59 research outputs found

    Noncommutative Bell polynomials, quasideterminants and incidence Hopf algebras

    Full text link
    Bell polynomials appear in several combinatorial constructions throughout mathematics. Perhaps most naturally in the combinatorics of set partitions, but also when studying compositions of diffeomorphisms on vector spaces and manifolds, and in the study of cumulants and moments in probability theory. We construct commutative and noncommutative Bell polynomials and explain how they give rise to Fa\`a di Bruno Hopf algebras. We use the language of incidence Hopf algebras, and along the way provide a new description of antipodes in noncommutative incidence Hopf algebras, involving quasideterminants. We also discuss M\"obius inversion in certain Hopf algebras built from Bell polynomials.Comment: 37 pages, final version, to appear in IJA

    Combinatorial Hopf algebras in quantum field theory I

    Full text link
    This manuscript stands at the interface between combinatorial Hopf algebra theory and renormalization theory. Its plan is as follows: Section 1 is the introduction, and contains as well an elementary invitation to the subject. The rest of part I, comprising Sections 2-6, is devoted to the basics of Hopf algebra theory and examples, in ascending level of complexity. Part II turns around the all-important Faa di Bruno Hopf algebra. Section 7 contains a first, direct approach to it. Section 8 gives applications of the Faa di Bruno algebra to quantum field theory and Lagrange reversion. Section 9 rederives the related Connes-Moscovici algebras. In Part III we turn to the Connes-Kreimer Hopf algebras of Feynman graphs and, more generally, to incidence bialgebras. In Section10 we describe the first. Then in Section11 we give a simple derivation of (the properly combinatorial part of) Zimmermann's cancellation-free method, in its original diagrammatic form. In Section 12 general incidence algebras are introduced, and the Faa di Bruno bialgebras are described as incidence bialgebras. In Section 13, deeper lore on Rota's incidence algebras allows us to reinterpret Connes-Kreimer algebras in terms of distributive lattices. Next, the general algebraic-combinatorial proof of the cancellation-free formula for antipodes is ascertained; this is the heart of the paper. The structure results for commutative Hopf algebras are found in Sections 14 and 15. An outlook section very briefly reviews the coalgebraic aspects of quantization and the Rota-Baxter map in renormalization.Comment: 94 pages, LaTeX figures, precisions made, typos corrected, more references adde

    The diagonal of a pointed coalgebra and incidence-like structure

    Get PDF

    Structure of the Malvenuto-Reutenauer Hopf algebra of permutations

    Get PDF
    We analyze the structure of the Malvenuto-Reutenauer Hopf algebra of permutations in detail. We give explicit formulas for its antipode, prove that it is a cofree coalgebra, determine its primitive elements and its coradical filtration, and show that it decomposes as a crossed product over the Hopf algebra of quasi-symmetric functions. In addition, we describe the structure constants of the multiplication as a certain number of facets of the permutahedron. As a consequence we obtain a new interpretation of the product of monomial quasi-symmetric functions in terms of the facial structure of the cube. The Hopf algebra of Malvenuto and Reutenauer has a linear basis indexed by permutations. Our results are obtained from a combinatorial description of the Hopf algebraic structure with respect to a new basis for this algebra, related to the original one via M\"obius inversion on the weak order on the symmetric groups. This is in analogy with the relationship between the monomial and fundamental bases of the algebra of quasi-symmetric functions. Our results reveal a close relationship between the structure of the Malvenuto-Reutenauer Hopf algebra and the weak order on the symmetric groups.Comment: 40 pages, 6 .eps figures. Full version of math.CO/0203101. Error in statement of Lemma 2.17 in published version correcte

    Combinatorial Hopf algebras and generalized Dehn-Sommerville relations

    Get PDF
    A combinatorial Hopf algebra is a graded connected Hopf algebra over a field FF equipped with a character (multiplicative linear functional) ζ:H→F\zeta:H\to F. We show that the terminal object in the category of combinatorial Hopf algebras is the algebra QSymQSym of quasi-symmetric functions; this explains the ubiquity of quasi-symmetric functions as generating functions in combinatorics. We illustrate this with several examples. We prove that every character decomposes uniquely as a product of an even character and an odd character. Correspondingly, every combinatorial Hopf algebra (H,ζ)(H,\zeta) possesses two canonical Hopf subalgebras on which the character ζ\zeta is even (respectively, odd). The odd subalgebra is defined by certain canonical relations which we call the generalized Dehn-Sommerville relations. We show that, for H=QSymH=QSym, the generalized Dehn-Sommerville relations are the Bayer-Billera relations and the odd subalgebra is the peak Hopf algebra of Stembridge. We prove that QSymQSym is the product (in the categorical sense) of its even and odd Hopf subalgebras. We also calculate the odd subalgebras of various related combinatorial Hopf algebras: the Malvenuto-Reutenauer Hopf algebra of permutations, the Loday-Ronco Hopf algebra of planar binary trees, the Hopf algebras of symmetric functions and of non-commutative symmetric functions.Comment: 34 page
    • …
    corecore