on ambient lighting conditions. Arras et al. (2007) define a set of

14 features for the detection of legs including: the number of beams, the circularity, the

radius, mean curvature, and the mean speed, to only name a few. These features are used

for the supervised learning of a set of weak classifiers using recorded training data. Schapire

& Singer’s (1999) AdaBoost algorithm is employed to turn these weak classifiers into a

strong classifier, detecting legs in laser range data. The approach was evaluate by Arras

et al. (2007) in various office and corridor settings which proved it ideal for most indoor

robotics environments. At the time of writing this thesis, this approach is considered

state-of-the-art and the implementation of the detector23 is part of the official ROS people

stack24. This people stack implementation, however, does not allow for sensor fusion which

is why, together with the upper body detector, the leg detector is used separately to feed

into the tracker described in this chapter.

23http://wiki.ros.org/leg_detector
24http://wiki.ros.org/people
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The output of both detectors can be seen in Figure 4.6a which shows the visualisations

of their outputs in the ROS visualisation tool rviz 25. The detections do not identify the

person but just return a list of x, y, z positions, one for each person and detector, where

z is projected down to the map. The detections have to be fused to generate the trace of

positions of the humans in the vicinity of the robot by using the tracker described in the

following.

4.1.2 Tracker

Having only detectors makes it impossible to create QTC states because, as described

above, in order to create a QTC state one needs to look at the movement of human

and robot over the interval T = [tn−1, tn] which requires to merge subsequent detections

into a single track for each human.26 Tracking allows to create these QTC states or

even chains of states by fusing separate consecutive detections of a single person into

one common track. Moreover, to use the wealth of information provided by a robot

equipped with multiple sensors, using purely vision based trackers such as one introduced

by Jaffari et al. (2014) – from which the upper body detector was extracted – is not

feasible because the tracking rate should not depend on any one of the detectors or sensors.

This means that the tracker should not only execute a prediction step when one of the

detectors fires but produce predictions at a constant frequency and update them when

new information from a detector becomes available. Therefore, a solution for Bayesian

tracking, originally proposed by Bellotto & Hu (2010b), is used as implemented by Bellotto

et al. (2015) (see Figure 4.6b). This tracker allows native combination of multiple sensors

and creates new predictions at a fixed frame rate, executing an update step when one of

the detectors provides new information. Bellotto & Hu (2010b) showed that their Bayesian

tracker, based on an Unscented Kalman Filter, achieves comparable results to a Sampling

Importance Resampling (SIR) particle filter in several people tracking scenarios, although

it is computationally more efficient in terms of estimation time.

In the current implementation different tracking configurations can be used by defining

the fixed frame observation models (one for each detector) and the noise parameters of

the constant velocity model to predict human motion, to for example compensate for loss

25http://wiki.ros.org/rviz
26Since every mobile robot needs self-localisation to navigate, this problem does not arise for the robot.
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(a) The two used detectors. Green
sphere: leg detector, green cube and red
box in image: upper body detector.

(b) The tracker output. Overlaid red and
blue figure: position of tracked human,
green arrow: orientation of velocity vec-
tor.

(c) A human moving around the robot.
Showing his/her current position and the
path since the start of the tracking.

(d) The complete path of the human walk-
ing around the robot. Human left the field
of view of the laser and is not tracked any
more.

Figure 4.6: The visualisations of the detector and tracker outputs using the ROS visualisation
tool rviz. The red dots represent laser beams hitting an object.
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/to_pose_array/leg_detector /people_tracker/positions

/people_tracker/positions/upper_body_detector/bounding_box_centres

/ground_plane

/people_tracker_measurements /human_trajectories/to_pose_array

/bayes_people_tracker

/online_qtc_creator/upper_body_detector/ground_plane

/leg_detector

Figure 4.7: A simplified representation of the ROS nodes and their most important connec-
tions, created using the ROS visualisation tool rqt graph.

of detection, as discussed by Li & Jilkov (2000). A gating procedure is applied using a

validation region relative to the target, based on the chosen noise parameters, for each

new predicted observation in order to reduce the chance of assigning false positives and

incorrect observations (Bar-Shalom & Li 1995). New detections are then associated to the

correct target using a Nearest Neighbour (NN) association algorithm, suitable for compu-

tationally less powerful robot systems, or a more sophisticated Nearest Neighbour Joint

Probabilistic Data Association (NNJPDA), which is more reliable but also less efficient

regarding computation time (e.g. Bellotto & Hu 2010a, Linder et al. 2015).27 If no suitable

target could be found, the detections are stored and eventually used to create a new track

if they are stable over a predefined time frame, i.e. a predefined number of consecutive

detections given a pre-defined maximum time delta between them.

The tracking algorithm itself, can be chosen by the user to either use a particle filter,

an Extended Kalman Filter, or an Unscented Kalman Filter. All the approaches are able

to deal with highly non-linear data and are, therefore, able to reliably track any kind of

motion given the correct prediction model. For the relatively simple tracking problem

at hand and given the linearity of the constant velocity prediction model and the used

Cartesian observation model, a standard Kalman Filter would have been sufficient but for

all subsequent experiments using Linda the robot, the Unscented Kalman Filter was cho-

sen. This filter produces the same results when compared with a standard Kalman Filter

given the used prediction model and comes at no significant increase in computational cost

while at the same time being more generic. Since the tracking framework allows defining

any kind of motion model, having this default option enables it to deal with any kind

of user input while reliably predicting motion, tracking the humans in the vicinity of the

robot. For each detected human, it provides a Universally Unique Identifier (UUID) that

27NNJPDA was used in all following experiments.
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is consistent as long as the person is observed by the robot28 and the x, y positions of the

humans in its vicinity including their assumed constant velocity vector −→ν .

The ROS nodes making up the complete systems and their connections with each other

can be seen in Figure 4.7. This shows the communication flow from the detectors to the

tracker and from the tracker to the QTC generation module.

4.2 Online QTC state chain generation

The output of the tracking framework, i.e. the position, velocity, and the direction of the

velocity vector of the tracked humans, can either directly be used for reactive human-aware

navigation like the ROS implementation of layered costmaps by Lu et al. (2014) and the

simple stop-and-wait behaviour described in the “restaurant experiment” in Section 3.5.1,

or for the online generation of QTC state chains. To generate any of the QTC variants

introduced in Chapter 3 for each tracked human and the robot, the output of the tracker

and the self-localisation of the robot is used. This automatic generation module, however,

does not only offer the simple generation of state chains, but also the generation of valid

state chains in accordance with Definition 3.1 and 3.2 despite any unobserved transitions

therein due to the discrete sensor measurements. The tracker decreases the number of

unobserved transitions by creating a continuous signal from discrete observations, but in a

physical system, where the tracker runs at 30Hz, even this will result in unobserved states.

The HMM approach introduced previously is able to deal with these missing observations

due to it’s emission layer, but to allow for online classification of partial state chains, this

HMM-based approach is not feasible, which makes the validation of state chains necessary

for the model introduced in Chapter 6.

To validate a state chain Q, an additional state needs to be injected between two states

that would represent an illegal transition Qi 6 Qi+1 to turn it into a legal transition

Qi  Qt  Qi+1 where Qt represent an artificial transitional state. Algorithm 4.1 shows

this procedure which basically consists of replacing symbols in state Qi+1 with 0 that

would otherwise represent and illegal transition of this symbol and insert it in between the

two original states. In order for this algorithm to work, the qualitative symbols {−, 0,+}

28Once the person is not tracked any more and then re-enters the FoV of one of the detectors, a new
UUID is assigned.
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Algorithm 4.1 Validate state chain Q

Require: Q
Ensure: ∃Qi  Qi+1 ∀ (Qi, Qi+1) ∈ Q

1: for (Qi, Qi+1) ∈ Q do
2: Qt ← Qi+1

3: qtj = 0 ∀ qj ∈ Qi, qtj ∈ Qt : φ(qj , q
t
j) = 2

4: for m ∈ [1, . . . , |Qi|] do
5: for n ∈ [m+ 1, . . . , |Qt|] do
6: (qim, q

i
n) ∈ Qi

7: (qtm, q
t
n) ∈ Qt

8: if |qim|+ |qin| = 1 ∧ |qtm|+ |qtn| = 1 then
9: if max({|qim − qtm|, |qin − qtn|}) > 0 then

10: qtm = 0, qtn = 0
11: end if
12: end if
13: end for
14: end for
15: if Qt 6= Qi+1 then
16: Q = [Q1, . . . , Qi, Q

t, Qi+1, . . . , QN ]
17: end if
18: end for

are interpreted as {−1, 0, 1}. In Algorithm 4.1 line 2 this new transitional state Qt is

created which is a copy of the state Qi+1 which will be inserted in between Qi → Qi+1

if necessary, i.e. Qt 6= Qi+1. Checking the conceptual distance between the symbols φ

in line 3, the algorithm ensures that where φ(qj , q
t
j) = 2, qtj is set to 0 removing − ↔ +

transitions. The two loops starting in lines 4 and 5 check ever symbol of the state Qi

against every symbol in Qt. Since, in the resulting Matrix M where a set of four symbols

qi,tn and qi,tm with qi ∈ Qi and qt ∈ Qt is compared

M =


qi,t1 qi,t1 , q

i,t
2 qi,t1 , q

i,t
3 qi,t1 , q

i,t
4

qi,t2 , q
i,t
1 qi,t2 qi,t2 , q

i,t
3 qi,t2 , q

i,t
4

qi,t3 , q
i,t
1 qi,t3 , q

i,t
2 qi,t3 qi,t3 , q

i,t
4

qi,t4 , q
i,t
1 qi,t4 , q

i,t
2 qi,t4 , q

i,t
3 qi,t4

 (4.1)

the order of the elements is irrelevant qi,tn , q
i,t
m ⇔ qi,tm , q

i,t
n and only has to be checked once.

This process is sped up by only considering one half of the matrix. Additionally, the

diagonal is excluded due to the check for transitions − ↔ + in line 3.
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M ≈


qi,t1 , q

i,t
2 qi,t1 , q

i,t
3 qi,t1 , q

i,t
4

qi,t2 , q
i,t
3 qi,t2 , q

i,t
4

qi,t3 , q
i,t
4

 (4.2)

The first check in line 8 of Algorithm 4.1 creates the sum of the absolute values of qin,m

and qtn,m which, if equal to 1, symbolises that one of the symbols changes from {−,+}

to 0 and vice versa which is the first indication that Definition 3.1 might be violated.

Note, − ↔ + are already mitigated by replacing the symbol qt with 0. An example case

for an illegal transition would be (0,−) → (−, 0) but this could also represent the legal

case of (0,−) → (0,−). In order to find the illegal cases, line 9 in Algorithm 4.1 finds

the maximum of the absolute values max({|qim − qtm|, |qin − qtn|}) which in the illegal case

(0,−) → (−, 0) ⇔ (0,−1) → (−1, 0) would be max({|(−1) − 0|, |0 − (−1)|}) = 1 or for

(0,+) → (+, 0) ⇔ (0, 1) → (1, 0) would be max({|1 − 0|, |0 − 1|}) = 1 and for every

legal case that remains after line 8, e.g. (0,−) → (0,−) ⇔ (0,−1) → (0,−1), would be

max({|0 − 0|, |(−1) − (−1)|}) = 0. If such an illegal transition is found both symbols in

the artificial transitional state are set to the 0 state qtn = qtm = 0 because every symbol

can transition to 0 at every point in time. An easy example is (−−0+) 6 (−0−−) which

would be turned into (− − 0+)  (−000)  (−0 − −). Lastly, all states Qi+1 ∈ Q are

removed if ∃Qi : Qi = Qi+1 ∀ (Qi, Qi+1) ∈ Q to create a state chain Q that complies with

Definition 3.2.

All of these functionalities are optional and can be dynamically reconfigured during

runtime to cater to different user needs. If, for example, a QTC state for each timestamp

is required as in the work by Duckworth et al. (2016), the validation and collapsing of the

state chain can be turned off. Additionally, the module also allows to specify a quantisation

factor that defines how far one of the agents has to move from one time step to the other

to be considered a non-zero-state and a smoothing time over which the position of human

and robot are averaged as described in Section 3.5 of the previous chapter. This has proven

necessary to remove noise from the centre points oscillating around the connecting line or

one of the perpendicular lines of the double cross.

The final result of this module is a continuous and valid QTC state chain per person

in the vicinity of the robot that represents the entire trace of interaction of the human
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(a) Four people are tracked. Two of them
only via the upper body detector, one only
via the leg detector, and one via the com-
bination of both using NNJPDA.

(b) Five people are tracked. The upper
body detector only picks up two due to oc-
clusion or “incorrect” body posture. The
other three are tracked via the leg detector
input.

Figure 4.8: As a proof of concept, several people moving around an office environment were
tracked, showing that the multisensor tracking compensates for false negatives of the detectors.

and robot in QTCBC and can be associated with the person using the UUID. This is used

in the subsequent evaluation to classify the interaction type based on pre-trained HMMs

using the data of the “Bristol experiment” (see Section 3.5.2). In addition to this, the

system also creates a QTCC state chain for said humans encoding the interaction of the

human with the robot’s goal. This is used for online classification and will be picked up

on in Chapter 6.

4.3 Evaluation

As mentioned in the beginning of this chapter, the majority of the presented components

have been evaluated in the publications describing them. For the evaluation of the detec-

tors, please refer to Mitzel & Leibe’s (2012) and Arras et al.’s (2007) work, respectively.

An exhaustive evaluation of the tracker can be found in Bellotto & Hu’s (2010b) work and

more recently by Linder et al. (2016).

Since this chapter presents the integration of all these components into a state-of-the-

art robot platform and the widely used Robot Operating System (ROS), it is presented

in a short proof of concept experiment to show that the QTC based model presented in

Chapter 3 is suitable to work on data generated by the robot’s sensors. To show that the

tracking framework is able to cope with groups of people, Linda was deployed in an open
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office environment, observing people in the kitchen area. Screenshots of the live system

can be seen in Figures 4.1, 4.6, and 4.8. Please refer to Appendix B for links to videos.

To evaluate the QTC models, the robot was driving along a corridor encountering an

oncoming human, engaging in a pass-by interaction. The robot was driving on a straight

line towards its goal while the human was avoiding the robot to either the left or right side.

Following the Oz of Wizard study design (see Section 2.4.1), this was repeated 7 times

for each side by the author of this work. During the experiment, the human interaction

partner tried to match the speed of the robot to which end they executed a number of test

trials to get acquainted with its movement speed prior to the recording of state chains.

These resulting state chains were classified into passing on the left vs. passing on the

right using the dataset presented in Section 3.5.2, featuring two human interactants. The

HMMs for classification were trained using the trajectories of both humans recorded via

a motion capture system to not only show that the model is able to deal with sensor data

but also to use models created from a different set-up and different sensor to classify it.

4.3.1 Results

Figure 4.9 shows the recorded QTC state chains in the HMM-based representation from

Section 3.4. The figure is clearly divided into two possible paths, passing on the left and

passing on the right as can be seen from the − or + for q3 and q4 in the tuple (q1 q2 q3 q4)

of QTCC and shows visual similarities to Figure 3.9 which encodes the same kind of

interaction in a different context. To give an example of one of the interactions: the two

most probable paths for the two conditions both start with the agents approaching each

other (− − 0 0) and then diverge into left or right. The most probable path for passing

on the left is: (−−−−) both approach each other and go to the left, (0 0−−) both are

shoulder to shoulder on their left side, (++−−) both agents move away after passing still

being on the left of the connecting line, (+ + 0 0) both move apart.

As stated above, the recorded encounters are classified using models trained from data

collected during the Bristol experiment using motion capture. The classifiers were trained

for three different conditions, i.e. starting the circumvention early, late or in between

where each is 500ms apart. Each of the six models (three per side) was trained with 162

to 178 (for passing on the right) and 183 to 189 (for passing on the left) QTCC state
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Figure 4.9: Visualisation of the HMM trained from the recorded QTC state chains. Re-
minder: a − in the 3rd and/or 4th position of the tuple indicates circumvention on the left
and a + in the respective positions represents circumvention on the right. Transitions with
a probability below 0.15 have been pruned for visualisation purposes. The colour of the nodes
represents the a-priori probability of that specific state to be present in any observed chain
(from white = 0.0, e.g. “S”, to dark grey = 1.0, e.g. “E”), i.e. its observation probability.
This figure looks rather similar to Figure 3.9 which was created using recordings of a motion
capture system, showing the similarity between these actions visually.
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chains, respectively. Using these models and the state chains generated using sensor data

via the presented tracking framework, classification rates from 78.57% to 85.71% were

achieved on the dataset using input generated from the integrated systems instead of

external motion capture. These results are not as good as the classifications rates of up to

100% from Table 3.2b showing the “Bristol Experiment” results, but are well above the

null-hypothesis H0 = 50% for a two class example. Hence, the two classes can be reliably

classified.

4.4 Discussion

This chapter presents components that have already been proposed for human detection

and tracking and the overall tracking system has been evaluated by Linder et al. (2016).

However, for the first time, this system has been brought together for the online generation

of QTC state chains. The achieved classification results show that even when using a HMM

model trained on data obtained by different sensors and in a different environment, not

even using a robot, the chosen QTC representation of the interaction, QTCC in this case,

is able to abstract from all of this and to still reliably classify new encounters. Moreover,

the robot is not able to observe humans after they passed it and are outside of its FoV,

whereas the motion capture system provided full observability. Hence, the state chains

generated using the presented system were incomplete with regards to the used HMM

model but could still be reliably classified. This, however, might have been the reason

for the lower classification rates compared to the results in Chapter 3. Nevertheless,

this shows that QTC in general is suitable to represent HRSI using on-board sensors

only. Additionally, the introduced system allows to use the robot in HRSI experiments

using the incremental online generation of QTC state chains for real-time classification

and behaviour generation approaches. This represents an important corner stone of the

remainder of this thesis, allowing evaluation of the system on a mobile robotic platform

such as Linda interacting with the participants autonomously.

Limitations and Lessons Learned The described systems is used throughout the

STRANDS project and over the years a few observations about peculiarities and limi-

tations of the system have been made. Like all robotic systems, this approach is very
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susceptible to sensor noise and limited fields of view when it comes to detectors. The

upper body detector itself, for example, has shortcomings when it comes to detecting sit-

ting people due to the defined ROI and the template which represents an upright upper

body in Figure 4.4 being optimised for walking/standing people. Figure 4.8b shows one

of the people in the images is not detected due to an “incorrect” body posture. The

solution to most of these issues is provided by the Bayesian tracker, fusing the detectors

to compensate for the fact that one of them might produce false negatives or a person

is not in its field of view, and via smoothing the trajectories using a Kalman Filter and

a constant velocity model. However, this becomes an issue when both detectors are not

able to pick-up the people around the robot which can easily happen when they are sit-

ting in a wheelchair like in the Haus der Barmherzigkeit environment (see Section 1.3.1).

Many approaches have been tried to overcome this, like lowering the lower limit for upper

body detections or developing a laser based wheelchair detector (Beyer et al. 2016) but

none of them were showing any improvement at the time of writing this thesis. The leg

detector, on the other hand, is prone to false positives due to chairs and table legs which

is countered by a simple filter that removes all detections that correspond to obstacles in

the known map, but still causes the creation of fake humans and therefore influences the

actual performance of every human-aware navigation approach. This can be addressed

using so-called no detection zones in this filter where areas with high false positive rates

can be blacked out to not allow for any tracks to be created. This, however, requires

labour intensive manual annotation of the environment.

Another feature that is missing is the re-identification of previously seen persons to

allow for the loss of a track and generate more complete QTC state chains, but similar

to the problem with detecting wheelchairs, at the time of writing this thesis no adequate

solution has been found that would produce reliable results given the hardware and envi-

ronmental constraints. One could also argue that it is not necessary to re-identify people

when they re-enter the FoV as each interaction should be treated separately. However,

this missing component makes it impossible to create different models for different groups

of people (e.g. staff and patients in a care home) even though it would be possible to use

different models for different people depending on the amount of training data.
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Concluding from the above statements, the presented tracking pipeline has its limita-

tions, but is fast and reliable enough to generate the qualitative state chains necessary for

online classification and behaviour generation.

4.5 Summary

This chapter introduces the means of creating QTC state chains from the on-board

sensors of a robot using on-board processing only [Obj. 3.2] . Tailored to Linda,

an upper body detector using the head mounted RGB-D camera and a laser based leg

detector were chosen and in the case of the upper body detector implemented into ROS.

These detections however have to be fused to generate a single detection for each human

and subsequent detections have to be combined into tracks to enable the generation of

QTC states that need at least two consecutive positions of the human to be created.

This has been solved using a Bayesian tracking framework with NN or NNJPDA data

association using a particle, Extended, or Unscented Kalman Filter for prediction. For

the very linear prediction problem at hand a simple Kalman Filter would have sufficed

but there is no trade-off computation wise in using a different version that is also able to

deal with non-linear data.

The output of the tracking framework and the AMCL based self-localisation of the

robot is then used to create valid QTC state chains that do not contain illegal transitions or

equal adjacent states and therefore conform with the definition of legal state chains. These

state chains are generate incrementally and online [Obj. 3.1] and can be used to

classify the observed interaction type using pre-trained HMMs or for online classification

or behaviour generation as described in the following. Hence, the conducted experiment

showed that QTC based probabilistic models abstract from the environment, the

sensors used, the agents involved, and the observers perspective [Obj. 1.1] well

enough to use a model trained with data from the “Bristol experiment” to classify data

generated by the robot’s sensors.

To summarise, the autonomy [Obj. 3] objectives of working in real-time [Obj. 3.1]

only relying on on-board sensors and processing [Obj. 3.2] have been addressed

in this chapter with the perception and state generation showing that this part of the sys-

tem is able to achieve said objectives. Additionally, reinforcing the results of Chapter 3,
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the experiment directly addressed the robust qualitative interaction models [Obj. 1]

objectives by showing that the HMM trained on a data set abstracts from the metric

environment representation [Obj. 1.1] , only represents the qualitative character

of motions [Obj. 1.2] and, therefore, has the ability to generalise [Obj. 1.4] well

enough to be used for the classification of the collected robot data.

On a side note, the whole system described in this chapter is very modular which means

that detectors can easily be added or removed from the tracker embracing the distributed

nature of ROS systems. Moreover, the QTC generation is part of a larger library that

is able to produce numerous QSRs and the HMM generation and classification is able to

deal with any kind of QSR. This means that the system can either be used as a whole or

in parts as in for example Lightbody et al.’s (2015) work.
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—With regard to robots, in the early days of robots peo-

ple said, ’Oh, let’s build a robot’ and what’s the first

thought? You make a robot look like a human and do

human things. That’s so 1950s. We are so past that.

Neil deGrasse Tyson, Astrophysicist/Author

5
Constraint based HRSI Behaviour Generation

After formulating the model and showing that it can be used on data produced by the

robot’s sensors, the next step towards an autonomous system is behaviour generation

using the underlying model. When it comes to modelling and classifying activities, QSRs

like QTC are a convenient way of abstracting from all the low-level behaviour that is

not relevant to capture the essence of the interaction, for example it does not matter if

the robot avoids a human at 0.55m/s or 0.54m/s. When trying to generate behaviour for

a mobile robot, on the other hand, explicit knowledge about this low-level movement is

crucial. However, the exact repetition of the executed movement commands might not

be possible, or indeed necessary, as long as the executed movement generates the correct

qualitative state. Of course, this implies that the qualitative description models all the

parameters that are important for the criteria one wants to optimise. In the presented case

of human-aware navigation and human-robot joint motion, this comes down to creating

legible trajectories for the robot that are also perceived as safe and, therefore, comfortable.

Hence, this chapter addresses the problem of how to translate a, e.g. QTCBC state like
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(− − ++), into velocities that can be sent to the wheels of the robot. Assuming that

q1 and q3 describe the movement of the human and are known, q2 and q4, i.e. (−+) in

the given example, have to be translated into actual command velocities, which make the

robot approach the human while also moving to the right of the connecting line between

them.

Current state-of-the-art navigation approaches mostly rely on a combination of global

planning using Dijkstra or A∗ and local planning (e.g. Fox et al. 1997) to achieve robust

navigation in the face of static and dynamic obstacles. In the implementation of the

ROS navigation stack that is not only used on Linda but also in the entire STRANDS

project and is the default navigation stack for each ROS robot, the global path planning

is done via Dijkstra using a global costmap. This costmap contains all the static obstacles

that were present during the creation of the map and the obstacles currently observed by

the sensors, as lethal obstacles (as described in Section 5.2.2). Due to the robot being

represented by its centre point and a footprint, these obstacles are inflated by the radius

of the circumscribed footprint to assure that the robot never ends up inside an obstacle.

The costs are then used as movement costs in the Dijkstra algorithm and hence create a

path that tries to keep as much distance to obstacles as possible while still optimising for

distance travelled. This form of path planning, however, is slow and costly (up to several

seconds depending on the size of the map, the distance of the goal, and the computational

power) because it considers the whole map which can quickly amount to several million

grid cells. Hence, constant replanning to avoid dynamic obstacles is not feasible.

For the current ROS navigation stack to achieve computationally cheap dynamic ob-

stacle avoidance (running at 20hz by default), a smaller version of this costmap, which

only represents a square of a few m2 around the robot, is used in a sampling based ap-

proach. This so-called Dynamic Window Approach (DWA) local planner by Fox et al.

(1997) uses this metric costmap and translates it into the velocity space to allow for dy-

namic sampling of future trajectories as can be seen in Figure 5.1. This velocity space

is further restricted by the so-called dynamic window which describes only the velocities

that can be reached in a predefined time frame ∆t, given the acceleration limits of the

robot.29 This ∆t is referred to as sim time and defines how far the planner should plan

29These limits depend on the robot’s motors and are assumed constant. For Linda the limits are
x = ±0.8m/s2 and θ = ±3.14rad/s2.
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Current 
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Figure 5.1: The velocity space representation of a metric local costmap of a corridor as it
is used by the Dynamic Window Approach (DWA) local planner. This shows velocities in
x, y, θ direction. The blue area represents admissible velocities and the brown area represents
velocities at which the robot would collide with an obstacle. The yellow circle discribes the
dynamic window which contains velocities that can be reached in a pre-defined time ∆t given
the acceleration limits of the robot.

ahead. A predefined number of velocity samples in each direction possible is uniformly

distributed across the window and then scored based on several different critique func-

tions, e.g. goal-directedness, global path following, etc. which all assign a cost value to

each sample. The sample with the lowest costs is then chosen to be executed till ∆t is up.

In contrast to the metric local costmap, QTC describes movement as velocities already

where the symbols (q2, q4) describe an interval ξ = [−→ν min,
−→ν max] constraining the possible

directions of the robot’s velocity vector −→νr ∈ ξ which means that this representation can

be used as an additional critique function without having to transform it to metric space

first. Therefore, this chapter introduces so-called Velocity Costmaps which describe the

constraints ξ and are used in conjunction with Fox et al.’s (1997) DWA local planner to

achieve safe, legible, and sociable human-aware navigation. This way, the local planner

takes care of the generation of the command velocities to be send to the robot’s motors

where the Velocity Costmaps ensure that only trajectories that produce the correct QTC

state are generated.
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Figure 5.2: This chapter’s contribution towards the system shown in Figure 1.1 building
on the partial system in Figure 4.2. The interaction of human and robot is observed using
the robot’s on-board sensors and automatically transformed into valid QTC state chains as
described in Chapter 4 and used together with the model of the observed previous interactions
to generate behaviour for the robot. This approach relies on a-priori knowledge of the inter-
action type, e.g. pass-by or path crossing, due to the missing classification component and
uses hand crafted rules for the preliminary action selection process which is replaced in the
following chapter. The novel contributions to the system are highlighted in purple where only
the behaviour generation is part of the final system. For the first time the loop of sensing and
acting has been closed in a purely reactive manner.

Chapter Contribution The main contribution of this chapter, therefore, is the genera-

tion of movement commands for a mobile robot from QSRs, representing a novel approach

to human-aware navigation. Using the high-level QTC based representation from Chap-

ter 3, low-level command velocities that can be send to the robot’s wheels are generated

using so-called Velocity Costmaps which restrict the sample space of the DWA local planner

to generate trajectories that produce the desired QTC state. These Velocity Costmaps in-

troduced in this chapter, on the one hand, produce trajectories that are safe and also

perceived as safe by the human [Obj. 2.2] interaction partner and, on the other hand,

are still task efficient by minimising the travel time towards the goal [Obj. 2.3] .

These costmaps are based on QTC states that are derived from either hand crafted rules

as done in this chapter or a learned joint probability table as shown in Chapter 6 which

allows to incorporate human judgement via Learning from Demonstration (LfD). By using

the DWA local planner which uses a search space based on the acceleration limits of the

robot, the generated movements are not only safe and task efficient but are also tailored

to the used hardware [Obj. 3.3] and thereby the planner only produces velocities that

are possible to achieve in the given time. The contribution of this chapter to the overall

proposed system can be seen in Figure 5.2 which builds on Figure 4.2 and extends it with

the preliminary action selection module used for the experiments presented in this chapter

and later on replaced by an autonomous system and the behaviour generation.
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In the following, the approach based on hand crafted rules is evaluated in simula-

tion and in a real-world experiment using the robot Linda, showing how to incorporate

knowledge about HRSI encoded in QTCBC into a concise model for trajectory sampling in

velocity space. This does not make use of any learned models but only uses a conceptual

model of the interaction.

The presented approach has been described in a conference paper that has been pub-

lished at the IEEE International Symposium on Robot and Human Interactive Communi-

cation (RO-MAN), 2016. Please refer to Appendix A.3 for the author’s contributions to

this work.

5.1 The Dynamic Window Approach Local Planner

In order to describe the behaviour generation using Velocity Costmaps it is important to

introduce the concepts underlying the Dynamic Window Approach (DWA) local planner

and, therefore, make the actual generation of command velocities clearer. In its original

formulation by Fox et al. (1997), the DWA planner functioned as a global planner for a

synchro-drive robot. In its current implementation in the ROS navigation stack, however,

the DWA became a local planner that moves between goals that are placed along the path

generated by the global planner. This leads to a more goal directed and more informed

robot movement then just sampling velocities. Nevertheless, its capabilities of avoiding

dynamic obstacles in close vicinity to the robot and the computationally cheap sampling

using a model directly derived from the motion parameters of the robot made the DWA

planner an essential component of almost every mobile robot that uses ROS. Hence, despite

it being first presented in (1997), it is constantly updated by the ROS community and

therefore can still be considered state-of-the-art in robotic navigation for exactly these

reasons. This section introduces the most important principles underlying the DWA local

planner during the time of the creation of this thesis.

The ROS version of the DWA planner is able to sample velocities in x, y and θ which

allows to create trajectories for holonomic robots. Linda on the other hand is a non-

holonomic robot, i.e. it has a differential drive, which does not allow it to move along

the y-axis. This restricts the sample space to 2 dimensions which are equal to a polar

coordinate system with the robot at its centre and θ = 0 facing forwards. For this reason,
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Figure 5.3: The polar coordinate and velocity space for a non-holonomic robot with the robot
at its centre. ρ describes the distance from the centre in meters and θ the distance from 0 in
radians.

when speaking of velocities, it refers to (ρ, θ) where ρ is the forward velocity or distance

from the centre of the polar coordinate system and θ the angular velocity or the angular

difference from 0 as can be seen in Figure 5.3. Hence, (ρ, θ) also describe a discrete point

in the polar coordinate space which is later on used to look up the allowed velocities in

the Velocity Costmaps. Due to this restriction to 2 dimensions the following descriptions

of the planning approach will be restricted to 2D but can of course easily be extended to

3 dimensions.

As mentioned above, the DWA has a certain planning horizon ∆t for which it samples

velocities. Given the purpose of reaching a certain goal in the environment, it has to create

a sequence of n velocities (ρi, θi) for [∆t0,∆tn] until it reaches the goal. This would mean

that this approach quickly becomes intractable for small ∆t and/or large n. Even if the

DWA is not used as a global planner any more, this still holds true even for partial goals

along the global path. To prevent this sample space explosion, the DWA only considers

the first time interval ∆t0 and assumes a constant speed, i.e. zero acceleration, for the

following [∆t1,∆tn] as defined by Fox et al. (1997). After each time interval this search is

continued for the next interval until the goal is reached.
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5.1.1 Dynamic Window

Despite all the optimisation already undertaken, e.g. only sampling for the next ∆t and

only working in 2 dimensions, this process can still be optimised further. The dynamic

window (Fox et al. 1997) of the DWA defines a small subspace of all the possible velocities

based on the acceleration limits of the robot and the so-called admissible velocities. As

defined by Fox et al. (1997), admissible velocities refers to velocities that allow the robot

to stop before it reaches an obstacle. Assuming that for a velocity (ρ, θ) the term dist(ρ, θ)

represents the distance to the closest obstacle and let ρ̇b and θ̇b be the accelerations for

breakage, i.e. maximum deceleration until reaching 0 velocity, then the set of admissible

velocities Va is defined as

Va =

{
(ρ, θ) : ρ ≤

√
2 · dist(ρ, θ) · ρ̇b ∧ θ ≤

√
2 · dist(ρ, θ) · θ̇b

}
(5.1)

Hence, Va is the set of velocities that allow the robot to break before colliding with the

closest obstacle.

Additionally, in order to take the limited acceleration of the motors of the robot into

account and to reduce the overall search space, the actual dynamic window is defined as

Vd which is the set of velocities that are reachable in ∆t given the accelerations ρ̇ and θ̇

and the actual velocity of the robot (ρa, θa).

Vd =
{

(ρ, θ) : ρ ∈
[
ρa − ρ̇ ·∆t, ρa + ρ̇ ·∆t

]
∧ θ ∈

[
θa − θ̇ ·∆t, θa + θ̇ ·∆t

]}
(5.2)

For Linda these acceleration limits are ρ̇ = ±0.8m/s2 and θ̇ = ±3.14rad/s2.

Thus, the resulting search space Vr can be defined as the intersections of the entire

space Vs, the admissible velocities Va, and the dynamic window Vd

Vr = Vs ∩Va ∩Vd (5.3)

To put this into a graphical context, Figure 5.1 shows the entirety of Vs in the outer

bubble, the admissible velocities Va are represented by the blue area, and the dynamic

window Vd as the yellow area. The final search space Vr is represented by the blue area
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overlayed by the yellow area. The brown area overlayed by the yellow area is not part of

this search space.

To optimise the sampling of velocities even further, not the entire search space Vr

is sampled but only a few representative sample points are chosen which are distributed

uniformly over Vr. In Linda’s case the number of samples to explore the velocity space

in direction of ρ is 3 and in direction of θ is 20. Hence, the set of trajectories sampled is

defined as

T = {(ρi, θj) : ρi ∈ Vr, θj ∈ Vr ∧ 1 ≤ i ≤ n, 1 ≤ j ≤ m} (5.4)

where n = 3 is the number of samples in ρ direction and m = 20 the number of samples

in θ direction. These trajectories ti ∈ T are the basis for the following sampling step.

5.1.2 Trajectory Sampling

In order to achieve goal directed movement of the robot, the DWA scores the sampled

trajectories ti ∈ T based on several distinct so-called critique functions. Hence, for each

sampled trajectory ti the sum of all these critique functions is computed

γi (ti) =

N∑
j=1

ωjcj (ρi, θi) (5.5)

where cj ∈ C represents a critique function out of the set of critique functions C, ωj ∈ ω

represents an associated weight out of the set of weights ω, and N = |C| = |ω|.

The optimal trajectory

t? = arg min
ti∈T

γi (ti) (5.6)

is then chosen for execution until ∆t is up and the next sampling step is executed.

At the time of writing this thesis, the set of critique functions C contains the following

scoring mechanisms.

Path Distance scores the trajectory samples ti ∈ T based on their Euclidean distance

to the path generated by the global planner. Hence, the higher the weight on this critique

function, the more closely the robot sticks to the global path. Depending on the algorithm
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used to find this global path this can be more or less desirable. Given the use of Dijkstra’s

algorithm as described above, this results in a more energy efficient robot navigation by

following this shortest path.

Path Align similar to Path Distance, but calculates scores based on the orientation

alone to assure that the robot faces in the direction of future travel along the path.

Goal Distance scores the trajectory samples ti ∈ T based on their Euclidean distance

to the next intermediate goal along the global path. As discussed earlier, DWA is not

used as a global planner any more as originally proposed by Fox et al. (1997), but as a

local planner that moves between intermediate goals that have been created along the

path calculated by the global path planner. Hence, the weighting for this critique function

determines the goal directedness of the chosen trajectory t. Usually, the path distance

score receives a lower weighting then the goal distance score to assure that the robot

travels towards the goal while sticking to the path if possible. The other effect of this

scoring function is to ensure maximum velocity where possible, due to the fact that the

velocity samples that represent higher velocities are closer to the goal when transformed

into Euclidean space.

Goal Align similar to Goal Distance, but calculates scores based on the orientation

alone to assure that the robot faces in the direction of future travel towards the goal.

These scoring functions are essential to the robot’s navigation, as without it, it would

just move into free space and stop. In the original work by Fox et al. (1997), the velocity

space Vr is also smoothed to achieve larger side clearance when passing obstacles and

to achieve straighter forward trajectories and rounder arcs when moving around obsta-

cles. In its current implementation, however, the DWA planner relies on following the

global path which, using Dijkstra on a global costmap, achieves sufficient side clearance

and straight/round trajectories where possible. The following section introduces a new

critique function into the set of critique functions C which is based on QTC. Thereby, the

DWA planner will still be responsible for generating the movement commands but will be

restricted to only allow ti ∈ T which achieve a low score using this new critique function.
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5.2 Velocity Costmaps

In order to use QTC in a critique function for the DWA local planner, the mentioned

Velocity Costmaps are generated which are occupancy map representations of the costs

in velocity space based on the desired QTC state (see Figure 5.6 and 5.7). This section

introduces the concept of velocity costmaps, its grounding in QTC, and how they are

combined with the DWA planner to produce robot motion.

5.2.1 Action Selection

Disregarding the problem of activity recognition in real-time on a mobile robot for now,

the first hurdle to overcome for behaviour generation is finding the best action for the

robot to perform at any given time t. Assuming that for every QTCBC state (q1 q2 q3 q4)

the two symbols (q1 q3) that describe the human motion are known, the problem of finding

the best action for the robot (q2 q4) to execute can be transformed into a simple look-up

Ω→ A (5.7)

where Ω represents the set of all possible states of the human and A represents the set of

all possible actions of the robot. For the experiment presented in Section 5.3, the type of

interaction will be given to remove uncertainty from classification and, therefore, O ∈ Ω

can easily be extracted from the current QTCBC state of human and robot. Moreover, the

set of possible robot actions A can be model by hand by defining rules Oj → Si for the

most common mappings in Equation 5.7. These rules are not exhaustive but by simply

using the last known mapping for uncommon mappings that have not been defined these

edge cases can be circumvented. Chapter 6 shows how these mappings can be learned

and how the current interaction type can be classified but to show that this approach of

behaviour generation yields trajectories which approximate the correct QTC state, the

uncertainty of learned mappings and online classification has been removed.

5.2.2 Costmap Generation

As described in Equation 5.5, each trajectory ti ∈ T is assigned a cost value γi(ti) based

on the sum of several independent critique functions ci ∈ C and their weights ωi ∈ ω.
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(a) Compared to the cost values used for Occupancy Maps [0, 100], the costs in costmaps are
[0, 255] where 255 is reserved for unknown grid cells and 254 for lethal costs. These lethal costs
are asigned at the exact position of obstacles and are then inflated. The first inflation step sets
the costs surrounding lethal obstacles to 253 based on the inscribed robot footprint because the
robot would be in collision with these obstacles if the center of the robot would be moved into
this area. The next inflation range [128, 252] is based on the circumscribed robot radius which
represents a possible collision if the robot would assume a certain rotation. The cost range
[1, 127] is used as a smooth transition to the circumscribed costs based on an exponential decay
function. 0 is used for the remainder of the cells representing free space. Image taken from:
Robot Operating System wiki: Costmap 2D.

(b) The global costmap showing the costs
generated by Figure 5.4a and the robot
footprint in red.

(c) The local costmap only using the in-
scribed costs from Figure 5.4a in a small
rectangle around the robot.

Figure 5.4: The ROS cost generation function and an example of a global and local costmap.
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- 0 +

-

0

+

QTCB

Figure 5.5: The velocity costmap prototypes with the robot in blue and the human in red.
The area enclosed by the partial blue circle or the blue line represents the low cost area ξ,
everything outside is assigned the lethal cost value. The human can have any possible QTC
state (except for QTCB,0 where special behaviour is required). The row denotes the distance
constraint and the column denotes the side contstraint. These zones are directly inspired by
the original definition of QTC by Van de Weghe (2004).

Subsequently, the trajectory with the lowest score is chosen in Equation 5.6 and executed

until the sim time ∆t is up after which the whole sampling process will be repeated. To

ensure human aware navigation, Velocity Costmaps are included into C. The ROS im-

plementation of the DWA local planner works on so-called occupancy maps that describe

metric space as a grid-based representation where each pixel represents the costs of moving

the centre of the robot to that pixel. Each pixel can assume the value px,y ∈ [0, 100] where

0 represents free space and 100 represents a lethal obstacle. Normally, these occupancy

maps are based on the underlying global metric map and represent obstacles in the static

Simultaneous Localisation And Mapping (SLAM) map based on work by Grisetti et al.

(2005) and (2007) or obstacles observed via the laser scanner. These obstacles are assigned

lethal costs and are then inflated by the robot radius to make sure it never ends up inside

an obstacle as can be seen in Figure 5.4. The local costmap shown in Figure 5.4c is then

transferred into the velocity space for sampling. If during this sampling process any of the

critique functions produces lethal costs, this trajectory is immediately discarded regard-

less of the specified weight of the critique function that produced them. As stated in the

introduction of this chapter, QTC is a representation of velocity which makes this trans-

formation from Cartesian to velocity space unnecessary. Therefore, the generated Velocity
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Table 5.1: The δ and α values to compute the Velocity Costmaps inspired by Figure 5.5. α is
used on either side of λ resulting in a free space of π/2 if alpha = π/4. π/32 has ad-hoc been
defined to represent movement on a straight line and proved suitable in subsequent tests.

QTCB − 0 +

− 0 −π
4 0 π

4 δ
π
2

π
4

π
32

π
4 α

0
±π

2 −π
2 0 π

2 δ
π
32

π
32 0 π

32 α

+
π −3π

4 π 3π
4 δ

π
2

π
4

π
32

π
4 α

Costmap is a Cartesian representation of the polar space described by the desired QTC

state and can directly be used for trajectory sampling. Figure 5.5 shows the prototypes

used to create these occupancy maps for the QTC states.

Given the current position of the human (ρh, θh) relative to the robot, the angle λ =

θh + δ is computed where δ depends on the desired QTC state of the robot. If the polar

representation (ρp, θp) of the pixel px,y lies within the allowed area of ξα = {θp : λ− α ≤

θp ≤ λ + α} and ξ% = {ρp : %min ≤ ρp ≤ %max} where α an %, like δ, also depend on the

desired QTC state (see Table 5.1), for each pixel px,y the following cost value is computed

cost (px,y) = a||θp|−|λ||·|a|; a = {ai : ai ∈ N} (5.8)

with a being a strictly increasing set of low costs. By initialising the occupancy map

with the lethal cost value of 100 for all pixels px,y, given px,y /∈ ξ, every trajectory sample

ti ∈ T that does not fall within the allowed area ti /∈ ξ will have lethal costs in the

subsequent sampling process and therefore not be considered for execution regardless of

the used weight ωj in Equation 5.5. Looking at Fig. 5.6a as an example, given the desired

QTC state of (− +) approaching and moving to the right, the angle is computed as

λ = θh + π
4 which results in the allowed sample space of ξα = [λ − π

4 , λ + π
4 ]. Assuming

that the human is directly in front of the robot θh = 0.0, these two values are λ = π
4

and ξα = [0, π2 ] as it is shown in the top right corner of Fig. 5.5. The low cost areas are

set to a = {0, 5, 10, 15} in all cases where q4 6= ∅ (see blue areas in Fig. 5.6 and 5.7) to

increase the avoidance manoeuvre by assigning lower costs to samples in the centre of

this region. The resulting costs are then weighted and summed with the remainder of the
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(a) QTCBC : (−0)→ (−+),
QTCH : (+ 0− 0)→ (−+)

(b) QTCBC : (−+)→ (−+),
QTCH : (+ 0−+)→ (−+)

(c) QTCBC : (0 +)→ (0 +),
QTCH : (+ 0 0 +)→ (0 +)

(d) QTCBC : (++)→ (++),
QTCH : (+ 0 + +)→ (++)

Figure 5.6: Example of a pass-by interaction. Blue figure: robot, red figure: human. The
partial circles (with radius max(ρ)) inside the yellow square represent a Cartesian represen-
tation of the polar space used for the Velocity Costmap (see Figures 5.5 and 5.8a). Blue: low
cost areas {5, 10, 15} to increase avoidance manoeuvre (see Equation 5.8), yellow: lethal costs
of 100, free space: 0 costs, red dots: generated samples ti ∈ T. Captions represent the mapping
Ω→ A of observed human state to learned robot state in QTCBC and QTCH (see Chapter 6).
The red arrow points to the robot’s goal which will be of significance in Chapter 6.

critique functions in Equation 5.5. Given this representation, it is also possible to restrict

the minimum and maximum speed of the robot using % in addition to the angular speed

but this is currently only used for the QTCB state (0) to allow the robot and human to

travel in the same direction with equal velocity. Hence, % is not shown in Table 5.1 as it

is only used in this case where it is set to % = ρh±∇ with ∇ = 0.05m/s. In all other cases

it ranges from 0m/s to 0.55m/s the maximum translational velocity of the robot. However,

it could be used when generating behaviour for the non-simplified version of QTCB using

the tuple (q1 q2 qν). Similarly, λ could be adjusted according to qα from the full QTCC

tuple (q1 q2 qν q3 q4 qα), but all this will remain future work.
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(a) QTCBC : (−)→ (−),
QTCH : (−−−)→ (−)

(b) QTCBC : (−+)→ (0 0),
QTCH : (−−−+)→ (0 0)

(c) QTCBC : (++)→ (−+),
QTCH : (+−++)→ (−+)

(d) QTCBC : (+ 0)→ (0 +),
QTCH : (+−+ 0)→ (0 +)

Figure 5.7: Example of a path crossing sequence where “→” represents the mapping from
observed state to generated constraint. The transition from QTCB 5.7a to QTCC 5.7b causes
a state change in the robot even though the human’s state is unchanged. See Figure 5.6 for a
detailed explanation of the symbols and see Figures 5.5 and 5.8a for the theoretical background.

Finally, to overcome the issue of what behaviour to choose when these costmaps do not

allow for any movement towards the goal, e.g. only allowing backwards movement even

though the robot cannot move backwards or not allowing any movement at all to have

the robot stop and wait until the human has passed or a Velocity Costmap is generated

that allows goal directed movement again, γi(ti) = 0 costs are assigned to trajectories that

have no translational movement ti = (0, θ). Hence, the robot is always allowed to stop

and to turn on the spot as θ ∈ θ can have any possible value.

123



5.3. Experiment and Evaluation Chapter 5. Behaviour Generation

5.3 Experiment and Evaluation

To evaluated the functionality and soundness of the proposed velocity costmaps for be-

haviour generation, an Oz of Wizard (see Section 2.4.1) experiment in simulation and as

a proof of concept using Linda were conducted. As mentioned earlier, this set-up assumes

that the interaction type is given before the start of the interaction and uses hand-crafted

predefined rules which can be seen in Equation 5.9 for the pass-by interaction. (∅, ∅)

represents the special case of undefined robot behaviour and will be replaced by the last

valid QTC state for costmap generation. These rules represent prototypical conceptual

pass-by and path crossing encounters and are not based on any data but on geometric

reasoning about the given interaction types. The resulting rules are used for a look-up of

the “correct” robot behaviour and are shown in Figure 5.8.

f(q1, q3) =



(−, ∅) if q1 = − ∧ q3 = ∅

(−,+) if q1 = − ∧ q3 6= ∅

(0,+) if q1 = 0 ∧ q3 = +

(+,+) if q1 = + ∧ q3 6= ∅

(+, ∅) if q1 = + ∧ q3 = ∅

(∅, ∅) otherwise

(5.9)

For the simulation experiment, an office environment of ∼ 5, 000m2 resembling one

of the University of Lincoln’s buildings was constructed, using its main corridor for the

interaction between human and robot. The STRANDS project follows a mixed naviga-

tion approach using a combination of a metric and a topological map as described by

Pulido Fentanes et al. (2015) and shown in Section 1.3.1, thus, a topological edge along

a 12m long and 2.6m wide straight stretch and another 15m long edge passing a 4-way

crossing (see Figures 5.6 and 5.7) was created in this corridor. No obstacles except walls

and the physical model of the simulated human are present in these parts of the environ-

ment. The real-world environment comprised a 8m×8m area of the L-CAS office that was

cleared of all obstacles except the human interaction partner, using a 5.5m long topologi-

cal edge passing through the centre of the free area (see Figure 5.9). The two participants

were the author of this work and another PhD student working on the STRANDS project
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(a) A list of all the QTC states used to generate the robot behaviour in the pass-
by interaction. Equation 5.9 shows the rules to generate this behaviour. The major
difference here is that the second square shows the human going to the right of the
connecting line where in the actual rule it only states that the human needs to approach
and the state has to be QTCC . Hence the robot would always go to the right as this is
the only action it knows. In the conducted experiment, the human just walks straight
regardless. See Figure 5.6 for the resulting interaction.

(b) A list of all the QTC states used to generate the robot behaviour in the path
crossing interaction. The robot travels from left to right while the human walks from
bottom to top. See Figure 5.7 for the resulting interaction.

Figure 5.8: Prototypical interactions encoded in Velocity Costmaps with the observed human
state in red and the generated robot state in blue. The dashed line represents instants in
time where the distance threshold ds is crossed, triggering a behaviour change in the robot by
switching from QTCB to QTCC or vice-versa. The arrows represent possible transitions but
for the actual implementation transition probabilities were disregarded and a simple look-up
shown in Equation 5.9 was used based on Equation 5.7.

which means that both were well acquainted with the robot, the goal of the study, and

the lab environment. Before the interaction, the second participant was told to always

walk in a straight line towards a physical marker on the ground matching the speed of the

robot (the first participant showed the same behaviour). No compensation was paid to

either of the participants. After a short training phase of 1-2 trials to be able to match

the speed of the robot, both participants interacted with the robot in all conditions in a

within participant study design to achieve comparable results by minimising the effect of

differences in behaviours between participants.

The robot’s behaviours encoded in the hand-crafted rules were to avoid people to

the right in pass-by encounters (see Figures 5.6 and 5.8a) and to stop and wait in path
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crossing situations (see Figures 5.7 and 5.8b). In the subsequent evaluation, the robot

showed 4 different behaviours based on the chosen avoidance cost model for comparison:

i) the vanilla DWA planner, ii) a Gaussian Cost model on the local map (G-Local), iii)

a Gaussian Cost model on the global map (G-Global), and iv) the Velocity Costmap

approach (Vel-Maps). The weights ωi ∈ ω of the used critique functions ci ∈ C were:

Velocity Costmaps: 30, Goal Align: 10, Path Align: 10, Goal Distance: 24, Path Distance:

10, Obstacles: 0.01 (only lethal obstacles) and 30 when using G-Local which proofed

to work the best using trial and error.30 The QTCBC distance threshold was set to

ds = 4.0m.31 This parameter set gives the highest value to the Velocity Costmaps and a

rather small value to the path distance and path align critique functions. This is necessary

to allow the robot to diverge from the global path which represents a more or less straight

line in the given set-up by weighting the Velocity Costmap costs higher than the path

following costs. All the parameters were the same in simulation and on the real robot.32

The main difference between the experiments was the full observability of the human in

simulation compared to the perception pipeline described in Chapter 4 which only tracks

the human in an area of up to 7m and 224◦ in front of the robot.

In both experiments the robot was reset to its original starting position and traversed

the edge in the same direction towards the same goal using one of four planner vari-

ants. The simulated and real human also always started from the same position and

moved towards the goal. The simulated human received a constant velocity command

of ρ = 0.55m/s, θ = 0.0rad/s which corresponds to the robots maximum linear velocity.

For the pass-by scenario both robot and human moved on a straight line towards each

other, whereas during the path crossing the human’s position was offset by 90◦ to create

perpendicular trajectories (see Figures 5.6, 5.7, and 5.10). In both cases, if the robot

did not initiate an avoidance behaviour, robot and human would collide half way through

traversing the edge. The same conditions were recreated in the real-world experiment.

Participants walked on a straight line towards a marker on the other side of the room.

30Previously unmentioned because it is not part of the original concept of the DWA planner, the weight
for non-lethal costs can also be set. The higher the costs the less likely it is to move close to obstacles.

31This was the distance at which the robot would start its avoidance manoeuvre.
32For reproducibility, the remaining important DWA parameters used were: vx samples: 3, vth samples:

20, max trans vel : 0.55, max vel x : 0.55, max rot vel : 1.0, acc lim x : 1.0, acc lim theta: 3.2, sim time:
0.8, sim granularity : 0.025, angular sim granularity : 0.1, forward point distance: 0.325, scaling speed :
0.25, max scaling factor : 0.2.
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Figure 5.9: Using Velocity Costmaps based on QTC descriptors in the L-CAS office environ-
ment with Linda the mobile robot. The bottom left shows the RGB image of the head mounted
camera with the upper body detector output. The rest of the image shows the metric map, the
global costmap, the Velocity Costmap (yellow square), the topological map (green arrows sur-
rounded by red “influence areas” and black edges), the robot model, and the people perception
output.

The starting positions for pass-by were slightly offset to the right to account for a later

detection of the human, but would still lead to a collision if the robot would not initiate

avoidance. The participants were instructed to walk with a constant speed towards their

goal, matching the velocity of the robot. If they collided with the robot (physical collisions

are mitigated by the emergency bumpers around Linda), or had to stop in close proximity

(∼ 20 − 30cm) to the robot or step aside to avoid one, it was reported as a collision by

the participant. The interaction was started by the participant via a button on a remote

control.

For each of the four conditions, 50 trials were recorded in simulation leading to a total

of 200 interactions each for pass-by and path crossing. In the proof of concept experiment

using the real robot, two participants generated 64 pass-by and 61 path crossing situations

in total for all 4 conditions combined (with a minimum of 15 each). The safety of the

trajectory was evaluated using the number of collisions, the perceived safety by analysing

the minimum distance kept to the human, and the efficiency of the executed trajectory in

terms of distance travelled, mean speed, and the duration.
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Table 5.2: Percentage of trajectories colliding with the human

Pass-by Path crossing

Simulation Robot Simulation Robot

DWA 100% 53.3% 100% 86.7%
G-Global 0% 22.2% 100% 75.0%
G-Local 100% 33.3% 0% 100%
Vel-Maps 0% 12.5% 0% 13.3%

Table 5.3: Mean values for simulated scenarios: Min Distance(MD), Mean Spead(MS),
Travel Time(TT), Distance Travelled(DT). Results with (****) achieved p < 0.0001 comparing
the two distributions which produced the given mean using a two-tailed unpaired t-test.

Pass-by Crossing

Vel-Maps G-Global Vel-Maps G-Local

MD(m) 1.06 **** 0.92 2.98 **** 1.45
MS (ms ) 0.52 **** 0.53 0.43 **** 0.46
TT (s) 23.09 **** 22.51 34.11 **** 32.03
DT (m) 12.05 **** 11.93 14.78 **** 14.81

5.3.1 Results

As can be seen from Table 5.2, a high percentage of the generated trajectories led to the

robot colliding with the human, where collisions is to be taken in the literal sense or when

the human had to explicitly prevent them. Thus, only G-Global and the Vel-Maps were

compared for pass-by and G-Local and the Vel-Maps for path crossing in simulation. All

the results of both experiments were generated using an unpaired t-test where (****) in

Table 5.3 indicates that the difference between the two mean values is highly significant

with p < 0.0001.

Simulation Results

In the pass-by scenario the main difference in results can be seen in the mean minimum

distance between robot and human, denoted Min Distance (MD) in Table 5.3. The abso-

lute difference between the two means is 14cm which also results in a higher travel time,

and distance using the Vel-Maps. The absolute difference for the latter, however, is neg-

ligible. In the path crossing scenario, the difference in the Min Distance (MD) amounts

to 1.53m, the difference in distance travelled is only 3cm which implies that both cost

functions created straight trajectories (see Figure 5.10b) like it was encoded in the rule.
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(a) Pass-by shows an avoidance movement half way through the interaction when encountering
the human. The smooth transition between the colours visualises that the robot travelled with
close to constant velocity creating a uniform distribution of samples across time.

(b) Path crossing shows an abrupt transition from green to red, visualising where the robot
stopped and waited for the human to pass.

Figure 5.10: The generated trajectories using Velocity Costmaps in simulation; the black
dashed line represents the human trajectory. The robot travelled from left to right and its
trajectory is colour coded from blue via red to green to visualise time passed. Hence, abrupt
colour changes visualise the robot being stationary for a certain time window.
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Real-World Results

To summarise the proof of concept experiment using Linda, only the most compelling

results are listed in the following. In the path crossing scenario, all approaches but the

Vel-Maps resulted in a very high number of collisions. The mean minimum distance to the

human for the proposed approach was 0.76m±0.42m in path crossing which is considerably

lower than in simulation with full observability of the human, but still the highest of all

the 4 conditions as can be easily inferred from the number of collisions. For the pass-by

scenario the Vel-Maps also achieved the lowest number of collisions. Comparing the two

most successful conditions, based on their number of collisions, a mean minimum distances

of 0.56m for the Vel-Maps and 0.53m for G-Global with a p value of p = 0.46 and therefore

no statistical significance was achieved. For G-Local, which performed much better on the

real robot than in simulation regarding the collisions, a mean minimum distance of 0.47m

was measured which with a p value of p = 0.062 also comes short of statistical significance

when compared to Vel-Maps. Neither mean speed, travelled distance, nor duration showed

any significant differences between any of the four conditions.

5.4 Discussion

The experiments showed that the QTC-based Velocity Costmaps approach to human-

aware navigation resulted in collision free trajectories in almost all of the cases and shows

the behaviour that was encoded via the given rules, i.e. avoiding to the right (see Fig-

ures 5.8a and 5.10a) or stopping to let the human pass (see Figures 5.8b and 5.10b). The

late detection of the human and thereby reduced observability was one of the major down-

falls of the real-world experiment. All the conditions suffered equally from this but the

Velocity Costmaps were still able to cope in most of the cases. Given perfect observability

in the simulated trials, only the Velocity Costmaps showed the ability to prevent collisions

in both scenarios. The G-Global cost model achieved comparable results in the pass-by

scenario, relying on the costly global path planner (Dijkstra) to avoid the human, using

the local DWA planner only to follow that path and to not collide with walls. The poor

performance of the two local obstacle avoidance strategies, i.e. vanilla DWA and G-Local,

stems form the DWA planner getting stuck in a local cost maxima and stopping the robot

to prevent a collision, despite there not being any additional constraints on the standard
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DWA. Hence, the bad performance of the DWA in the experiment can be explained by

the relatively small planning horizon that in the pass-by encounter has it driving towards

the human until it is trapped by the human continuing her approach and in the path

crossing by its inability to predict the human motion, thus, driving straight till the human

is directly in front of the robot. Given that the human assumed a constant velocity, this

did not prevent collisions in simulation but would have using a real robot, at least in most

of the cases as can be seen from the robot trials in Table 5.2. Getting stuck in a local

cost maxima and stopping is also the reason why the G-Local cost models performed well

in the path crossing scenario as it would have the robot stop to let the human pass. The

G-Global cost model, however, resulted in the global planner to try and pass in front of

the human, leading to collisions because of the relentless motion model of the human used

in simulation.

Looking at the mean minimum distance between human and robot in simulation, one

can see that there is not much difference between the Velocity Costmaps and G-Global

in the pass-by scenario which can be attributed to the size of the corridor itself. The

human-robot distance was measured from the centre point of each agent and the human

walked in the middle of the 2.6m wide corridor which theoretically leaves 1.3m on either

side. In reality this is not achievable without colliding with the wall. The fact that

the Velocity Costmaps approach kept a greater distance is due to the relatively high

weight for the human-awareness. In the path crossing scenario, however, the Velocity

Costmaps approach deliberately restricted the sample space of the DWA to only allow

0 velocities (i.e. stopping the robot to let the human pass) by assigning lethal costs

throughout preventing any admissable forward trajectories (see Figure 5.7b) at a much

greater distance than all the reactive planners which is an indication for the power and

descriptiveness of encoding these kind of interactions in QTCBC . The robot trials showed

that the simulation results are a good indicator for the behaviour shown in real life as all

algorithms showed performance comparable to simulation, suffering from the limitations

of the human tracker. The lower collision rates could be attributed to the human walking

slower than the simulated one and being influenced by their sense of self-preservation.

Limitations The biggest limitation of this approach mentioned by other researchers is

the use of “outdated” approaches like the DWA planner by Fox et al. which is from (1997)
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and Gaussian cost models as implemented by Lu et al. (2014). Both these approaches,

however, are the default local planner and human-aware navigation of ROS which is the

most commonly used middleware for research robots and also found its way into indus-

trial applications with ROS Industrial.33 Hence, their argument is not void but can be

countered by the fact that a wide variety of institutions are still using this software and

just because it is based on a publication from (1997) does not mean that it is outdated

and not state-of-the-art.

The other point of criticism might be the low number of participants for the real-

world study. The experiment at hand, however, only aimed at showing that the Velocity

Costmaps are able to produce trajectories that create the desired QTC states. Hence,

the trials using Linda were only intended to show that the results are comparable to a

deployment on a real robot. In the next chapter, the system as a whole, including the

Velocity Costmaps, is evaluated in a more comprehensive user study.

5.5 Summary

This chapter presented an overview of the navigation approaches currently used in the ROS

systems, on Linda, and throughout the STRANDS project. Navigation is based on a metric

map created via SLAM, a global costmap on which the global path planner computes an

optimal path which could also include HRSI principles as can be seen from Chapter 2, and

a local costmap used by the DWA local planner to avoid dynamic obstacles or obstacles

that are not in the metric map. This local planner uses several critique functions to score

trajectories in a sampling based approach and selects the one with the lowest costs. To

generate only trajectories that create the desired QTC state, Velocity Costmaps are added

to the set of critique functions which assign lethal costs to all the sampled trajectories that

would not produce the desired QTC state. Thus, this mechanism is used to achieve human-

aware navigation based on the QTCBC model described in Chapter 3 by restricting the

sample space of the DWA local planner.

Two experiments, in simulation and the real-world were conducted to show, that by

encoding high-level knowledge of the unfolding of a possible interaction, the system is able

to cope with a wider variety of possible situations and to make a more informed choice

33http://rosindustrial.org/
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based on the intent of the human. They also show that this comes at no extra cost,

comparing speed, and travel distance [Obj. 2.3] with a standard Gaussian cost

approach. This indicates that the presented Velocity Costmaps are able to handle

the trade-off between safety of the human interaction partner [Obj. 2.2] and

finding a fast and energy efficient path [Obj. 2.3] . More importantly, these Velocity

Costmaps in combination with the DWA planner are able to transform high-level QTC

states into low-level movement commands which will either recreate the desired QTC state

or have the robot stop and wait until a QTC state is found that can be used to achieve

movement towards the robot’s goal or the human is gone.

Regarding the objectives concerning task efficient and comfortable behaviour

generation [Obj. 2] , this chapter addresses the creation of safe movement [Obj. 2.2]

which prevents collisions in the vast majority of cases compared to a standard state-of-

the-art approach while at the same time keeps the travel time and distance at a minimum,

thereby, creating task efficient movement [Obj. 2.3] . Since it builds on the QTC

based model it inherits all its properties of abstracting from the actual environment

[Obj. 1.1] by using the DWA local planner to handle the obstacle avoidance and generate

goal directed movement if possible. Since the DWA takes the robot’s acceleration limits

into account, the generated movement commands are tailored to the hardware used

[Obj. 3.3] and action selection is purely based on the robot’s sensors and on-

board processing [Obj. 3.2] . Due to its reactive nature, action selection is fast and

flexible [Obj. 2.4] and works in real-time [Obj. 3.1] .

The main limitation of this approach is that the rules to find the best robot action

given the observation of the human are hand coded and that the interaction type has to

be specified in advance. This, however, will be solved in the next chapter which also shows

how to incorporate human judgement in the action selection via LfD, thereby, influencing

legibility and sociability in addition to the perceived safety and comfort. Another limi-

tation is that this approach currently only influences the trajectory but not the speed or

acceleration of the robot which are important metrics when it comes to human-aware nav-

igation. Nevertheless, the speed could be set using % and the angle using λ as mentioned

earlier and the relative speed and angle compared to the human could be encoded by using

the full, non-simplified, version of QTC. This, however, will remain future work.
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—Extinction is the rule. Survival is the exception.

Carl Sagan, Astronomer/Astrophysicist

6
HRSI State Prediction and Action Selection

Addressing the remaining objectives of creating legible and sociable behaviour that is

perceived as safe and therefore comfortable while at the same time creating goal directed

and task efficient movements using a fast and flexible action selection process that is able

to adapt to changes in the behaviour of the human, a dynamic belief generation that

predicts the current best state and classifies the interaction type based on incremental

updates of the QTC state chains has to be created. Therefore, the system introduced

in this chapter has to overcome the problems stated in Chapter 5, namely learning the

interaction models from observation, classifying the current interaction type online based

on these models instead of assuming it to be known a-priori, and learning the previously

hand-crafted rules for action selection from demonstration to include human judgement

on the legibility and sociability of the action. To this end, the currently used QTC model

has do be adapted in order to facilitate decision making by excluding the robot state from

the classification of the interaction type.
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As mentioned in Chapter 3, a Hidden Markov Model (HMM) is well suited to overcome

the issue of discrete sensor measurements and the resulting missing states and yields

very good classification results. However, a HMM needs the entire state sequence for

classification which would result in the robot only being able to determine the type of

interaction after the interaction is complete. To build a system that is able to work online

using incremental updates of the QTC state chain, the activity model has to be adapted

and a new classification method is necessary. The training on the other hand will still follow

the same approach as for the HMM, but will be adapted by removing the hidden layer

to generate a Markov Model (MM). To overcome the limitation of removing the hidden

layer and dealing with unobserved state transitions, this MM is used as the basis of a

particle filter for Qualitative Spatial Relations (QSR). This enables the classifier to deal

with missing observations in between states and is able to recover from false classifications

or switch behaviour in case of behaviour change by the human interaction partner.

As mentioned above, in order to classify the current interaction, the robot movement

has to be disregarded because it is not known a-priori, but is to be determined after clas-

sification. Hence, the QTC states have to be split into robot symbols and human symbols

which makes the representation too ambiguous for classification. To overcome this prob-

lem, the online belief generation uses a combination of QTCC describing the interaction

between the human and the robot’s goal and the QTCBC state chains for human and robot

to generate a new QTC like state that is meaningful enough to unambiguously classify the

action of the human without considering the robot’s action in the classification task. The

HMM based approach described in Chapter 3 and used in Chapter 4, on the other hand,

used the full QTCBC state of human and robot, which uses the actions of human and

robot equally to determine the interaction type. Hence, this chapter combines the QTC

state generation described in Section 4.2 with said particle filter using QTC like states to

generate Velocity Costmaps introduced in Chapter 5. Thus, a fully autonomous system

which can be seen in Figure 6.2 for integration into the robot Linda is presented.

In addition to the online classification, the action selection rules from Chapter 5 can

also be learned from demonstration by a lay user, as mentioned above, which is shown

in this chapter. Learning from Demonstration (LfD) is a popular principle in robotics,

creating policies from example state to action mappings as defined by Argall et al. (2009).

In HRSI there are only very few examples that make use of this approach as mentioned
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Figure 6.1: This chapter’s contribution to the system shown in Figure 1.1 building on the
partial system shown in Figure 5.2. In comparison to Figure 5.2, the manually crafted action
selection is now replaced by a fully autonomous state prediction and action selection process
that is based on models learned from interaction and not on hand crafted rules of conceptual
models. The fully autonomous system of perception, state prediction using learned models,
action selection using learned state to action mappings, and behaviour generation is presented.
The novel contribution is highlighted in yellow.

Figure 6.2: The complete perception, activity recognition, and behaviour generation pipeline
(extending Figure 4.3). The colours correspond to the modules in Figure 1.1 and 6.1. From
left to right: grey: sensors and detectors used on Linda at the time of writing this thesis,
blue: helper functions, red: tracking and QSR generation, yellow: state prediction and action
selection, green: activity model, purple: Velocity Costmap and low-level movement command
generation using the DWA local planner. The source code to all these components is freely
available, please refer to Appendix B.

in Chapter 2 where Lichtenthäler et al.’s (2013) work, where a näıve participant teleop-

erated the robot to record the preferred trajectories in path-crossing situations, is closely

related to the experiment design in this chapter. The LfD approach which makes use

of the knowledge and experience of the human demonstrator to generate safe, legible and

comfortable trajectories is employed in this chapter to generate the action selection policy,

while at the same time learning interaction models for classification from observation of

the human interaction partner.

Chapter Contributions To summarise, the main contribution of this chapter is the

particle filter for Qualitative Spatial Relations (QSR) which builds on a prediction and

observation model that is generic enough to allow the use with any kind of QSR and is

explained here based on QTC. These newly introduced QTC models use a conglomerate of
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different QTC states using different variants of the calculus to create a representation that

is meaningful enough to unambiguously distinguish different types of interactions

[Obj. 1] without relying on the robot’s state for classification, therefore, facilitating

decision processes [Obj. 1.6] by modelling the robot state in conjunction with the

human state while at the same time being able to separate the two into observation and

action. These models are learned from demonstration during the training phase where

the robot is remote controlled by either a participant or an experimenter while another

experimenter or participant interacts with it. The best action of the robot is selected from

a conditional probability table that describes the joint probability for each possible action

given the current belief. Compared to Chapter 5, where these were hand-crafted rules, the

conditional probability tables can be learned from demonstration using an “Inverse Oz of

Wizard” experiment set-up (as described in Section 2.4.1) similar to the work presented

by Lichtenthäler et al. (2013) to incorporate human judgement into the behaviour model

which is shown in the experiment section of this chapter. A conceptual overview of this

chapters contribution towards the final system can be seen in Figure 6.1.

This final method chapter addresses the objectives of creating a fast and flexible

action selection process [Obj. 2.4] by using a particle filter that is able to change the

current classification of the interaction type based on the humans behaviour in real-time

[Obj. 3.1] and therefore always represents the belief that fits the current observed state

of the world best. This builds on the perception pipeline introduced in Chapter 4 and is,

therefore, able to work in real-time [Obj. 3.1] only relying on the robot’s sensors

and on-board processing [Obj. 3.2] . The classification itself is based on a conglomer-

ate of QTC states that were introduced in Chapter 3 and inherits all the properties of this

qualitative representation like the ability to abstract from the metric world [Obj. 1.1]

and only represent the qualitative character of motion [Obj. 1.2] while also rep-

resenting distance as a relevant attribute of HRSI [Obj. 1.3] which allows it to

generalise over a vast number of situations and environments [Obj. 1.4] and

in itself is a well-founded, concise and tractable model [Obj. 1.5] . Especially the

tractability of this model is shown in the following using it to classify interactions online.

Finally, the action selection is implemented as simple look-up like in Chapter 5 but uses a

model learned from demonstration which creates legible and sociable [Obj. 2.1], and
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safe [Obj. 2.2] movement by inheriting the safety [Obj. 2.2] and task efficiency

[Obj. 2.3] of the Velocity Costmaps in combination with the DWA local planner.

The whole system is evaluated in a two-part user study where the first part represents

the learning phase in which the robot is remote controlled by a participant while inter-

acting with the experimenter, recording the generated QTC states for the activity model

and the conditional probability table for action selection. The second part evaluates the

learned models and action selection policies using a separate set of participants and a fully

autonomous robot that has no prior knowledge about the interaction type.

6.1 Particle Filter based Activity Recognition using QSRs

Particle filters are a popular concept in modern robotics and are used for all kinds of

estimation problems. The people perception in Chapter 4, for example, could have used

a particle filter instead of a Kalman filter. The self localisation of the majority of mobile

robots including Linda uses the Adaptive Monte-Carlo Localisation (AMCL) approach as

described by Thrun et al. (2005). This uses a particle filter to represent the beliefs about

the position of the robot. In general, particle filters are used to approximate a continuous

function, like the movement of people or the robot, using discrete update and prediction

steps based on a prediction and an observation model. The prediction model for AMCL,

for example, models the odometric error of the robot and the observation model scores the

predicted position and orientation based on the laser measurements taken. The predicted

particles are weighted based on the observation and are then re-sampled in a Monte-Carlo

based sampling process. Due to the pseudo random nature of this approach it is able

to deal with missing observations and also able to recover from false classifications given

that a certain amount of particles are kept alive despite their low weight. In general,

the more particles are used the more precise the estimation of the underlying continuous

function becomes but the more computationally expensive this approach gets. Hence,

particle filters represent a trade-off between precision and computational cost.

Even though a QSR state chain is not a continuous process but inherently discrete, due

to particle filters themselves following a discrete prediction and update procedure they are

well suited to represent these incremental updates in the state chain, allowing for online
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classification of the interaction type. The following presents a particle filter for QSRs able

to deal with missing observations and to recover from wrong beliefs.

6.1.1 Prediction Model

The prediction model for a particle filter describes a conditional probability distribution

P (Xt+1|X1, . . . , Xt) that predicts the probability of state Xt+1 given all previous states.

To simplify this problem, many particle filters, including the one presented here, follow the

Markov assumption that it is sufficient to only take the current state into consideration to

predict the next state, thus turning the conditional probability into P (Xt+1|Xt), increasing

the tractability of the approach. For discrete states in any given QSR, that requires a

transition probability of each possible state to each possible state including self-transitions,

e.g. A → B with A,B ∈ Ω where Ω represents the entire set of possible states that can

be observed by the system.

From above description, the use of a Markov chain seems to be the most appropriate

method of representing these transition probabilities. Let Y be a set of random variables

Y = (Xt)t∈N with Xt ∈ Ω where Ω describes the finite set of possible states of the observed

interaction, then Y is a discrete Markov chain if P (Xt+1 = Ωjt+1|Xt = Ωjt, Xt−1 =

Ωjt−1, . . . , X1 = Ωj1) = P (Xt+1 = Ωjt+1|Xt = Ωjt). All these conditional probabilities

can then be expressed as a matrixM of size |Ω|×|Ω| which is the so-called Markov Model

(MM). This MM Mi,j is used as the prediction model for the particle filter by looking

up the transition probabilities si → sj with si, sj ∈ Ω describing the probability of si

transitioning to sj .

The modelM is created using the same approach as for the HMM in Section 3.4. The

two matrices T for the transitions and E for the emissions are both of the size |Ω| × |Ω|

and the transition matrix is initialised based on the legal transitions. The emission matrix

E, in contrast to the previous approach, however, is initialised to the identity I which

only allows a state to emit itself as a symbol, e.g. (+ − ∅ ∅) can only emit (+ − ∅ ∅).

Thereby, in the subsequent training process, the Baum-Welch algorithm is forced to only

update the transitions based on the training data, effectively creating a Markov Model by

omitting the emissions. Hence, as in Chapters 3 and 4, the state transitions are modelled

as a first-order Markov chain, while now uncertainty in the observations is accounted for
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Figure 6.3: The QTC confusion matrix. Allowing for a conceptual distance φ = 1 between
the symbols −, 0,+ with p = 0.1. Since φ , 3 ∀ ∅ → {−, 0,+}, the ∅ can only be observed as
itself.

during the update step of the particle filter using the observation model as described in

Section 6.1.2 instead of the emission probabilities of the HMM. The resulting prediction

model can then be used to obtain the transition probabilities from one state to all other

states PM(Xt+1 = Ωjt+1|Xt = Ωjt) via a fast and simple look-up which is used in a Monte-

Carlo approach to generate a new generation of particles from the old ones. For every state

Xt = Ωjt the joint probability table for transitioning into any other state Xt+1 = Ωjt+1 is

used to pseudo randomly pick a new particle where the probability PM(Xt+1|Xt) serves

as the weight for this sampling process. Hence, the prediction is based on the learned

probabilities of the type of interaction that M models.

6.1.2 Observation Model

In a particle filter, the observation model is used to score the prediction based on the

current observation of the state of the world. For AMCL this is easily done by a Gaussian

distribution around the measured position of the robot, assigning the particles a weight

according to this Gaussian. When looking at QSRs, this task of scoring the state based

on the similarity to another state becomes conceptually more complicated. Technically,

this observation model is also just a |Ω| × |Ω| matrix containing a conditional probability

distribution P (Yt = Ωt,i|Xt = Ωt,j) describing the probability of observing Ωt,i given the

prediction Ωt,j .
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To obtain this observation model from training data, the emission matrix of the HMM

described in Section 3.4 could be used, but in order to train the transitions and emissions

at the same time and get a meaningful result for both, large amounts of training data are

required. Since none of the studies conducted came close to the required numbers, a more

deterministic and scalable approach has been developed. Figure 6.3 shows a confusion

matrix for QTC based on the conceptual distance of a single symbol φ introduced in

Section 3.3. This confusion matrix assigns the highest weight to φ = 0 and a weight of 0.1

to φ = 1. For all other values φ ≥ 2 a zero probability of observation is assumed. These

numbers represent trial and error results rewarding the correct particles and killing the

remainder to achieve quick convergence. By not allowing for illegal transitions φ = 2, this

model becomes rather restrictive given the discrete nature of the observations, but this is

countered by creating only valid QTC state chains as described in Section 4.2 and other

mechanisms inside the filter itself described later on. This confusion matrix is then used

to generate the probability

P (Yt = Ωt,i|Xt = Ωt,j) =
∏

qkt,i∈Ωt,i,qkt,j∈Ωt,j

P (qkt,i|qkt,j) (6.1)

with Ωt,i,Ωt,j ∈ Ω where P (qkt,i|qkt,j) can be inferred from Figure 6.3. These products are

then arranged in an |Ω|×|Ω| matrix O which is subsequently normalised so each row sums

to 1. In a simple look-up, each predicted particle can now be assigned a weight based on

its conceptual distance to the observed state which influences the likelihood of it surviving

the Monte-Carlo based re-sampling step. Hence, the closer the particle to the observation

Φ(Ωt,i,Ωt,j) → 0, the more likely it will survive and multiply since particles are drawn

with replacement.

6.1.3 Particle Filter

The key idea of every Sampling Importance Resampling (SIR) particle filter is to approx-

imate the posterior probability density function P (Xt|Y1:t) by a set of random variables

and associated weights to compute estimates of the state of the world (Arulampalam

et al. 2002). To simplify the algorithm, as mentioned above, the system is assumed to

be Markovian which means that the current state of the system only depends on the pre-
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vious state and the current observation. Given this assumption, the previously defined

probability density functions P (Xt|Xt−1) representing the prediction model and P (Yt|Xt)

representing the observation model with X ∈ {(Ω,M) : Ω ∈ Ω,M ∈M} and Y ∈ Ω are

used where Ω is the set of all possible states and M is the set of all trained interaction

models, e.g. for pass-by and path crossing. This results in

P (Xt|Y1:t) =

Np∑
i=1

ωitδ
(
Xt −Xi

t

)
(6.2)

where Xi
t represents the value of the i-th particle, Np being the number of particles, and

δ(·) representing the Dirac delta measure (Arulampalam et al. 2002). The weights ωi are

normalised to sum to 1 with ωi ≥ 0. For the observation M∈ X is ignored.

It should be noted, however, that a particle X ∈ {(Ω,M) : Ω ∈ Ω,M ∈M} consists

of the current state it represents and the model M ∈ M it was generated by. Thus,

while the observation model is the same for every particle, each particle has a separate

prediction model. This allows for the classification of the current interaction type.

Algorithm 6.1 Particle Filter

Require: Ω,M,O, Np

Ensure: Np ≥ |M| · |Ω|
X = {(Ω,M) : Ω ∈ Ω,M∈M}
x0 = U(X) with |x0| = Np

while true do
equalise weights ωit ∈ ωt
for all xit ∈ xt do

predict new particle: xip ∼ Pm(xit+1|xit)
update weight: ωit+1 = PO(yt+1|xit+1) with yt+1 ∈ Ω

end for
sample Np times from ωt+1 → j

xt+1 = xj
p

end while

Algorithm 6.1 shows the functionality of the particle filter which requires the set of

all possible states Ω, the set of models M, the observation model O, and the number

of particles Np which has to be greater than the number of states times the number of

models. The set of all particles X describes all possible states in all models and the

uniform distribution U makes sure that at least one instance of each particle is created

initially. Normally, a uniform distribution does not guarantee that every state in every
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model is assigned a particle which is why this has been programmatically ensured. Hence,

the particles are evenly spread amongst all states in all models until every state has at

least one particle after which the remaining particles are drawn randomly. Thus, the list

of all of particles x0 contains Np particles where each particle X ∈ X can have multiple

instances. The subsequent loop represents the prediction, update, and re-sampling step:

1. Equalise the set of weights ω.

2. Generate particles based on the previous state of the system Pm(xit+1|xit). Given

xit = (Ωt, ), Ωt+1 is sampled from the set of possible successors of Ωt using the

transition probabilities in model M to create xt+1 = (Ωt+1,M).

3. Reweigh particles based on current observation yt ∈ Ω and the observation model O:

ωit+1 = PO(yt+1|xit+1).

4. Sample the list of indices j based on the weights ωt+1 such that |j| = Np.

5. Create new particle generation xt+1 using the list of predicted particles xp and the

list of indices j: xt+1 = xj
p.

The result of this filtering is the so-called belief bel(xt) at any give time t. Hence,

the current state of the world at time t is expressed by the sum of particles generated

by the filter which allows for incremental updates of this belief which represents the most

likely state of the human Ωt and the model M it was generated by. Let M be a set

of prediction models with Mm ∈M, then each model will be represented by a similar

number of particles after the initialisation of the filter. Since the model will be used in the

prediction step for each particle, the model that predicts the next state most accurately

will generate the majority of surviving particles. Hence, classification of the interaction

and belief generation for the current state is achieved by forming the mode of the individual

components of the list of particles xt currently held by the filter. As a reminder, the list

of particles at time t is defined as xt = [{(Ωt,Mm) : Ωt ∈ Ω,Mm ∈M}] where Ωt ∈ Ω

describes the state this particle represents andMm ∈M the model it was generated by.34

Note, xt is represented as a list of particles and not a set which means that duplicate entries

are possible which is one of the basic requirements of a particle filter. Let Ωt be the list

34The model Mm ∈M is not dependent on the time t as it does not change over time.
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of states extracted from the list of particles xt and Mm be the list of models generated

similarly, then the current best state is calculated as Ω? = mode(Ωt) and the best model

as M? = mode(Mm) where mode is a function to find the most common element of a

list equivalent with the bin with the most entries of a histogram. In case of a multimodal

distribution of particles or models a winner is chosen randomly among the set of most

common states and models. No constraints are used for the generation of the lists Ωt and

Mm which means that each predicted state and each predicted model contribute equally

to the vote regardless of the weight of the particle. Given this method, the belief bel(xt)

converges to one of the models Mm in a few sampling generations which can lead to

over-fitting resulting in the inability to recover from false classifications or the inability to

change the robot’s behaviour if the human’s behaviour changes because once all particles

representing a certain model die, some states might never be predicted and there is no

way of reviving a dead model given the current definition of the filter.

Algorithm 6.2 Particle Filter with starvation prevention

Require: Ω,M,O, Np, ς
Ensure: Np ≥ |M| · |Ω|

X = {(Ω,M) : Ω ∈ Ω,M∈M}
x0 = U(X) with |x0| = Np

while true do
equalise weights ωit ∈ ωt
for all xit ∈ xt do

predict new particle: xip ∼ Pm(xit+1|xit)
update weight: ωit+1 = PO(yt+1|xit+1) with yt+1 ∈ Ω

end for
sample Np − (Np · ς) times from ωt+1 → j
sample Np · ς times from U(X)→ xu

xt+1 = xj
p ∪ xu

end while

To overcome this issue of over-fitting and to be able to change the classification once

the behaviour of the human changes, Algorithm 6.2 shows how to prevent models from

dying. By defining a so-called starvation factor 0 ≤ ς ≤ 1, in the re-sampling step, only

Np− (Np · ς) particles are re-sampled based on the weights ωt and the remainder is drawn

from the set of all possible particles X which is the distribution over all particles in all

models using a uniform distribution.35 This starvation factor was set to ς = 0.1 during the

35This uniform distribution is different from the one used for initialisation as it does not ensure that
each particle is represented at least once but is purely random.
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experiments which has shown to provide enough uniformly distributed particles to “revive”

a model if necessary and also enough particles sampled according to ω to generate reliable

classifications. Belief generation including state prediction and model classification is

achieved the same way as described above and the resulting best state x? and best model

M? can then be used for action selection.

6.2 QTC Models for Decision Processes

Looking at the models introduced in Chapter 3, the biggest problem is that the robot is

part of the QTC state and, therefore, the classification of the interaction type is based

on both the human and the robot. Figures 6.4 and 6.5 show two interactions, i.e. path

crossing and pass-by, which could be produced by the rules introduced in Chapter 5. The

resulting QTCC state chains are

(−h −r 0h 0r) (−h −r +h +r)

 (0h 0r +h +r)

 (+h +r +h +r)

 (+h +r 0h 0r)

for the pass-by interaction and

(−h −r +h −r) (−h 0r +h 0r)

 (0h 0r +h 0r)

 (+h −r +h +r)

 (+h 0r 0h +r)

 (+h +r −h +r)

for the path crossing interaction. As in the figures, the symbols are indexed with h for

the symbols describing the human movement and r for the robot, respectively. As a quick

reminder, the first two symbols represent the distance constraint, i.e. approach −, repel
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R

H

(a) (−h −r 0h 0r): Both
agents approach each other
on a straight line.

R

H

(b) (−h −r +h +r): Hu-
man and robot both move to
the right while approaching.

RH

(c) (0h 0r +h +r): Hu-
man and robot are “shoul-
der to shoulder” at the clos-
est point during the inter-
action and only move along
the perpendicular lines.

R

H

(d) (+h +r +h +r): Hu-
man and robot passed each
other and are correcting
their trajectories towards
their goals.

R

H

(e) (+h +r 0h 0r): Hu-
man and robot move
away from each other on
a straight line after the
pass-by interaction is over.

Figure 6.4: A pass-by scenario as it would be created by the rules shown in Figure 5.8a
encoded in QTCC . The respective QTCC states are shown in the captions of the sub-figures
and are indexed with h for the symbols describing the human movement and with r for the
robot. The actual movement of the two agents form tn−1 to tn is indicated by the arrows. From
Figure 6.4a to 6.4b the QTCBC distance threshold ds is crossed and the avoidance behaviour
of the robot is triggered.
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R

H

(a) (−h −r +h −r): Both
agents approach each other.

R

H

(b) (−h 0r +h 0r): Robot
stops to let the human pass,
human keeps approaching.

R

H

(c) (0h 0r +h 0r): Robot
still stationary, human is
directly in front of the robot
at the closest point.

H

R

(d) (+h −r +h +r): Hu-
man moves away from the
robot and the robot starts
moving towards its goal
again approaching the hu-
man.

H R

(e) (+h 0r 0h +r): Human
and robot are at the same
hight, human moves away
and the robot moves along
the perpendicular line.

H

R

(f) (+h +r −h +r): Both
agents move away from
each other.

Figure 6.5: A path crossing scenario as it would be created by the rules shown in Figure 5.8b
encoded in QTCC . The respective QTCC states are shown in the captions of the sub-figures
and are indexed with h for the symbols describing the human movement and with r for the
robot. The actual movement of the two agents form tn−1 to tn is indicated by the arrows.
From Figure 6.5a to 6.5b the QTCBC distance threshold ds is crossed and the stopping and
waiting behaviour of the robot is triggered.
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+, or stationary 0, and the last two represent the side constraint, i.e. left −, right +, or

along the connecting line 0.

The two state sequences for pass-by and path crossing are significantly different from

each other and can be reliably classified using a HMM. However, as mentioned above,

these state chains include the robot behaviour as well as the human behaviour. To create

any kind of decision process, the observed state of the human has to be separated from

the action of the robot that triggers a state change. Thus, the two symbols describing the

robot behaviour cannot be included in the classification of the interaction type because no

a-priori knowledge about the interaction and hence the robot’s actions to be chosen has

to be assumed. Looking at the two state chains without the robot symbols:

(−h 0h) (−h +h) (0h +h) (+h +h) (+h 0h)

(−h +h) (−h +h) (0h +h) (+h +h) (+h 0h) (+h −h)

it is easily visible that there is no difference apart from the side constraint in the first state

and the extra last state for the path crossing which could also be noise in the observation.

If these state chains would be expressed in QTCBC , the distinguishing symbols would be

removed completely depending on the actual value of ds:

(−h ∅h) (−h +h) (0h +h) (+h +h) (+h ∅h)

(−h ∅h) (−h +h) (0h +h) (+h +h) (+h ∅h)

Apart from above issue, in Chapter 5 the interaction type was assumed to be known and

the rules were hand crafted which implicitly encodes the very important assumption that

the robot’s intention is known. Thus, the intention of the human was used to determine

which specific action the robot should choose but the robot’s intention was ignored which

means that for example it would always be forced to participate in a pass-by interaction

even though it wants to move in the same direction as the human and not pass her. As

a result, in order to be able to classify a certain encounter, the intention of the robot

is necessary, e.g. it is important to know if the robot wants to move in the same or
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the opposite direction as the human as both would result in two completely different

interactions, i.e. pass-by or overtaking/following, while the intention of the human to

move along the corridor in a certain direction would be unchanged. To overcome these

two limitations, the robot’s and the human’s intention have to be expressed in a combined

QTC state which can then be used for classification.

6.2.1 Combining QTC sequences

It is apparent from above problem description that the QTC symbols for the human from

the QTC representation of human and robot movement alone are not sufficient to classify

the interaction and that the robot’s intention is not included any more. To overcome the

issue of classification, QTC states could be created for the relation between the human and

all kinds of features in the environment like flower pots, corners, or any other landmark

in addition to the QTC state for human and robot. This however, severely limits the

generalisability of the learned model because these landmarks would have to be at similar

locations in all areas where this kind of interaction could take place or training data for

every location where these interactions could happen would be required. Moreover, during

a long-term deployment of several month, these landmarks could also move which would

make classification impossible. Such a landmark, however, would solve this classification

problem or at least simplify it significantly. If there are no physical landmarks that can be

used, a virtual landmark has to be generated but the position of this landmark has to be

chosen carefully and it should also correlate with the type of interaction and the desired

robot behaviour.

The virtual landmark that was chosen for the presented approach is the robot’s short

term navigation goal, i.e. the next waypoint in its topological map on route to the final

goal. By using this waypoint, the created representation also takes the short term intention

of the robot into account, e.g. travelling in the same or opposite direction of the human as

stated above. Additionally, for similar interactions the robot’s goal will also be in similar

locations, mostly on a straight line in front of the robot depending on the granularity of

the topological map assuming that every significant change of direction in travel would

only happen at waypoints and not in between as it has been implemented in both real-

world scenarios of the STRANDS project. Figures 5.6 and 5.7 show the robot’s goal, or
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R

H

G

(a) Resulting QTC states for this
pass-by encounter:

H ↔ G: (+hg0hg+hg0hg)
H ↔ R: (−hr−hr+hr+hr)
QTCH to action mapping:
(+hg+hg−hr+hr)→(−hr+hr)

R

H

G

(b) Resulting QTC states for this
path crossing encounter:
H ↔ G: (−hg0hg−hg0hg)
H ↔ R: (−hr0hr+hr0hr)
QTCH to action mapping:
(−hg−hg−hr+hr)→(0hr0hr)

Figure 6.6: Two examples of how to encode the human’s movement using QTCH and how to
generate the state to action mapping. H represents the human, R the robot, and G the robot’s
goal. The blue double-cross is used for the relation between the human and the robot’s goal and
the red for the relation between the human and the robot. The human’s movement from tn−1 to
tn is indicated by the black arrow and the robot’s movement by the green arrow or by the green
colour of it’s circle when stationary. The captions of the sub-figures show the resulting QTC
states where symbols from human and robot are indexed hr and the human symbols are printed
in red and the symbols for the robot in green. The symbols for the relation of human and the
robot’s goal are indexed hg and the symbols describing the human movement are printed in
blue.

the direction of the goal using a read arrow pointing towards it. Thus, using the robot’s

goal as a virtual landmark facilitates classification without using any environment features

to not compromise the abstraction from the metric world and guarantees to always be in

a similar location depending on the topology of the map while explicitly encoding the

intention of the robot.

As described in Section 4.2, the online QTC generation produces states in QTCBC for

human (h) and robot (r) and in QTCC for human (h) and the robot’s goal (g). Thus, the

result of running the people perception and online QTC generation are the state chains

(qhr1 qhr2 qhr3 qhr4 ) for human and robot and (qhg1 qhg2 qhg3 qhg4 ) for the human and the robot’s
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goal where (q∗1 q
∗
3) represent the movement of the human and (q∗2 q

∗
4) of the robot or the

robot’s goal. Since the robot’s goal does not move during the interaction, (qhg2 qhg4 ) are

disregarded. Figure 6.6 shows two example states from two different interactions, i.e.

pass-by in Figure 6.6a and path crossing in Figure 6.6b, and how the separate QTC states

are put together to create the state of the human, which from here on will be called

Qualitative Trajectory Calculus – Human (QTCH), and the state of the robot. The robot

state can either be the observed state during the learning phase or the state created by

the live system. When only looking at the red symbols describing the human’s movement

in relation to the robot, the two interactions are equal but the required robot behaviour

in green is completely different. Hence, the blue symbols for the relative movement of

the human in relation to the robot’s goal are added to disambiguate the interactions and

include the robot’s intention.

Given this representation it is rather straight forward to create the set of human

observations Ω, the set of robot actions A, and the joint probability table P (Ω,A) by

simply combining all the remaining 6 symbols for every time step t. Thus, each observed

state Ω ∈ Ω consist of the 4-Tuple (qhg1 qhg3 qhr1 qhr3 ) with qhg1 , qhg3 , qhr1 ∈ {−, 0,+} and

qhr3 ∈ {−, 0,+, ∅} and each action A ∈ A consist of (qhr2 qhr4 ) with qhr2 ∈ {−, 0,+} and

qhr4 ∈ {−, 0,+, ∅}. This results in a state space of Ω×A with |Ω| = 108 and |A| = 12, but

only a small subset of these are actually observed during any given interaction. Figures 5.6

and 5.7 show a simulation example of a pass-by and a path crossing interaction encoded in

QTCBC and QTCH , respectively. The resulting joint probability table can then be used to

generate the modelM for classification and state prediction as described in Section 6.1.1,

the observation model O as described in Section 6.1.2, and to create the action selection

policies as described blow.

6.2.2 Action Selection Policy Creation

In order for the robot to make an informed decision about its next best action, a policy

has to be created that for each predicted state Ω generates an action A for the robot to

execute. The set of all these state to action mappings from Equation 5.7 has previously

been hand coded, but can now be learned from observation/demonstration using the new
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representation of QTCH for Ω and the joint probability table P (Ω,A) created above with

which

P (At|Ωt) =
P (At,Ωt)

P (Ωt)
(6.3)

can be calculated for every time t. Thus, P (At|Ωt) represents the probability of an action

At ∈ A given the current state Ωt ∈ Ω. The resulting probabilities are then stored in a

conditional probability table P(A|Ω) for the easy look up of Ω → A at runtime. Thus,

this table simply contains rows for every observed human state o ∈ o with o ⊆ Ω stating

the joint probabilities for every observed action a ∈ a with a ⊆ A.

To acquire P (Ω,A), a Wizard of Oz set-up is used where the robot is remote controlled

during the interaction with the human interaction partner and the generated QTC state

chains are recorded. Subsequently, these state chains have to be labelled based on the

interaction type and are then clustered. For each interaction type a separate model Mm

is generated from the set of observed states om ⊆ Ω to create the set of modelsM for the

particle filter. Similarly, to generate the set of conditional probability tables P , for each

interaction type a conditional probability table Pm is generated from the set of observed

actions am ⊆ A using P (aim|oim) with aim ∈ am and oim ∈ om.

Given this Pm ∈ P , it is very straight forward to get the joint probability for all

possible actions ai ∈ aΩ where aΩ ⊆ am ⊆ A is the set of all observed robot actions for

the interaction type m for the given observation Ω. With this list of probabilities P (ai|Ω)

one can follow different strategies for action selection. A Monte-Carlo-based sampling

using the probabilities as weights leads to inconsistent and illegible behaviour due to its

chaotic nature. Thus, the system follows the greedy approach for policy creation

a? = arg max
ai∈aΩ

P (ai|Ω) (6.4)

The optimal policy π?, therefore, is just a mapping of the currently observed state Ω

to the arg max of the corresponding entry in Pm. This could also be turned into a ε-greedy

approach which would allow for exploration of different actions instead of just exploiting

the previously acquired knowledge. For the experiment described in the following, however,

the greedy approach is used.
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6.3 The System in Summary

To summarise before going into detail about the conducted experiment, the final system

for human-aware navigation requires a set of interaction models M and a set of action

selection conditional probability tables P , which are acquired in a Wizard of Oz set-up

that can either use LfD or follows the traditional Wizard of Oz principle. During this

model acquisition, the QTC states of human and robot, and human and the robot’s goal

are recorded and then rearranged to create this set of interaction modelsM that describe

the human behaviour and the set of conditional probability tables P(A|Ω) describing the

probability of a robot action given a human observation. The set of models M and the

set of states Ω is used in the particle filter to predict the current state of the world Ω ∈ Ω

and to classify the current interaction typeM∈M. This process works in real-time with

incrementally updated QTC state chains and produces the current best state Ω? and the

best interaction model M?. Both Ω? and M?, therefore, form the belief of the current

state of the world. Given M? the conditional probability table PM? ∈ P is used to

determine the next best action PM?(A|Ω?) using Equation 6.4. Given this resulting best

action a? ∈ A, the Velocity Costmap for a? is generated using Table 5.1 to calculate the

constraints ξα and ξ% and Equation 5.8 to find the low cost areas and then sent to the DWA

local planner. This whole process of belief generation and velocity costmap generation has

a complexity of O(n) and, therefore, scales linearly with the number of particles. For the

following experiment Np = 1000 particles were used which results in a total computation

time of ∼ 0.001s. The major limiting factor is the QTC state generation that smoothes

the observed trajectories by calculating the average over an interval of 0.3s.

This fully autonomous system is tested in the following to on the one hand evaluate

its legibility, sociability, and safety and on the other hand its task efficiency regarding

distance and time travelled.

6.4 Experiment

To evaluate the new QTC based representation, the particle filter for online classification

and belief generation, the velocity costmaps in a more realistic scenario, and the action

selection, the experiment consisted of two distinct parts using two separate sets of par-

153



6.4. Experiment Chapter 6. State Prediction

7m

7
m

Figure 6.7: The SLAM map of the area of the experiment. Green star: human starting
position for path crossing, orange star: human starting position for pass-by and robot goal in
both conditions, blue square: robot starting position in both conditions and human goal for
passby, red circle: human goal for path crossing.

ticipants. The first part was dedicated to the model acquisition using näıve participants

using Learning from Demonstration (LfD) and the second part was the evaluation of the

learned behaviour, the interaction classification, state prediction and action selection, and

the behaviour generation. Both experiments were conducted using Linda the robot in a

lab like environment with clearly marked start and goal positions for human and robot

(see Figure 6.7). To track humans and generate QTC states, the system described in

Chapter 4 was used only relying on the robot’s sensors to create more realistic conditions.

6.4.1 Model Teaching

For the acquisition of P (Ω,A) to generate M and P , QTC states generated using an

“Inverse Oz of Wizard” set-up as described by Lichtenthäler et al. (2013) were recorded.

This approach follows the “Oz of Wizard” design by Steinfeld et al. (2009) but replaces

the simulated human with one of the experimenters and has the participant control the

robot as described in Section 2.4.1. To this end, a Logitech F710 wireless gamepad was

used to control Linda, with the rotational movement of the robot mapped onto the hori-

zontal axis of the left control stick, and the translational movement onto the vertical axis,

respectively. Since the QTC model described in Chapter 3 cannot express speed, the com-
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manded translational speed was thresholded to be binary with either 0 or 0.55m/s. Thus,

the robot could either stop and wait or actively avoid the human at maximum speed; no

gradual slow down or similar approaches were possible. The only recordings made were

the generated QTC states and the trajectories of human and robot.

Five participants (4 male, 1 female) were recruited who all worked in the School of

Computer Science of the University of Lincoln either as PhD students or Researchers. The

age of the participants at the time of the experiment was 23, 27, 28, 31, and 33 and 3 were

European and 2 two of Asian decent which means that due to their cultural background,

their definition of proxemics (Hall 1969) might differ. On a scale from 1 (very low) to 5

(very high) they rated their experience in Computer Science with a mean of 4.6 and their

experience in Robotics with a mean of 4.0. Due to the robot being stationed in the open

plan L-CAS office, they had all interacted with Linda before in one way or another but

were näıve to the system described in this thesis. The participants were informed about

the goal of the study and were instructed to (while the experimenter is interacting with

it) remote-control the robot in a way they would like Linda to behave if they were in the

place of the experimenter. They were also informed about the speed constraint, i.e. the

binary speed described earlier, and the reason behind it. In an initial training phase, every

participant was given as much time as they wanted to practice the control of the robot

before the start of the recording. To this end, the experimenter interacted with the robot

as they would during the experiment while the participant was trying to control the robot

to their liking. Once the participant expressed their confidence in being able to perform

the task in a way they would like the robot to perform, the experiment started. None of

the training trials were used for evaluation. No compensation was paid before or after the

experiment.

During the test trials and the actual experiment, as described by Lichtenthäler et al.

(2013), the experimenter played the role of the human interacting with the robot. The

starting points and goals for human and robot were marked on the floor and can be seen in

Figure 6.7. After each trial, the robot drove to its starting position autonomously to ensure

the same initial state for every trial. The experimenter walked towards the goal along a

straight line with a constant speed, matching the maximum speed of the robot. Two

different scenarios were recorded, i.e. pass-by (p) and path crossing (c). Before the start

of the training phase, the participants were primed to always avoid the human by going
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Figure 6.8: The learned Markov Model Mp ∈ M for the pass-by scenario. The human
moves away from the goal and towards the robot, passes on the right, and finally moves away
from goal and robot. The numbers represent transition probabilities and everything below 0.03
has been pruned for visability. Grey level: a-priori probability of occurance of the state from 0
(white) to 1 (dark grey). The two leftmost states only have 3 symbols because the ∅ of QTCBC
is not represented in this visualisation. There is no QTCB phase towards the end of the
interaction because the human is not observed once she passed the robot. Hence, d(k, l) < ds
until the human is not observed any more and the interaction is “complete”.

to the right in the pass-by interaction and to stop and wait until the human had passed

in the path crossing – the latter being inspired by the findings of Kruse et al. (2012) and

Lichtenthäler et al. (2013) – but were not given any additional constraints regarding, e.g.

distance or magnitude of avoidance. Each participant recorded 7 interactions per scenario

summing up to a total of 5 · 2 · 7 = 70 runs. If during the experiment the participant felt

that they controlled the robot in manner they did not intend, the trial was excluded and

repeated until the total number of 7 was reached.

The recorded QTC states were used to create the set of modelsM = {Mc,Mp} and

conditional probability tables P = {Pc,Pp} for crossing c and pass-by p as described

above. Figure 6.8 shows the Markov Model Mp generated from the recorded data.

6.4.2 Evaluation Experiment

A group of 12 participants with a mean age of 19.5 and standard deviation of 2.8 was

recruited, which exclusively consisted of male Computer Science students. With one ex-

ception, none of them had interacted with a robot before and on a scale from 1 (very low)

to 5 (very high) they rated their experience with robots with 1.5. All participants were

näıve to the specific goal of the study and the robot platform used.

To evaluate the legibility, sociability, saftey, exprienced comfort, and task efficiency of

the approach, it was compared to the commonly used Gaussian cost model (e.g. Sisbot

et al. 2007) based on proxemics (Hall 1969) similar to the study presented in Chapter 5,

for the same reason of it being one of the standard ROS approaches to human-aware

navigation. These costs, like the Velocity Costmaps also introduced in Chapter 5, were
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added to the DWA local planner using the local costmap described in Section 5.2.2. Each

participant faced all conditions in a within participant design to be able to compare the

results for all conditions without the influence of interpersonal differences in observations

or preferences regarding robotic navigation. The conditions were randomised for each

participant, and the participants were unaware of which condition they were facing. The

different interactions, i.e. pass-by and path crossing, were randomized between partic-

ipants, but always conducted in blocks, meaning that a participant would either start

with 10 iterations of the path crossing and then finish with 10 iterations of the pass-by

or vice-versa but they were never interleaved. After each single trial in both scenarios, a

questionnaire using a Likert scale from 1 (fully disagree) to 5 (fully agree) was completed,

asking for:

Q1 I felt safe when I encountered the robot in this situation.

Q2 I felt comfortable when I encountered the robot in this situation.

Q3 I was able to follow my intended path with no disruption by the robot in this situation.

Q4 I did not have to slow down to let the robot pass.

Q5 The robot behaved appropriately in this situation.

Additionally, participants were given the chance to mention anything out of the ordinary

that had occurred using a closed-ended question also allowing to specify “other” (see

Figure 6.10). Question Q4 and its results were inverted to simplify the presentation.

During the experiment, participants were asked: “I had to slow down to let the robot pass“

with 1 (fully disagree) to 5 (fully agree) to not interleave positive and negative questions.

Regarding the appropriateness of the behaviour in question Q5, the participants were

asked to put themselves into a situation where they would have encountered the robot in

the wild (e.g. as a tour guide in a museum) and if they would have thought that it would

be appropriate for the robot to behave the same way they just encountered. Hence, this

question investigated the sociability of the executed behaviour. The used questionnaire

can be found in Appendix C.1.

Before the experiment, participants were introduced to the robot and the lab environ-

ment. The experimenter explained and demonstrated at which marker the participants
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(a) Pass-by interaction using Velocity
Costmaps and the particle filter. The robot
moves out of the way of the human.

(b) Crossing interaction using Velocity
Costmaps and the particle filter. At this
point the robot is stationary.

Figure 6.9: Examples of pass-by and crossing for the same participant. The robot had no
a-priori knowledge of the interaction type and used the particle filter with the learned models
M for the belief classification and P for action selection.

would start and towards which marker they should walk for each of the two conditions, i.e.

pass-by and path crossing. The general goal of the study, i.e. the investigation of a mobile

robot’s movement behaviour on the experienced safety and comfort of a human interaction

partner was disclosed to the participants before the experiment but the underlying condi-

tions and working principles were only explained after the trails were complete. For the

interaction, participants were given a wireless controller with which they could start the

interaction or stop the robot in case they feared it would come too close. The robot itself

drove autonomously from its starting position to the goal using one of the described avoid-

ance strategies. Participants were asked to start walking when they pressed the button,

trying to match the robot’s speed, but to assume a constant velocity if possible. Before

the start of each of the conditions, i.e. pass-by and path crossing, participants were asked

to use the controller to start the robot while they stood outside of the experimental area

to observe the robot’s speed and get a feeling for when to start walking. No additional

training phase was used. As a compensation for their time, participants could enter a raffle

for one of two Amazon vouchers with a value of 10 GBP which were randomly distributed

after the experiment was finished.

In the path crossing scenario, participants were asked to follow a straight line if the

robot permits. In the pass-by scenario, on the other hand, participants were told to

partake in the avoidance manoeuvre in a way they thought would be appropriate given

the behaviour of the robot. This could either be waiting for the robot to move out of
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Error cases (in % of #runs)

G / Pass-by

V / Pass-by

G / Path-crossing

V / Path-crossing

I was not sure where the robot
was going

Robot came too close to me
0.00%

15.00%

30.00%

45.00%

60.00%

Figure 6.10: The errors specified by the participants after each trial. Errors that occured
less than 10% of the total amount of runs are not shown. The ommited errors were: robot
made physical contact, robot stopped too early and abrupt, robot stuttered, and robot did
not reach the goal.

the way or moving around the robot themselves. Both scenarios were repeated 10 times

(5 times per condition) resulting in 12 · 5 = 60 trials for each condition in each scenario

summing up to a total of 2·(2·60) = 240 runs for both scenarios and conditions. Figure 6.9

shows one of the participants interacting with the robot in the particle filter based Velocity

Costmap condition.

For all conditions, the robot had no a-priori knowledge of the interaction type, which

is irrelevant for the Gaussian cost models, but for the particle filter condition entails the

online classification of the current belief bel(X) which includes the interaction type M ∈

M and the current state of the world Ω ∈ Ω. To determine the robot’s next action, greedy

action selection using PM(A|Ω) following Equation 6.4 from the conditional probability

table P was used. Hence, the action a = (q2, q4) to be executed was transformed into

the corresponding Velocity Costmap and then sent to the DWA planner as described in

Chapter 5. As a result, the planner would only allow trajectories t ∈ T that create the

desired QTC state. The weights ωi ∈ ω were the same as described in Section 5.3. To

create equal conditions for both approaches, compared to the experiment in Section 5.3,

the Gaussian costmodel was only used on the local costmap and not on the global one

because the Velocity Costmaps work only with the DWA planner as an informed reactive

system as well.
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Table 6.1: Questionnaire: Mean Likert scale responses, 95% confidence intervals, and p
values. Bold values are mentioned in text.

G pass-by p V pass-by G crossing p V crossing

Q1 4.90±.09 ∗ ∗ ∗ ∗ 4.55±.14 4.92±.08 – 4.82±.13
Q2 4.45±.20 – 4.43±.18 4.72±.14 – 4.67±.15
Q3 3.63±.34 – 3.85±.27 4.97±.05 – 4.92±.13
Q4 3.85±.38 – 3.88±.33 4.98±.03 – 4.92±.08
Q5 4.00±.29 – 4.00±.27 4.80±.14 – 4.77±.16

6.4.3 Results

For convenience, in the following the approach using Velocity Costamps and the particle

filter based classification will be abbreviated to V and the Gaussian cost model will be

denoted by G. After excluding trials where the human was not detected or detected too late

(generated less than 5 sample generations using the particle filter) from both conditions, a

total number of 107 valid crossing and 116 pass-by encounters out of the 120 per condition

remained. According to convention, in the following, p-values of statistical tests signifying

significant differences between two values will be denoted by one to four asterisks (∗) for

p < 0.05, p < 0.01, p < 0.001, and p < 0.0001, respectively. All values shown in this section

are either the mean values of the results and their respective 95% confidence interval or

the percentage of number of runs.

The results of the questionnaire in between runs can be seen in Table 6.1. With

the exception of the reply to question Q1 in the pass-by scenario with p < 0.0001 in a

two-tailed unpaired t-test, none of the results show statistical significance. To highlight

the most important findings (bold values in Table 6.1), participants rated their feeling of

safety significantly higher in the G pass-by condition 4.90 ± .09 than in the V pass-by

4.55± .14, participants could better follow their path in the V pass-by condition 3.85± .27

than in the G pass-by 3.63 ± .34, and they rated G pass-by and V pass-by the same for

appropriateness with a 4.00± .29 for G pass-by and 4.00± .27 for V pass-by. All questions

in the crossing scenario yielded virtually the same results.

According to the participants feedback in Figure 6.10, the errors that occurred the most

during the trials was either the robot coming too close to the human or the participant

not knowing where the robot wanted to go. To highlight the most important findings,

in 31.67% of the cases in the G pass-by and 18.33% of the V pass-by encounters the
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Table 6.2: Mean values, 95% confidence intervals, and p values for
minimum distance to human (M), distance travelled (D), travel time (T), and speed (S)
over all runs

G pass-by p V pass-by G crossing p V crossing

M 0.68±.04 ∗ ∗ ∗ ∗ 0.54±.04 1.04±.05 ∗ 1.18±.09
D 6.66±.24 ∗ ∗ ∗ ∗ 7.18±.06 6.95±.02 – 6.96±.03
T 28.67±1.7 ∗ ∗ ∗ ∗ 17.92±.63 18.10±.33 – 18.49±.45
S 0.25±.02 ∗ ∗ ∗ ∗ 0.41±.01 0.39±.01 – 0.38±.01

participant was not sure where the robot was intending to go. One of the participants

was so confused by the behaviour of the robot in the G pass-by condition that he stood

in front of the robot until its goal timed out and the interaction had to be interrupted.

The feedback given was that he was not sure what to do at all and waited for the robot to

initiate an action. This is reflected as the error “robot did not reach the goal” among the

errors specified by the participants (see Figure 6.10). The difference between V pass-by

and G pass-by, however, only reaches p = 0.144 (two-tailed) in a Chi squared test with

1 degree of freedom. Also, the crossing values for this error are not significantly different

from each other. Looking at the robot being too close to the participant, in 45.00% of the

V pass-by and only 3.33% of G pass-by this is the case with p < 0.001 in the same test.

As for the previous error, the crossing values are not significantly different.

In addition to the questionnaire, sensor data from the robot was collected and the mean

values of the minimum distance kept to the human, the distance travelled, the travel time

and, the speed were evaluated. The results can be found in Table 6.2 and show a significant

difference comparing G pass-by and V pass-by with p < 0.0001 in a two tailed unpaired

t-test. V pass-by achieved a significantly greater speed and a reduced travel time even

though the travelled distance was significantly higher. On the other hand, the minimum

distance kept to the human is significantly lower than in the G pass-by condition. For

the crossing scenario, the only significant difference exists for the minimum distance kept

from the human with p < 0.05 where V crossing kept a larger distance to the participant.

The other results for the crossing scenario are virtually the same.

To evaluate the classification rate of the particle filter with Np = 1000 particles,

the number of particles per model Mm ∈ M was recorded after each sampling step.

Whichever model had more particles got one vote. After the interaction, the model that

had the most votes was considered to be the best performing one and therefore the overall
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(a) Pass-by shows an avoidance movement half way through the interaction when
encountering the human.

(b) Path crossing shows an abrupt transition from red to yellow, visualising where the
robot stopped and waited for the human to pass.

Figure 6.11: Ten randomly sampled trajectories generated using Velocity Costmaps; black
dashed line: approximate human trajectory. The robot travelled from left to right and its
trajectory is colour coded according to the shown scale to visualise time. The positions are
only shown if the human was detected at the same time because the Velocity Costmaps only
then had effect. For visualisation purposes the positions are connected via line plots. This
also shows one of the biggest problems of HRI and HRSI in general, the behaviour of the robot
is undefined if the human is not detected. Given the DWA local planner based approach, the
robot still generates inherently safe non-human-aware trajectories even without any Velocity
Costmaps being published. If no Velocity Costmap is available, the last one is used for ∆t = 2s,
afterwards the vanilla DWA takes over.
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classification result. On average the crossing model Mc achieved 13.37± .67 votes in the

crossing scenario and 2.88 ± .27 in pass-by whereas the pass-by model Mp achieved on

average 0.79± .24 votes in the crossing scenario and 17.92±1.55 in pass-by. Using a simple

diagnostics test considering the correctly classified crossing encounters as true positives

(TP), the correct pass-by as true negatives (TN), the false pass-by as false positives (FP),

and the false crossing as false negatives (FN), a sensitivity of 97.20% with the 95% con-

fidence interval of 92.02% to 99.42% and a specificity of 97.41% with a 95% confidence

interval of 92.63% to 99.46% was achieved. With a null-hypothesis of H0 = 50% for a two

class classification problem, this shows highly reliable classification results. Additionally,

as can be seen from Figure 6.11 the action selection and Velocity Costmaps produced

trajectories that conform with the given priming of avoiding to the right in pass-by and

stopping and waiting in the path crossing.

6.5 Discussion

The experiments indicate that using Learning from Demonstration (LfD) via an Inverse

Oz of Wizard set-up, the robot is able to learn human-aware navigation behaviour that

in most regards performs as well as one of the most commonly used approaches when

it comes to participant experience and subjective assessment. On top of that, it was

able to reach the goal in significantly shorter time and with a higher average

speed [Obj. 2.3] having no trade-off in perceived appropriateness (sociability)

[Obj. 2.1] of experienced comfort [Obj. 2] of the behaviour. However, participants

reported that the robot came too close to them in the pass-by scenario in 45% of the cases

and they felt significantly less safe even though the total difference for this question is

only 0.35 on a 5-point Likert scale. When it comes to the perceived ability of following

ones path, participants rated the approach higher than the standard Gaussian cost model,

but it did not reach statistical significance. Looking at the legibility of the behaviour, the

Gaussian cost model produced trajectories that in 31.67% of the cases were marked by the

participants as I wasn’t sure where the robot is going [sic]. The presented approach, on the

other hand, only left the participant in doubt of the robot’s intention in 18.33% of the trials

which supports the hypothesis of being more legible [Obj. 2.1] . This effect, however,

came short of statistical significance with p = 0.14. All the above mentioned outcomes
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are only taken from the pass-by scenario, for crossing there was virtually no difference in

participant responses. Analysis of the collected sensor data for crossing shows that the

robot kept a slight but significantly larger distance to the participant while waiting for

them to pass, giving them more space to manoeuvre.

Looking at the performance of the system itself, it achieved classification rates of 97%

with only very few iterations of the sampling algorithm. This shows that the model is

able to represent the scenarios given and reliably classify them and pick the corresponding

best action. Looking at the trajectories generated in Figure 6.11, the robot performed the

learned behaviour given the priming of stopping and waiting in the crossing and going

to the right in the pass-by scenario. Hence, the created conditional probability tables

model the robot behaviour correctly and allow to make correct decisions with regard to

the learned behaviour.

Limitations The biggest limitation is the number and diversity of participants. With a

more diverse group it might have been possible to achieve more distinct results, but it was

impossible to recruit these for the presented evaluation given time constraints. Neverthe-

less, for the evaluation study, näıve participants were used who have never interacted with

a robot before which already gives an indication about the generated behaviour. Coming

too close to the participant was one of the major issues during the pass-by interaction

which is mainly caused by the robot not having enough time to avoid the human due to

late detections. The Gaussian cost model mainly had the robot stop and wait for the

human to circumvent it as it was quickly trapped in a local cost maxima and therefore

kept larger distance, but did not actively avoid the human. The magnitude of avoidance

has therefore to be increased for future experiments. This stopping behaviour of the Gaus-

sian cost model is also the reason why the crossing scenarios are so similar and why the

participants found this behaviour less legible.

6.6 Summary

This chapter introduced state prediction and action selection for HRSI based on a particle

filter for QSRs. It describes how to build the prediction and observation model and

how the particle filter uses them to model the current belief of the world. Each particle
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represents the current state it is in and the model that produced it. By a simple majority

vote over the particles the best state and best model are determined where the best model

represents the current interaction. For action selection, a joint probability table is built

for each model that states the joint probabilities of all actions given a specific state. Using

the current best model and the best state the joint probability of that model provides all

the possible actions for the current state. The best action is selected in a greedy fashion

where always the action with the highest probability is selected.

To overcome the problem of separating the current state of the human and the robot

and still have a meaningful representation that is unambiguous enough to classify the

current interaction type and facilitate decision making [Obj. 1.6] , a new QTC like

model is introduced that uses parts of the tuple describing the human and robot state

in QTCBC and parts of the tuple describing the interaction between the human and the

robot’s goal in QTCC . These symbols are then merged into a new QTC variant called

Qualitative Trajectory Calculus – Human (QTCH). While QTCH does not represent a

real QTC variant per-se, it builds on established variants and inherits all their properties.

Moreover and most importantly, it allows to reliably classify the current interaction type

without considering the actions of the robot and, thereby, allows to separate the two for

the required decision process.

In order to build all the necessary models, some form of Wizard of Oz can be used to

record the QTC sequences which has been demonstrated in the experiment section using

the “Inverse Oz of Wizard”. These two experiments consisted of a learning phase and an

evaluation phase with two separate sets of participants. The experiments showed that the

particle filter is able to reliably classify the interaction type given the perception pipeline

works as expected and that the velocity costmaps generated the correct behaviour given

the priming of avoiding to the right and stopping and waiting during the learning phase.

To summarise, this chapter addresses the remaining objectives of creating a model that

facilitates decision processes [Obj. 1.6] by being able to separate the robot state

from the human state, and creating legible and sociable [Obj. 2.1] robot behaviour by

incorporating human judgement into the creation of this model and, therefore, allowing

the demonstrator to determine the optimal behaviour for the robot while at the same

time being task efficient [Obj. 2.3] . Also the fast and flexible action selection

[Obj. 2.4] is implemented using the particle filter that works in real-time and is able
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to recover from false classifications or adapt in case the human behaviour changes. The

autonomy [Obj. 3] of the system is given by it using only the on-board sensors

and processing power [Obj. 3.2] to determine the current state of the world and

predict the next best action for the robot in real-time [Obj. 3.1] . By using the Velocity

Costmap for behaviour generation, it is tailored to the robot hardware [Obj. 3.3] and

inherently safe [Obj. 2.2] . However, the participants reported that they felt less safe

which means that the perceived safety was reduced due to the late detections of the human

and the reduced time for avoidance. This, however, according to the questionnaire did

not diminish the experienced comfort and shows that the system scales well given noisy

detections.
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—There is no real ending. It’s just the place where you

stop the story.

Frank Herbert, Science Fiction Author

7
Discussion and Conclusion

Keeping in mind the aim of this work to create a Human-Robot Spatial Interaction (HRSI)

approach focussing on human-aware navigation that is able to abstract from the under-

lying metric representations of the world, thereby, allowing to easily transfer knowledge

between similar encounters with different people in different locations in an ever changing

environment, we have seen one possible approach of accomplishing that using Qualita-

tive Spatial Relations (QSR) which presents a novel approach to human-aware navigation.

This work introduces the Qualitative Trajectory Calculus – Basic/Double-Cross (QTCBC)

which describes the movement of human and robot in relation to each other over the in-

terval T = [tn−1, tn] and has been especially designed for HRSI to not only highlight the

interaction of both agents in close vicinity but to also model a discrete distance threshold

ds that is used to trigger state changes in the robot’s behaviour generation. Representing

the motion of human and robot in the same state allows to reliably classify different in-

teraction types offline, given a chain of these states per interaction, using Hidden Markov

Models (HMMs) which shows that this representation is well suited for activity recognition.
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However, using both the human and the robot state to classify the current interaction type

is also a limitation when generating behaviour for the robot as in this case it is not known

a-priori and can, therefore, not be used for classification. Using only the human state of

the QTCBC tuple, the description becomes too ambiguous to distinguish even the most

basic activities like pass-by and path crossing where in both cases the human approaches

the robot but the actual interaction is entirely different. To overcome this issue and to be

able to separate out the robot state for behaviour generation, the Qualitative Trajectory

Calculus – Human (QTCH) has been introduced which is not in itself a version of the

Qualitative Trajectory Calculus (QTC) but a combination of QTCBC for the human and

the robot using the symbols describing the human’s movement and QTCC states for the

human and the robot’s goal. This virtual landmark and the QTCC state between it and

the human allow to once again classify different interaction types reliably and also encode

the intention of the robot by using its short term goal on a topological map. Thus, from

observation, the joint probability P (Ω,A) can be created which contains the probabilities

for the set of human observations Ω and the robot actions A that have been observed

during the Learning from Demonstration (LfD) phase.

In order to be able to perform any kind of Human-Robot Interaction (HRI) in general

and HRSI in particular, the robot has to be able to observe humans in its close vicinity.

Merely detecting them, however, is not sufficient for the generation of QTC states. Since

QTC needs two consecutive observations of the movement of both agents to create a single

state, the detections of the humans have to be consolidated into tracks. To this end, this

work uses pre-existing detection and tracking approaches which have been combined in a

joint framework for the detection and tracking of humans in the robot’s vicinity. These

tracks, together with the robot’s self-localisation, are then used for the fully automatic

state chain generation, producing QTC states in all described variants between the human

and the robot and the human and the robot’s goal. These state chains are also validated

on the fly according to the legal transitions defined in QTC itself. This approach of

abstracting from the underlying metric world by generating QTC state chains using the

robot’s on-board sensors only, is a basic requirement to create a fully autonomous robot

behaviour and is the corner stone for all the experiments conducted on the robot.

By abstracting from all underlying metric representations, like speed, acceleration,

angle of avoidance, etc. this QTC representation becomes very versatile and robust to
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change but loses almost all information that is necessary to generate behaviour from it.

The only information encoded is the direction of the robot’s velocity vector −→ν and a

distance threshold ds. The presented work, however, shows that explicit knowledge about

the speed at which the robot circumvents the human for example is not necessary to

generate human-aware trajectories. At the time of writing this thesis the Robot Operating

System (ROS) uses a combination of a global and local planner which is also used on Linda

the robot and many other research and industrial robots all around the world. This global

planner produces an energy efficient path using Dijkstra’s algorithm and employs the

sampling based Dynamic Window Approach (DWA) local planner for obstacle avoidance

and command velocity generation which control the speed of the wheels. This mentioned

sampling approach looks at a range of velocity samples, so-called trajectories t ∈ T, which

are scored based on several critique functions that look at the goal-directedness and the

distance to obstacles. The trajectory ti with the lowest costs is then executed for a certain

planning horizon ∆t at which time the sampling process starts all over again. In order

to create behaviour that conforms with the desired QTC state of the robot, Velocity

Costmaps are introduced into the set of critique functions C which assign lethal cost value

to trajectories ti, representing the velocity vector of the robot −→νi , that do not have the

same direction as the velocity vector described by the QTC state. This way, since lethal

trajectories are discarded regardless of the weighting of the critique function, the DWA

planner will only produce trajectories that conform with the model or stop and wait if

no valid trajectory could be found. Moreover, since every critique function ci ∈ C has an

associated weight ωi ∈ ω, the “human-awareness” of the planner can be determined by

assigning it a higher or lower weight than the goal-directedness and obstacle avoidance

scoring functions which influences the magnitude of the avoidance manoeuvre. Finally, in

case there is no Velocity Costmap published, because there is no human in the vicinity of

the robot, the DWA planner functions as usual producing safe trajectories that might not

be legible or human-aware but circumvent static and dynamic obstacles quite reliably.

The final task to accomplish to achieve autonomous robot behaviour is the online

classification of the current interaction type based on incremental updates of the state

chain and the online belief generation for action selection. HMMs are well suited for

offline classification of the interaction type but cannot be used online because they need

the entire state chain. There are approaches to circumvent this limitation but in order to
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be robust to false classifications or behaviour change of the human, and never observed

transitions or states, a Monte-Carlo-based approach has been implemented to solve this

problem. The resulting particle filter for generic QSRs uses a prediction model based

on observed human states and an observation model based on the properties of the used

qualitative representation. Using incremental updates, the filter converges to a belief that

includes the current state the human is in and the model M that predicted this state. A

simple majority vote is used to create this belief and a simple look-up for action selection

in the conditional probability table PM associated with this model yields the best action

for the robot to take. Both model and probability table are learned from observation

and demonstration respectively and therefore also encode human judgement for behaviour

generation. To allow for behaviour change during the interaction if required and prevent

over-fitting of the particle filter, a starvation factor is introduced that determines the

amount of particles that are chosen randomly disregarding the current belief. By doing

so, the filter is able to recover from false classifications or a change in the behaviour of the

human while still reliably representing the current state of the world and classifying the

current interaction type.

7.1 Discussion

Since all the approaches have been discussed in their respective chapters, this discussion

focuses more on the overall system and its application.

There are many different ways of creating a representation of HRSI that is not depen-

dent on the underlying metric representation, the most common example being Gaussian

cost functions based on proxemics. These just assign higher costs to trajectories that

lead the robot closer to the human, but the highest costs are still assigned to obstacles,

thereby, creating safe an collision free behaviour. However, this approach does not en-

code any high-level knowledge about the interaction type and purely relies on the planner

to generate the movement behaviour. Since this reactive planner is sampling-based and

evaluates a new sample every ∆t, this plan might change entirely from one sampling step

to the other. If the human, for example, shifts a little to the left, the planner will find

more open space on the right and plan a path through there, if the human shifts back

to the right, the planner will then re-plan and try to pass the human on the left. This
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Markovian behaviour in general enables the robot to circumvent dynamic obstacles, even

if not in all situations as we have seen from the described experiments, but does not pro-

duce legible nor sociable behaviour. In order to achieve motion that is understandable by

the human counterpart, the robot behaviour has to show some form of commitment to

one specific behaviour, e.g. if the human or robot start the circumvention to the right, it

should not switch to the left half way through the interaction just because there is a little

more space. One way of achieving this is to plan ahead for several time steps and to follow

this plan until replanning is made necessary due to unforeseen human behaviour. Most

of these approaches also work on cost models in the environment and while generating

a certain form of commitment are not able to encode more complex interactions. This

work, therefore, presented the use of QTC for HRSI and a first approach of using QSRs

for human-aware navigation and human-robot joint motion. The results of especially the

last experiment have shown that participants considered the behaviour generated by the

presented approach much less confusing and hence more legible.

Using qualitative representations to encode real-world interactions is not a novel ap-

proach and many different representations have been introduced in the past. QTC has

been selected for this specific implementation, because it describes the motion of two

Moving Point Objects (MPO) in relation to each other which is one of the main tasks

of HRSI. Other representations such as Cardinal Directions in combination with distance

could have been used, but these only represent positions and not motion and, additionally,

QTC provides a much narrower state space that is well suited to described relative move-

ment. Using only the “simplified” versions of this calculus, i.e. disregarding the relative

speed and angle, might at first appear as a disadvantage but creates a much smaller state

space which facilitates activity learning. Since this thesis builds on prior work where QTC

has been used to analyse HRSI, this approach was adopted and refined to a state where it

can be used for online classification and behaviour generation. This shows that even the

simplified version of QTC is well suited to achieve human-aware navigation. Using the full

version of the underlying QTC variants, however, might improve behaviour generation as

it encodes more information about how this interaction should unfold but makes it less

versatile and transferable. This trade-off is omnipresent in all QSR based research but

has been solved in this work to a degree at which belief generation, action selection, and

behaviour generation work reliably on an autonomous robot.
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In order to generate behaviour, the proposed approach of combining an existing planner

with a cost function that represents the human movement, follows the approach of the

vast majority of the human-aware navigation approaches ever developed. The way in

which this cost function is generated, however, is entirely different to any other form of

HRSI behaviour generation because it does not depend on the position of the human or its

interaction with the environment but their movement in relation to the robot. The robot

movement itself has so far widely been disregarded by the HRSI community when it comes

to human-aware navigation even though it plays a vital role, influencing the movement of

the human. Since QTC describes the movement of human and robot in relation to each

other, the model inherently represents this reciprocal process. The ability to generate

cost functions from these high-level representations and use them in a standard reactive

planning approach, represents one of the novel contributions of this work to the HRSI body

of research and empowers the robot to make more informed decisions about its behaviour

bridging the gap between reactive and deliberative approaches. As the experiments have

shown, this behaviour is not only safer than using a standard Gaussian cost function

but also creates more legible and sociable behaviour, hence increasing the experienced

comfort. However, one can also see that this is not always the case and such a high-level

approach might lead to behaviour that is perceived as less safe as can be seen from the

last experiment where the robot came too close to the participants in a large number of

trials. The Gaussian cost models would have the robot stop when it could not find a path

because it was too close to the human already whereas the QTC based representation

used the encoded knowledge to still be able to fulfil its task of avoiding the human even

at the cost of coming too close. This presents another trade-off that had to be tackled

in the presented work, task efficiency versus human-awareness. When the human was

detected rather late, the robot still achieved safe and goal-directed navigation when using

Velocity Costmaps but it was perceived as less human-aware whereas the stopping and

waiting behaviour of the Gaussian model renders the robot utterly useless while there

is a human blocking its path but was perceived as safer. For a real-world deployment, a

combination of both systems could be considered or a simple emergency behaviour that just

has the robot stop and wait when too close but both of these “solutions” would lead to the

same problem of the robot being trapped again. Hence, a certain degree of goal-directed

behaviour has to be preserved in order for the robot to fulfil its tasks. Moreover, the
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behaviour of stopping and waiting might have been perceived as safer by the participants

of the last experiment but has its detriments otherwise. From qualitative feedback from

the STRANDS deployments in the elder care home where stop-and-wait was used, it is

clear that leaving the avoidance to the human is perceived as rather rude and unfriendly

behaviour, impeding the acceptance of the robot. Hence, this open question of human-

awareness versus task efficiency has been the focus of many HRSI research projects, but

has not been answered yet and can also not be answered in this thesis.

Using a high-level representation like QTC not only has benefits, but also comes at

the detriment of “throwing away” a lot of information. This becomes apparent when

looking at the classification problem that arises from removing the robot from the QTCBC

representation which makes it too ambiguous for any classification to succeed. By simply

combining it with the QTCC states of the human and the robot’s goal this can be overcome,

but using the robot’s goal while encoding its intention comes at certain risks. If the goal

is not in the relatively similar position for all the interactions used to create this model,

then classification becomes ambiguous again. This is solved by using the topological

representation and binding models to certain edges in the environment which means that

more models have to be created and more training data is necessary. This, however,

is countered by the fact that in the environment topological nodes are placed in every

location that triggers a major change of direction for the movement of the robot. This

includes corners, crossings, or the end of a corridor opening into a wider area. Due to this

layout, the robot’s goal is always directly in front of the robot which results in this virtual

landmark being the same for all kinds of interactions, reducing the need for additional

training data since the resulting model is easily transferable between all edges in the

environment. To clarify, this constraint for the topological map is not the result of this

work but a commonly followed approach which is exploited here.

Regarding the overall system, following from all the comments above, this work de-

scribes human-aware navigation for a mobile robot that is task efficient while at the same

time creating legible, sociable, safe, and comfortable trajectories. The question if the use

of QSRs is reasonable and beneficial for e.g. human-aware navigation, has therefore been

answered by showing that it is able to achieve robust behaviour that is able to get the

robot to its goal quicker and more efficiently using human-aware behaviour. This comes at

no extra cost regarding the perceived comfort but suffers more from the fact that late hu-
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man detections require the classification of the interaction type first and then initiate the

correct behaviour. An approach agnostic to the actual type of interaction is much quicker

to react but very limited in its actions making it less legible, sociable, and efficient.

7.2 Limitations

The general principle of a QSR is to abstract from the metric representation of the world

by creating high-level qualitative descriptions that model the “essence” of an environment

or interaction. During this process all the metric information is lost which on the one

hand makes it a powerful tool for knowledge transfer and classification but, on the other

hand, this abstraction, even though it allows to cope with changing environments and to

generalise over several different encounters in a similar setting with a similar interaction,

throws away a lot of information that would be required for the regeneration of these

interactions or scenes. For example, the absolute speed at which the two agents circumvent

each other cannot be expressed using QTC, neither can the absolute angle at which to

perform the avoidance or the acceleration to determine if the robot should slow down,

etc. All these, however, are crucial factors in HRSI to communicate ones intention or

to generate safe and legible behaviour. By using the QTC variant that encodes relative

speed and angles, this could be mitigated, but even this would only restrict the search

space for the correct angle and speed as it only models who travels faster and whose angle is

larger because no qualitative representation deals with absolute values. In the presented

approach this has been overcome by using the DWA local planner that generates the

velocities to be sent to the robot’s wheels and the low cost areas described in Chapter 5

to increase the avoidance manoeuvre. In fact these areas are necessary because even the

state (−+) (approach and move to the right) still allows to move almost straight which

would result in not very friendly behaviour. In this case, the full QTC version might be

beneficial, but this would increase the state space significantly making it less generalisable

and tractable. Nevertheless, using QSRs in general is a wide spread and popular principle

in Artificial Intelligence and Robotics and allows for easy knowledge transfer which enables

the presented system to cope with change and learn from similar encounters. Moreover,

the experiment results have shown that low-level movement commands can be generated

even with this very high-level information provided by QTCH .
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QTC itself was designed to represent the movement of two MPO in relation to each

other. From this follows another limitation of the presented approach which is that it

currently only interacts with the closest person and disregards all others which stems

from the fact that only one Velocity Costmap is generated and used even though a belief is

generated for all the humans in close vicinity. Hence, this approach will create trajectories

that represent the interaction of the robot with the closest person while not colliding with

any other person due to the DWA planner avoiding dynamic obstacles which might lead to

illegible behaviour for any of the other people involved. The interaction with groups was

not tackled in this work, but should be for a live deployment. There are several ways one

could think of achieving this navigation. Firstly, groups of people could just be fused into

a single moving point, e.g. the centre of mass or gravity, interacting with groups like the

robot would interact with a single person. This would require only to change the people

perception by introducing social models to identify groups and then merge them. Another

idea is the generation of several Velocity Costmaps at the same time, overlaying them to

restrict the sampling space even further. This, however, might have the robot stop if it

encounters a large group due to the much more restricted search space and would lead to

the so-called “frozen robot problem” (Trautman & Krause 2010). All of these suggestions

might be viable options to overcome this limitation, but would require extensive research

into the representation of group motion using QSRs that could fill another thesis. For the

presented work, only the closest human is considered for interaction.

The most crucial limitation for all HRSI approaches is the perception component. As

can be seen from the experiment in Chapter 5 versus Chapter 6, the observability of the

human is crucial to this approach because it not only needs time to generate the belief,

even though that only takes 0.3s, but also time to initiate the avoidance. Since this thesis

does not focus on the perception, but just presents a framework that has been developed to

allow for any kind of interaction, a set of better detectors would have greatly increased the

performance of the presented approach. However, the detectors used are state-of-the-art at

the time of writing this, but should be replaced for future use which is easily possible given

the described modular framework. Several mitigation strategies like filtering the tracker

output based on static obstacles in the map or forbidden areas to enhance the performance

of the robot in cluttered environments have been implemented, but still require manual

annotation in some cases. Nevertheless, the proposed system performed reasonably well

175



7.3. Conclusion Chapter 7. Discussion and Conclusion

in the conducted experiments and the approach presented was able to deal with most of

the problems arising from this specific limitation.

Last but not least, as mentioned above, the trade-off between task efficient or goal-

directed and human-aware movement has always to be considered when designing such

systems as can be seen from the perceived safety in the experiment in Chapter 6. However,

this thesis does not aim to answer the question if one is more important than the other,

but the presented approach merely leaves this decision to the person teaching the robot.

Following the LfD principle, the robot will perform as it was taught, assuming that the

human expert provides the correct solution for the problems presented. Other approaches

like learning from observation of two humans interacting would be possible and, in fact,

if encoded in QTC easily transferable as can be seen from the “Bristol experiment”, but

using this assumes that robots are treated like humans in all regards of this interaction.

Using LfD on the other hand, allows the demonstrator to teach the robot behaviours that

she would deem appropriate for a robot to perform.

7.3 Conclusion

The presented work shows a novel approach of human-aware navigation using QSRs with

the aim of creating a framework that allows to generalise over a wide variety of interactions,

environments, and agents by abstracting from metric representations of the world and the

interaction. Thereby, the resulting system becomes robust to change in the environment

and allows for an easy knowledge transfer for machine learning approaches. The desired

behaviour of creating legible, sociable, safe, and comfortable trajectories in the presence

of humans has been achieved using an informed reactive approach that constraints the

sampling space of a local planner to only allow human-aware trajectories to be generated.

This behaviour generation is based on a fast and agile belief generation to classify the

current interaction type, predict the current best state, and select the next best action for

the robot to preform using the qualitative model in combination with a particle filter. As

a final outcome, a fully autonomous human-aware navigation system for a mobile robot

has been created and evaluated. In the following the objectives listed in Section 1.1 are

addressed.
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Robust qualitative interaction models [Obj. 1] In order to achieve robustness to

change and facilitate knowledge transfer, the interactions between human and robot have

been encoded in several different variants of QTC, namely QTCBC in Chapter 3 which also

encodes a distance threshold for the generation of comfortable behaviour and QTCH in

Chapter 6 which is not a variant of QTC per-se but a conglomerate of different states based

on QTCBC and QTCC . This qualitative representation abstracts from the metric rep-

resentation of the environment [Obj. 1.1] and generates a purely qualitative model

that is robust to changes and, therefore, allows easy knowledge transfer. It achieves this

abstraction by representing only the qualitative character of motions [Obj. 1.2]

of both agents, i.e. human and robot, including changes in direction, stopping or starting

to move, etc but excluding any environment features. In addition to that, it also represents

the intention of the robot by encoding the interaction between the human and the robot’s

goal in QTCC to on the one hand allow for unambiguous belief generation and on the

other hand enable human-aware action selection that aims at fulfilling the robot’s primary

task. As mentioned above, QTCBC also implicitly represents a distance threshold which

can be based on proxemics, therefore, representing a relevant attribute of HRSI

situations, i.e. distance [Obj. 1.3] , but does not have to as it can almost be freely

chosen or learned depending on the desired behaviour because this threshold is used to

trigger avoidance by transitioning from QTCB to QTCC or vice versa. In order to be

used for classification and reasoning for the evaluation of the suitability of the calculus,

the qualitative model has been used in a probabilistic representation, namely HMMs, to

classify different HRSI encounters from two data sets. This approach has proven to be

robust to the discrete nature of the used data and the resulting unobserved states by using

the emission layer to compensate for the illegal transitions. For online belief generation,

QTCH has been developed which facilitates decision making [Obj. 1.6] by combining

QTC’s inherent attribute of combining human and robot state with the ability to separate

out the robot’s state for interaction type classification. Hence, this model allows for belief

generation without using the robot’s sate while at the same time being able to learn action

selection policies from demonstration by providing a clear mapping from belief to action.

Overall, this representation has shown its ability to generalise [Obj. 1.4] over

a number of individuals and situations by using a pre-trained HMM from a different

environment, using different sensors, and representing two humans interacting, to classify
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interactions of human and robot that were observed by the robot itself in Chapter 4.

Hence, acquired knowledge from previous encounters of the same or similar type can be

utilised to facilitate learning and reasoning. Additionally, all presented variants of QTC,

i.e. QTCBC and QTCH , that have been developed for this thesis are based on the original

versions of the calculus which makes it a tractable, concise, and theoretically well-

founded model [Obj. 1.5] which is able to be deployed on an autonomous robot.

To conclude the findings in regards to employing QSRs for the representation of and

reasoning about HRSI, the experiments have shown that QTCBC is well suited to rep-

resents multiple different HRSI encounters and that a probabilistic representation like

HMMs are able to reliably classify them. They also indicate that QTCBC itself is better

suited to distinguish between certain kinds of encounters depending on the chosen distance

threshold by highlighting the interaction in close vicinity. For this classification process,

the HMM used compensates for unobserved transitions to mitigate the fact that discrete

sensor messages produce illegal transitions according to the definition of QTC. These ille-

gal transitions are defined using the conceptual distance of two states and the inter-symbol

distance that has been developed for this thesis and is also used for the observation model

of the particle filter. The experiments in Chapter 3 are conducted using external sensors

and are post-processed to create the trace of the movement of the human. This short

coming of using expensive external sensors and not being able to work in real-time has

been mitigated in Chapter 4 where a similar experiment using the robot’s sensors shows

that QTCBC is well suited to be used when observing the scene from a first person point

of view. QTCH on the other hand has been evaluated in Chapter 6 in combination with

the particle filter and has shown to represent not only the movement of the human, but

also the intention of the robot well enough to unambiguously classify two encounters and

to be used for action selection. Moreover, it builds on QTCC and QTCBC and inherits all

their functionality and tools.

Comfortable and task efficient behaviour generation [Obj. 2] In order to in-

crease the acceptance of a mobile robot in populated environments the legibility, socia-

bility, safety, and perceived comfort of the generated robot behaviour was paramount

when designing the system presented in this thesis. Legibility in this case refers to the

characteristics of the trajectory that allow the human interaction partner to predict the
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future unfolding of the interaction and, therefore, fulfil their expectations in regards to

locomotion whereas sociability refers to the adherence to social norms like avoiding to the

left or right. As indicated in Chapter 6, legibility and sociability has been achieved

encoding human judgement [Obj. 2.1] in the model employed to produce the robot’s

behaviour. To this end, the LfD principle was used where a human remote controls the

robot while it interacts with a second human to determine how a robot should behave in

the interaction at hand. Hence, the legibility and sociability of the generated behaviour

depends entirely on the expert knowledge gathered during the learning phase. For the ac-

tual behaviour generation, the biggest problem to overcome when using a QSR like QTC of

any form or shape is to compensate for the information lost during the abstraction process

which has been solved by using Velocity Costmaps which have been developed for this the-

sis to restrict the sampling space of a reactive local planner to only allow trajectories that

correspond to the desired qualitative state. Using this purely reactive approach in Chap-

ter 5 has shown to be fast and flexible in regards to action selection [Obj. 2.4] as

a reactive approach should be and also to produce safe behaviour [Obj. 2.2] which can

be seen by the low number of collisions compared to the other methods used in the evalua-

tion and by the larger distances kept. However, this approach was purely reactive and the

prior knowledge used was not learned but hand-crafted expert knowledge in form of rules

that define a state to action mapping. Additionally, the interaction type was assumed to

be given before the start of the interaction which makes classification unnecessary but is

infeasible for a deployment of the system.

To generate a truly autonomous system, a particle filter for QSRs has been developed

and evaluated in Chapter 6 which is able to classify the current interaction type and predict

the current best state online using incrementally updated QTC state chains. Using the

system for people perception and the creation of valid QTC state chains implemented

for this thesis and presented in Chapter 4, this filter is able to reliably classify different

HRSI encounters while at the same time being robust to over-fitting or sudden changes

in the behaviour of the human. Therefore, the overall system becomes fast in terms

of belief generation resulting in a flexible action selection [Obj. 2.4] using the

models learned from demonstration to create legible and sociable [Obj. 2.1],

safe [Obj. 2.2], and hence comfortable behaviour as shown in the evaluation of

Chapter 6. Additionally, the experiment has shown that the generated movement using
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Velocity Costmaps is goal-directed and thus task efficient by reducing the travel time

towards the robot’s goal [Obj. 2.3] and that the used QTCH is, therefore, well suited

for the classification, state prediction, and action selection for human-aware navigation

given little training data and noisy measurements.

On the other hand, the evaluation of the system has also shown that participants felt

less safe when interacting with the robot as it comes too close in some of the cases. This

is caused by a late detection of the human resulting in a reduced time span to execute the

avoidance movement. However, the participants rated comfort and appropriateness the

same as the state-of-the-art comparison algorithm while the approach presented here was

able to produce more legible [Obj. 2.1] and task efficient trajectories [Obj. 2.3]

that allow the robot to fulfil its primary task more efficiently while still showing human-

aware behaviour.

Autonomy [Obj. 3] The created human-aware navigation framework has to be deploy-

able to an autonomous mobile robot which comes with many different challenges regarding

perception, abstraction, processing, action selection, and behaviour generation. While in

Chapter 3 external sensors and post-processing was used to evaluate the qualitative de-

scription, the first step towards autonomy was made in Chapter 4 which introduces a

perception framework for humans in the vicinity of the robot that relies only

on the on-board sensors [Obj. 3.2] of the robot to generate tracks of their movement.

These tracks are used together with the self-localisation of the robot to generate QTC

states in different variants in real-time [Obj. 3.1] while ensuring that these state

chains are valid according to the definitions of QTC. The experiment in Chapter 4 has also

shown that these QTC state chains can be used to reliably classify different HRSI encoun-

ters in post-processing. Finally, Chapter 6 presents a solution to online belief generation

that is able to classify the interaction type, predict the current state, and se-

lect the next best action in real-time [Obj. 3.1] only using on-board processing

[Obj. 3.2] .

The behaviour generated by this overall system, thanks to the DWA planner used in

conjunction with the Velocity Costmaps, is based on the robots acceleration limits, and

maximum speed which, therefore, allows the generation of legible and safe behaviour

that is tailored to the used hardware [Obj. 3.3] . This is especially important to
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guarantee the safety of the human interaction partner by enabling the robot to stop before

colliding with the human in case of error or missing detections which makes the produced

behaviour inherently safe even if it is not always perceived as such as can be seen from

Chapters 5 and 6.

As a result of the autonomy objective, the developed system is able to produce in-

formed human-aware navigation behaviour for a mobile robot in real-time

[Obj. 3.1] using only it’s on-board sensors and processing [Obj. 3.2] . Of course,

this entirely depends on the robot platform used, but in the presented case, Linda the

robot hosts the same sensors as the vast majority of current research and commercially

available robots and no specialised processing hardware like GPUs was used.

As a final outcome, this work has presented a way of using QSRs for HRSI in the

context of human-aware navigation. The experiments show that this novel method of

encoding HRSI and behaviour generation is able to bridge the gap between the speed and

flexibility of purely reactive systems with the legibility and commitment of deliberative

systems while not succumbing to costly and inflexible exhaustive planning. Additionally,

the system has an inherent and scalable ability to deal with uncertainty by using an

observation model that is either based on the principles of the used QSR or learned data.

This has shown reliable belief and behaviour generation despite relatively little training

data and suboptimal performance of the people perception. To address the human’s

experience, the LfD principle is used to be able to express a wide variety of possible

interactions and to encode expert knowledge and human judgement into the the created

model which makes it legible, sociable, and thereby comfortable to use depending on the

encoded behaviour. Despite the shortcomings listed in the limitations above, the presented

system is, conceptually and software wise, deployable to an autonomous mobile robot in

real-world environments.

7.4 Future Work

In order to address some of the limitations listed, especially the ones stemming from the

use of the simplified version of QTC or from using a qualitative representation in general,

the full version of QTC or a combination of different QSRs could be used. As mentioned
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in Chapter 5, the angle λ that determines the free space in the Velocity Costmap could be

adjusted to restrict the sampling space even further given there was information about this

angle like in full QTCC and the speed of the robot could also be restricted further by using

% based on the relative speed in full QTCB. This, however, will increase the state space

significantly from 81 to 305 possible states which makes the representation less general

and hinders knowledge transfer. This trade-off could be investigated in a follow up project

trying to increase the performance of the presented system by trying to encode more

information in the qualitative states used that would be beneficial for behaviour generation,

e.g. speed and acceleration. Finding this trade-off between information encoded and

tractability, however, is no easy task and could fill another PhD thesis.

One important aspect of human-aware navigation that was not investigated is the

behaviour around groups. While the particle filter already creates beliefs for each human

in the vicinity of the robot, only the Velocity Costmap of the closest person is used. As

described earlier, several Velocity Costmaps could be overlayed to restrict the sampling

space further based on the interaction between the robot and several people. The resulting

frozen robot problem in dense environments could be mitigated by weighting the costs in

the map based on the distance to the human meaning that lethal costs for a far away

human would not be lethal any more and would therefore allow the planner to violate the

desired QTC state in favour of performing its task until it comes close to this person. All

this, however, would require extensive evaluation and maybe even an adjustment of the

underlying qualitative model to be better suitable for group interactions.

HRSI is a vast field encompassing interactions like guiding, following, approaching, or

accomplishing a joint task like carrying a large object between human and robot. This

work focuses on the sub-field of human-aware navigation due to the requirements of the

STRANDS project, but it would be interesting to investigate how it behaves in other

scenarios. In principle the learned model determines which behaviour is executed so there

is no reason why this approach would not work for, e.g. following a human along a corridor,

but since the intention of the robot is not known a-prior, i.e. it’s goal is decided by the

human while travelling, a different action encoding would have to be used and investigated.

In principle, however, the presented system should be able to express a wide variety of

interactions.
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Immediate future work will investigate different ways of knowledge acquisition, i.e.

dialogue. Motivated by a different European Project, this system or parts of it will be used

to influence the robot’s navigation based on information provided from natural language

processing for a robot deployed in a shopping mall. It will be investigated if QTC models

could be derived from verbal information and if these could be used to classify and predict

the interaction.

Finally, the presented system has not been deployed in a real-world application yet,

but is in a state where it could be. For the final deployment at the end of the STRANDS

project it will be integrated into the overall navigation approach to ensure safe and legible

navigation in the elder care home and/or the security setting.
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AMCL Adaptive Monte-Carlo Localisation. 62, 88, 90, 107, 138, 140

BVI Bristol Vision Institute. 64

CND Conditional Neighbourhood Diagram. VII, 45, 47–49, 52, 53, 80

DoF Degrees of Freedom. 17

DWA Dynamic Window Approach. 31, 110–118, 120, 126, 130–133, 136, 138, 153, 157,
159, 162, 169, 174, 175, 180, 202, 206

FoV Field of View. 16–18, 99, 105, 106

GBP Great Britain Pound. 65, 158

HCI Human-Computer Interaction. 36

HMM Hidden Markov Model. VII, VIII, 11, 31, 33, 35, 55–58, 70, 71, 80, 84, 85, 87, 91,
99, 102–105, 107, 108, 135, 139–141, 148, 167, 169, 177, 178, 200–203, 205

HRI Human-Robot Interaction. 1, 16, 17, 25, 26, 37, 89, 95, 162, 168

HRSI Human-Robot Spatial Interaction. VII, 2–8, 10, 11, 14, 15, 21, 22, 24–26, 28, 29,
31–36, 39–42, 48, 49, 52, 55, 57, 59, 60, 67, 70, 78, 80–87, 89, 91, 105, 113, 132, 135,
137, 162, 164, 167, 168, 170–175, 177–182, 199–201

L-CAS Lincoln Centre for Autonomous Systems Research. VIII, 15, 124, 127, 155

LED Light Emitting Diode. 17

LfD Learning from Demonstration. 6, 12, 29, 36, 38, 112, 133, 136, 153, 154, 163, 168,
176, 179, 181

MM Markov Model. 135, 139

MPO Moving Point Objects. VII, 41–43, 45, 47, 51–53, 84, 171, 175

NN Nearest Neighbour. 98, 107

NNJPDA Nearest Neighbour Joint Probabilistic Data Association. 98, 102, 107

PTU Pan-Tilt Unit. 17, 18, 95
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QSR Qualitative Spatial Relations. 4–6, 10–12, 34, 35, 39, 41, 51, 92, 108, 109, 112, 135,
136, 138–140, 164, 167, 170, 171, 173–176, 178, 179, 181, 202, 203, 205

QTC Qualitative Trajectory Calculus. VII, VIII, XI, 10–13, 34, 35, 41–43, 45–47, 49,
52–57, 59–61, 64, 66–68, 70, 74, 78–80, 84–93, 96, 99, 101–109, 111, 112, 117, 118,
120, 121, 124, 125, 127, 130, 132–138, 140, 141, 145, 149–156, 159, 165, 168, 169,
171–183, 200–203, 205

QTCB Qualitative Trajectory Calculus – Basic. VII, 10, 41, 43, 44, 47–50, 52, 54–57, 59,
67, 68, 74, 78–81, 83–86, 120, 122, 123, 125, 156, 177, 182, 200

QTCC Qualitative Trajectory Calculus – Double-Cross. VII, VIII, 10, 41, 44, 46–50, 52,
55–59, 67–71, 73, 74, 76–86, 89, 102, 103, 105, 122, 123, 125, 135, 145–147, 150, 165,
168, 173, 177, 178, 182, 200

QTCBC Qualitative Trajectory Calculus – Basic/Double-Cross. VII, 49–52, 55–57, 59,
60, 66–69, 71, 74, 77–79, 81–86, 102, 109, 113, 118, 122, 126, 131, 132, 135, 146–148,
150, 151, 156, 165, 167, 168, 173, 177, 178, 200, 201

QTCH Qualitative Trajectory Calculus – Human. 151, 152, 165, 168, 174, 177, 178, 180

RCC Region Connection Calculus. 34, 51, 52

ROI Region of Interest. 90, 93, 106

ROS Robot Operating System. VIII, 13, 19, 20, 80, 90–93, 95–99, 102, 107, 108, 110,
113, 119, 120, 132, 156, 169, 201, 202, 205

SIR Sampling Importance Resampling. 96, 141

SLAM Simultaneous Localisation And Mapping. VIII, 120, 132, 154

STRANDS Spatio-Temporal Representation and Activities for Cognitive Control in
Long-Term Scenarios. 14, 16, 20, 89, 105, 110, 124, 132, 149, 173, 182, 183, 203, 205

UUID Universally Unique Identifier. 98, 99, 102
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A
Publication List

The following is a comprehensive list of scientific publications that this thesis is based on
or are cited throughout the paper. The main contribution of each paper is briefly described
and the contribution of the author of this thesis is detailed to highlight the original work
undertake by Christian Dondrup. Only publications relevant to the presented work are
listed.

A.1 Probabilistic Qualitative Models for HRSI

Dondrup, Lichtenthäler & Hanheide (2014)

Dondrup, C., Lichtenthäler, C. & Hanheide, M., Hesitation signals
in human-robot head-on encounters: a pilot study, in ‘Proceedings
of the 2014 ACM/IEEE international conference on Human-robot
interaction’, (2014), ACM, pp. 154–155.

Dondrup, Lichtenthäler & Hanheide’s (2014) describes an expirment to find so-called
hesitation signals in HRSI. The hesitation signals are a sudden decrease in velocity of
the human participant when confronted with inconsistent robot behaviour. This feedback
could then be used as negative reward for possible reinforcement learning approaches.
The experiment conducted was a hypothetical restaurant scenario where human and robot
played th role of waiters in a confined shared space with the robot showing two different
behaviours, i.e. stop-and-wait to let the human pass and ignoring the human entirely.
Using this set-up hesitation signals could be found but there was no significant difference
between the two conditions.

Author contributions: Christian Dondrup contributed the implementation of the two
different behaviours, conducted the user study, and wrote the paper. Christina Licht-
enthäler evaluated the data of the user study and crated the graphics. Marc Hanheide
helped conceiving the idea and the experiment design, and proofread the paper.
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Dondrup, Bellotto & Hanheide (2014a)

Dondrup, C., Bellotto, N. & Hanheide, M., A probabilistic model of
human-robot spatial interaction using a qualitative trajectory calcu-
lus, in ‘2014 AAAI Spring Symposium Series’, 2014.

Dondrup, Bellotto & Hanheide’s (2014a) work describes the first approach of using
Qualitative Trajectory Calculus – Double-Cross (QTCC) in combination with a Hidden
Markov Model (HMM) to represent HRSI. The HMM is used to create valid state chains
even though the discrete nature of the input data produced by the robot’s sensors will
result in illegal QTC state chains because it was designed for continuous space.

Author contributions: Christian Dondrup contributed the implementation of the Qual-
itative Trajectory Calculus – Double-Cross (QTCC) in matlab and as a python library, the
implementation of the Hidden Markov Model (HMM) in python, the data collection, the
evaluation, and conducted the experiment and wrote the paper. Nicola Bellotto helped
with the definition of QTCC and proofread the paper. Marc Hanheide helped conceiving
the idea and implementing QTCC in matlab, helped creating the images, and proof read
the paper.

Dondrup, Bellotto & Hanheide (2014b)

Dondrup, C., Bellotto, N. & Hanheide, M., Social distance aug-
mented qualitative trajectory calculus for human-robot spatial in-
teraction, in ‘Robot and Human Interactive Communication, 2014
RO-MAN: The 23rd IEEE International Symposium on Robot and
Human Interactive Communication’, pp. 519–524, 2014.

Dondrup, Bellotto & Hanheide’s (2014b) work describes the first attempt of mod-
elling a distance threshold in QTC by combing the Qualitative Trajectory Calculus –
Basic (QTCB) and the Qualitative Trajectory Calculus – Double-Cross (QTCC) into the
Qualitative Trajectory Calculus – Basic/Double-Cross (QTCBC) using the HMM based
approach described by Dondrup, Bellotto & Hanheide (2014a).

Author contributions: Christian Dondrup contributed the implementation of all the
QTC variants used in matlab and as a python library, the implementation of the Hidden
Markov Model (HMM) in python, the data collection, the evaluation, and conducted the
experiment and wrote the paper. Nicola Bellotto helped with the definition of QTC and
proofread the paper. Marc Hanheide helped conceiving the idea, implementing QTCBC

in matlab, and proofread the paper.

Dondrup, Bellotto, Hanheide, Eder & Leonards (2015)

Dondrup, C., Bellotto, N., Hanheide, M., Eder, K. & Leonards, U.,
‘A computational model of human-robot spatial interactions based
on a qualitative trajectory calculus’, Robotics 4(1), 63–102, 2015.

Dondrup, Bellotto, Hanheide, Eder & Leonards’s (2015) work describes the entire effort
on using QTC for HRSI in one concise paper and evaluates its appropriateness for the use
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in human-aware navigation by showing that it can be used to reliably classify different
HRSI encounter from two separate and distinct experiments.

Author contributions: Christian Dondrup contributed the implementation of all the
QTC variants used in matlab and as a python library, the implementation of the Hidden
Markov Model (HMM) in python, the evaluation of the experiment data, conducted the
restaurant experiment, and wrote the paper. Nicola Bellotto helped with the definition of
QTC and proofread the paper. Kersting Eder and Ute Leonards conducted the “Bristol
experiment”, prepared the raw data, and proofread the paper. Marc Hanheide helped
conceiving the idea, implementing QTCBC in matlab, and proofread the paper.

A.2 People Perception and QTC State Generation

Dondrup, Bellotto, Jovan & Hanheide (2015)

Dondrup, C., Bellotto, N., Jovan, F. & Hanheide, M., Real-time
multisensor people tracking for human-robot spatial interaction, in
‘Workshop on Machine Learning for Social Robotics’, ICRA/IEEE,
(2015)

Dondrup, Bellotto, Jovan & Hanheide (2015) describe A modular and freely available
implementation for a multi-sensor Bayesian tracking framework in the Robot Operating
System (ROS). This frame work is able to produce people tracks in real-time at a frequency
of 30Hz and is able to produce incrementally updated QTC state chains for every of the
tracked persons.

Author contributions: Christian Dondrup contributed the implementation of the ROS
wrapper around the Bayesian tracking library, ported the upper body detector into ROS,
implemented the online QTC generation in the so-called QSR Lib, conducted the exper-
iment and evaluated the results, and wrote the paper. Nicola Bellotto contributed the
original implementation of the tracker and helped with its description. Ferdian Jovan
contributed the trajectory stitching component. Marc Hanheide helped conceiving the
idea and proofread the paper.

A.3 Constraint based HRSI Behaviour Generation

Dondrup & Hanheide (2016)

This paper has been published at the IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN 2016).

Dondrup, C. & Hanheide, M., Qualitative constraints for human-
aware robot navigation using velocity costmaps, in ‘IEEE Interna-
tional Symposium on Robot and Human Interactive Communica-
tion’, RO-MAN, (2016).
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Dondrup & Hanheide (2016) describe a novel approach to generate movement com-
mands for a mobile robot from Qualitative Spatial Relations (QSR). As a specific applica-
tion, the paper introduces Velocity Costmaps based on the Qualitative Trajectory Calcu-
lus (QTC) for human-aware navigation. These Velocity Costmaps are used as a so-called
critique function in the widely used and popular ROS implementation of the Dynamic
Window Approach (DWA) local planner for dynamic obstacle avoidance. The approach is
evaluated in simulation and as a proof of concept experiment on a non-holonomic mobile
robot.

Author contributions: Christian Dondrup contributed the implementation of the peo-
ple perception pipeline, the online QTC generation, Velocity Costmap generation, the
Velocity Costmap critique function in the DWA planner, conducted the experiment and
evaluated the results, and wrote the paper. Marc Hanheide helped conceiving the idea
and proofread the paper.

A.4 Other Publications

The papers in this section did not directly contribute to the thesis but had significant
involvement of the author and are, therefore, listed for the sake of completeness.

May, Dondrup & Hanheide (2015)

May, A. D., Dondrup, C. & Hanheide, M., Show me your moves!
Conveying navigation intention of a mobile robot to humans, in ‘2015
European Conference on Mobile Robots (ECMR)’, IEEE, pp. 1–6,
(2015).

May, Dondrup & Hanheide’s (2015) work evaluates the use of head movement, i.e.
joint attention, versus visual light indicators, adopting known principle of the automotive
industry, to convey navigational intent. Ina comprehensive study, they found that partic-
ipants preferred the visual light indicators over head movement and felt more comfortable
in this condition.

Author contributions: Alyxander May conducted the experiment, implemented the
different behaviours, evaluated the data, and wrote parts of the paper. Christian Dondrup
helped with the implementation of the visual light indicators and the head movement,
helped with the evaluation of the data, and wrote parts of the paper. Marc Hanheide
helped conceiving the idea, and wrote parts of the paper.

Lightbody, Dondrup & Hanheide (2015)

Lightbody, P., Dondrup, C. & Hanheide, M., ‘Make me a Sand-
wich! Intrinsic Human Identification from their Course of Action’,
in ICSR, pp. 1–4, 2015.

Lightbody, Dondrup & Hanheide’s (2015) work uses Qualitative Spatial Relations
(QSR) to classify interactants in a table top assembly task based on their course of ac-
tions. This work does not make use of QTC but uses the developed HMM framework from
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Chapter 3 which shows that it generalises to any kind of of QSR and not only QTC and
therefore proves its general applicability.

Author contributions: Peter Lightbody Implemented the detection, extended the track-
ing framework of Dondrup, Bellotto, Jovan & Hanheide (2015) to use 3D data, conducted
the study and evaluated the data, and wrote parts of the paper. Christian Dondrup con-
tributed the implementation of the Hidden Markov Model (HMM) in python, and the
2D tracking framework, helped with the evaluation, and wrote parts of the paper. Marc
Hanheide help conceiving the idea and implementing the software components, and wrote
parts of the paper.

Hebesberger, Dondrup, Körtner, Gisinger & Pripfl (2016)

Hebesberger, D., Dondrup, C., Körtner, T., Gisinger, C. & Pripfl,
J., Lessons learned from the deployment of a long-term autonomous
robot as companion in physical therapy for older adults with demen-
tia - A Mixed Methods Study, in ‘11th ACM/IEEE International
Conference on Human-Robot Interaction (HRI)”’, (2016).

Hebesberger, Dondrup, Körtner, Gisinger & Pripfl’s (2016) work investigates the use
of o mobile robot as therapeutic aid for physical exercise of Dementia patients. In these
so-called walking groups, the robot provides entertainment during phases where the par-
ticipants have to rest to distract them and help the more restless patients to focus. During
the walking phases the robot accompanies the group, playing old German hiking songs for
them to sing along and dance or sway. Evaluation shows that if the robot works reliably,
it is a great aid to therapists and improves the mood of the group significantly.

Author contributions: Denise Hebesberger annotated the walking groups, evaluated
the data, and wrote the paper. Christian Dondrup provided the implementation of the
walking group and remotely supervised each group to take care of possible errors that
might occur during, and wrote parts of the paper. Tobias Körtner helped with the data
evaluation. Christoph Gisinger and Jürgen Pripfl are the heads of the research group.

Gerling, Hebesberger, Dondrup, Körtner & Hanheide (2016)

Gerling, K., Hebesberger, D., Dondrup, C., Körtner, T. & Han-
heide, M., ‘Robotereinsatz in der Langzeitpflege – Fallstudie zum
Einsatz eines mobilen Roboters zur Unterstützung von Physiother-
apie’, Zeitschrift fr Gerontologie und Geriatrie, (2016). To appear.

Gerling, Hebesberger, Dondrup, Körtner & Hanheide’s (2016) describe the deployment
of a mobile robot, i.e. Henry, in an elder care home in Austria and describes the appli-
cations that the STRANDS project has implemented for this scenario and evaluates their
possible impact on an ageing society.

Author contributions: Katrin Gerling and Denise Hebesberger jointly wrote the pa-
per. Christian Dondrup was to varying degrees involved in the technical realisation of all
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of the tasks executed at the care home and took care of the robot remotely during the en-
tirety of the deployments, and provided some of the images. Tobias Körtner was involved
in all the deployments of the robot. Marc Hanheide was responsible for the organisation
of the deployments.
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All the mentioned ROS implementations are freely available and open source. Please find
a list of source code repositories and other useful links below. Additionally, videos and
a concise overview of the published systems can be found at http://www.dondrup.net

and instructions on how to configure your system to use the STRANDS repositories and
package servers for automated install of the system can be found at http://lncn.eu/

strands.

QSR Lib this library contains a collection of many different QSRs and also includes the
implementation of all the mentioned QTC variants provided by the author:
http://github.com/strands-project/strands_qsr_lib/tree/master/qsr_lib

QSR Learning All the learning approaches, i.e. HMMs and the Particle Filter, which
can be used with any kind of QSR not only QTC have been implemented by the
author and can be found at:
http://github.com/strands-project/strands_qsr_lib/tree/master/qsr_

prob_rep

People Perception The perception pipeline described in this work, has been imple-
mented into ROS by the author and can be found at:
http://github.com/strands-project/strands_perception_people

Automatic QTC state generation This module generates QTC states using the
input of above pipeline and validates them automatically. It has been implemented
by the author and can be found at:
http://github.com/strands-project/strands_hri/tree/hydro-devel/hrsi_

representation

State Prediction Using the state chains generated by above module and the particle
filter from the QSR learning library, are used in this module to generate the current
belief of the world. It also uses the learned conditional probability table to find the
next best action for the robot. This has been implemented by the author and can
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be found at:
http://github.com/strands-project/strands_hri/tree/hydro-devel/hrsi_

state_prediction

Velocity Costmap Server Using the next best robot action, this module generates
the Velocity Costmap which is sent to the DWA local planner. This has been
implemented by the author and can be found at:
http://github.com/strands-project/strands_hri/tree/hydro-devel/hrsi_

velocity_costmaps

DWA Local Planner The updated version of the DWA planner using Velocity
Costmaps has been modified by the author and can be found at:
http://github.com/strands-project/navigation/tree/indigo-devel/dwa_

local_planner
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Between-run QA
State your agreement with the following statements in the situation you just encountered.

*Required

Subject ID *

Situation *

 Pass-by

 Pass-crossing

I felt safe when I encountered the robot in this situation. *

1 2 3 4 5

fully DISagree fully agree

I felt comfortable when I encountered the robot in this situation. *

1 2 3 4 5

fully DISagree fully agree

I was able to follow my intended path with no disruption by the robot in this situation. *

1 2 3 4 5

fully DISagree fully agree

I had to slow down to let the robot pass *

1 2 3 4 5

Slowed down a lot and waited Had not to slow down signi�cantly

The robot behaved appropriately in this situation. *

1 2 3 4 5

fully DISagree fully agree

Please identify any problem you saw in this situation that made you feel less comfortable

Edit this form

C.1. Behaviour Generation Questionnaire Appendix C. Questionnaires

C.1 Behaviour Generation Questionnaire
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Powered by

and safe

 Robot made physical contact with me

 Robot was too fast

 Robot was too slow

 Robot came to close too me

 I was not sure where the robot was going

 The robot did not see me or ignored me

 Other: 

Any comment (by experimenter)

This form was created inside of Marc Hanheide.  

Report Abuse ­ Terms of Service ­ Additional Terms

Submit

Never submit passwords through Google Forms.

C.1. Behaviour Generation Questionnaire Appendix C. Questionnaires
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