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Abstract

We analyze the structure of the Malvenuto–Reutenauer Hopf algebra SSym of

permutations in detail. We give explicit formulas for its antipode, prove that it is a cofree

coalgebra, determine its primitive elements and its coradical filtration, and show that it

decomposes as a crossed product over the Hopf algebra of quasi-symmetric functions. In

addition, we describe the structure constants of the multiplication as a certain number of facets

of the permutahedron. As a consequence we obtain a new interpretation of the product of

monomial quasi-symmetric functions in terms of the facial structure of the cube. The Hopf

algebra of Malvenuto and Reutenauer has a linear basis indexed by permutations. Our results

are obtained from a combinatorial description of the Hopf algebraic structure with respect to

a new basis for this algebra, related to the original one via Möbius inversion on the weak order

on the symmetric groups. This is in analogy with the relationship between the monomial and

fundamental bases of the algebra of quasi-symmetric functions. Our results reveal a close

relationship between the structure of the Malvenuto–Reutenauer Hopf algebra and the weak

order on the symmetric groups.
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Introduction

Malvenuto [22] introduced the Hopf algebra SSym of permutations, which has a
linear basis fF u j uASn; nX0g indexed by permutations in all symmetric groups Sn:
The Hopf algebra SSym is non-commutative, non-cocommutative, self-dual, and
graded. Among its sub-, quotient-, and subquotient-Hopf algebras are many
algebras central to algebraic combinatorics. These include the algebra of symmetric
functions [21,33], Gessel’s algebra QSym of quasi-symmetric functions [13], the
algebra of non-commutative symmetric functions [12], the Loday–Ronco algebra
of planar binary trees [19], Stembridge’s algebra of peaks [34], the Billera–Liu algebra
of Eulerian enumeration [2], and others. The structure of these combinatorial Hopf
algebras with respect to certain distinguished bases has been an important theme in
algebraic combinatorics, with applications to the combinatorial problems these
algebras were created to study. Here, we obtain a detailed understanding of the
structure of SSym; both in algebraic and combinatorial terms.

Our main tool is a new basis fMu j uASn; nX0g for SSym related to the original
basis by Möbius inversion on the weak order on the symmetric groups. These bases
fMug and fF ug are analogous to the monomial basis and the fundamental basis of
QSym; which are related via Möbius inversion on their index sets, the Boolean
posets Qn: We refer to them as the monomial basis and the fundamental basis of
SSym:

We give enumerative-combinatorial descriptions of the product, coproduct, and
antipode of SSym with respect to the monomial basis fMug: In Section 3, we show
that the coproduct is obtained by splitting a permutation at certain special positions
that we call global descents. Descents and global descents are left adjoint and right
adjoint to a natural map Qn-Sn: These results rely on some non-trivial properties
of the weak order developed in Section 2.

The product is studied in Section 4. The structure constants are non-negative
integers with the following geometric-combinatorial description. The 1-skeleton of
the permutahedronPn�1 is the Hasse diagram of the weak order on Sn: The facets of
the permutahedron are canonically isomorphic to products of lower dimensional
permutahedra. Say that a facet isomorphic to Pp�1 �Pq�1 has type ðp; qÞ: Given

uASp and vASq; such a facet has a distinguished vertex corresponding to ðu; vÞ
under the canonical isomorphism. Then, for wASpþq; the coefficient of Mw in

Mu � Mv is the number of facets of the permutahedron Ppþq�1 of type ðp; qÞ
with the property that the distinguished vertex is below w (in the weak order) and
closer to w than any other vertex in the facet.

In Section 5 we find explicit formulas for the antipode with respect to both bases.
The structure constants with respect to the monomial basis have constant sign, as for
QSym: The situation is more complicated for the fundamental basis, which may
explain why no such explicit formulas were previously known.

Elucidating the elementary structure of SSym with respect to the monomial basis
reveals further algebraic structures of SSym: In Section 6, we show that SSym is a
cofree graded coalgebra. A consequence is that its coradical filtration (a filtration
encapsulating the complexity of iterated coproducts) is the algebraic counterpart of a
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filtration of the symmetric groups by certain lower order ideals. In particular, we
show that the space of primitive elements is spanned by the set fMu j u has no global
descentsg: Cofreenes was shown by Poirier and Reutenauer [28] in dual form,
through the introduction of a different basis. The study of primitive elements was
pursued from this point of view by Duchamp et al. [8]. The generating function for
the graded space of primitive elements is

1� 1P
nX0 n! xn

:

Comtet essentially studied the combinatorics of global descents [6, Exercise VI.14].
These results add an algebraic perspective to the pure combinatorics he
studied.

There is a well-known morphism of Hopf algebras SSym-QSym that maps one
fundamental basis onto the other, by associating to a permutation u its descent set
DesðuÞ: In Section 7, we describe this map on the monomial bases and then derive a
new geometric description for the product of monomial quasi-symmetric functions in
which the role of the permutahedron is played by the cube.

In Section 8 we show that SSym decomposes as a crossed product over QSym:
This construction from the theory of Hopf algebras is a generalization of the notion
of group extensions. We provide a combinatorial description for the Hopf kernel of
the map SSym-QSym; which is a subalgebra of SSym:

We study the self-duality of SSym in Section 9 and its enumerative consequences.
For instance, a result of Foata and Schützenberger [11] on the numbers

dðS;TÞ :¼ #fwASn jDesðwÞ ¼ S; Desðw�1Þ ¼ Tg

follows directly from this self-duality and we obtain analogous results for the
numbers

yðu; vÞ :¼ #fwASn j wpu; w�1pvg:

Most of the order-theoretic properties that underlie these algebraic results are
presented in Section 2. Central to these are the existence of two Galois connections
(involving descents and global descents) between the posets of permutations of ½n�
and of subsets of ½n � 1�; as well as the order properties of the decomposition of Sn

into cosets of Sp � Sq:

1. Basic definitions and results

We use only elementary properties of Hopf algebras, as given in the book [26]. Our
Hopf algebras H will be graded connected Hopf algebras over Q: Thus the Q-
algebra H is the direct sum "fHn j n ¼ 0; 1;yg of its homogeneous components
Hn; with H0 ¼ Q; the product and coproduct respect the grading, and the counit is
projection onto H0:
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Throughout, n is a non-negative integer and ½n� denotes the set f1; 2;y; ng: A
composition a of n is a sequence a ¼ ða1;y; akÞ of positive integers with n ¼
a1 þ a2 þ?þ ak: To a composition a of n; we associate the set IðaÞ :¼ fa1; a1 þ
a2;y; a1 þ?þ ak�1g: This gives a bijection between compositions of n and subsets
of ½n � 1�: Compositions of n are partially ordered by refinement. The cover relations
are of the form

ða1;y; ai þ aiþ1;y; akÞ } ða1;y; akÞ:

Under the association a2IðaÞ; refinement corresponds to set inclusion, so we
simply identify the poset of compositions with the Boolean poset Qn of subsets
of ½n � 1�:

Let Sn be the group of permutations of ½n�: We use one-line notation for
permutations, writing u ¼ ðu1; u2;y; unÞ where ui ¼ uðiÞ: Sometimes we may omit
the commas and write u ¼ u1yun: A permutation u has a descent at a position p if
up4upþ1: An inversion in a permutation uASn is a pair of positions 1piojpn with

ui4uj: The set of descents and inversions are denoted by DesðuÞ and InvðuÞ;
respectively. The length of a permutation u is cðuÞ ¼ #InvðuÞ:

Given p; qX0; we consider the product Sp � Sq to be a subgroup of Spþq; where

Sp permutes ½p� and Sq permutes fp þ 1;y; p þ qg: For uASp and vASq; write

u � v for the permutation in Spþq corresponding to ðu; vÞASp � Sq under this

embedding.
More generally, given a subset S ¼ fp1o?opkg of ½n � 1�; we have the

(standard) parabolic or Young subgroup

SS :¼ Sp1 � Sp2�p1 �?� Sn�pk
D Sn:

The notation SS suppresses the dependence on n; which will either be understood or
will be made explicit when this is used.

Lastly, we use
‘

to denote disjoint union.

1.1. The Hopf algebra of permutations of Malvenuto and Reutenauer

Let SSym be the graded vector space over Q with basis
‘

nX0 Sn; graded by

n: This vector space has a graded Hopf algebra structure first considered
in Malvenuto’s thesis [22, Section 5.2] and in her work with Reutenauer [23].
(In [8], it is called the algebra of free quasi-symmetric functions.) Write F u for
the basis element corresponding to uASn for n40 and 1 for the basis element of
degree 0:

The product of two basis elements is obtained by shuffling the corresponding
permutations, as in the following example.

F 12 � F 312 ¼F 12534 þ F 15234 þ F 15324 þ F 15342 þF 51234

þ F 51324 þ F 51342 þ F 53124 þ F 53142 þF 53412:
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More precisely, for p; q40; set

Sðp;qÞ :¼fzASpþq j z has at most one descent; at position pg

¼fzASpþq j z1o?ozp; zpþ1o?ozng:

This is the collection of minimal (in length) representatives of left cosets of Sp � Sq

in Spþq: In the literature, they are sometimes referred to as ðp; qÞ-shuffles, but

sometimes it is the inverses of these permutations that carry that name. We will refer
to them as Grassmannian permutations. With these definitions, we describe the
product. For uASp and vASq; set

F u � F v ¼
X

zASðp;qÞ

F ðu�vÞ�z�1 : ð1:1Þ

This endows SSym with the structure of a graded algebra with unit 1.
The algebra SSym is also a graded coalgebra with coproduct given by all ways of

splitting a permutation. For a sequence ða1;y; apÞ of distinct integers, let its

standard permutation2 stða1;y; apÞASp be the permutation u defined by

uiouj 3 aioaj: ð1:2Þ

For instance, stð625Þ ¼ 312: The coproduct D:SSym-SSym#SSym is defined
by

DðF uÞ ¼
Xn

p¼0

F stðu1; y; upÞ#F stðupþ1; y; unÞ; ð1:3Þ

when uASn: For instance, DðF 42531Þ is

1#F 42531 þF 1#F 2431 þ F 21#F 321 þ F 213#F 21 þ F 3142#F 1 þ F 42531#1:

SSym is a graded connected Hopf algebra [22, Théorème 5.4].
We refer to the set fF ug as the fundamental basis of SSym: The main goal of this

paper is to obtain a detailed description of the Hopf algebra structure of SSym:
To this end, the definition of a second basis for SSym (in Section 1.3) will prove
crucial.

This Hopf algebra SSym of Malvenuto and Reutenauer has been an object of
recent interest [7,8,16,19,20,23,27–29]. We remark that sometimes it is the dual Hopf
algebra that is considered. To compare results, one may use that SSym is self-dual
under the map F u/F�

u�1 ; where F�
u�1 is the element of the dual basis that is dual to

F u�1 : We explore this further in Section 9.
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1.2. The Hopf algebra of quasi-symmetric functions

Basic references for quasi-symmetric functions are [29, 9.4] and [33, Section 7.19];
however, everything we need will be reviewed here.

The algebra QSym of quasi-symmetric functions is a subalgebra of the algebra of
formal power series in countably many variables x1; x2;y: It has a basis of
monomial quasi-symmetric functions Ma indexed by compositions a ¼ ða1;y; akÞ;
where

Ma :¼
X

i1o?oik

x
a1
i1

x
a2
i2
?x

ak
ik
:

The product of these monomial functions is given by quasi-shuffles of their
indices. A quasi-shuffle of compositions a and b is a shuffle of the components of a
and b; where in addition we may replace any number of pairs of consecutive
components ðai; bjÞ in the shuffle by ai þ bj: Then we have

Ma � Mb ¼
X
g

Mg; ð1:4Þ

where the sum is over all quasi-shuffles g of the compositions a and b: For instance,

Mð2Þ � Mð1;1Þ ¼ Mð1;1;2Þ þ Mð1;2;1Þ þ Mð2;1;1Þ þ Mð1;3Þ þ Mð3;1Þ: ð1:5Þ

The unit element is indexed by the empty composition 1 ¼ Mð Þ:

Let X and Y be two countable ordered sets and X
‘

Y its disjoint union, totally
ordered by XoY : Then D:f ðXÞ/f ðX

‘
Y Þ gives QSym the structure of a

coalgebra. In terms of the monomial quasi-symmetric functions, we have

DðMða1;y;akÞÞ ¼
Xk

p¼0

Mða1;y;apÞ#Mðapþ1;y;akÞ: ð1:6Þ

For instance, DðMð2;1ÞÞ ¼ 1#Mð2;1Þ þ Mð2Þ#Mð1Þ þ Mð2;1Þ#1:

The algebra of quasi-symmetric functions was introduced by Gessel [13]. Its
Hopf algebra structure was introduced by Malvenuto [22, Section 4.1]. The
description of the product in terms of quasi-shuffles can be found in [15] and is
equivalent to [10, Lemma 3.3]. A q-version of this construction appears in [15] and in
[36, Section 5].

The algebra QSym is a graded connected Hopf algebra whose component in
degree n is spanned by those Ma with a a composition of n: Malvenuto [22,
Corollaire 4.20] and Ehrenborg [10, Proposition 3.4] independently gave an explicit
formula for the antipode

SðMaÞ ¼ ð�1ÞcðaÞ X
bpa

Meb: ð1:7Þ
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Here, cðaÞ is the number of components of a; and if b ¼ ðb1; b2;y; btÞ then ebb is b
written in reverse order ðbt;y; b2; b1Þ:

Gessel’s fundamental quasi-symmetric function Fa is defined by

Fa ¼
X
apb

Mb:

By Möbius inversion, we have

Ma ¼
X
apb

ð�1ÞcðbÞ�cðaÞ
Fb:

Thus the set fFag forms another basis of QSym:
It is sometimes advantageous to index these monomial and fundamental quasi-

symmetric functions by subsets of ½n � 1�: Accordingly, given a composition a of n

with S ¼ IðaÞ; we define

FS :¼ Fa and MS :¼ Ma:

The notation FS suppresses the dependence on n; which will be usually understood
from the context; otherwise it will be made explicit by writing FS;n:

In terms of power series,

FS ¼
X

i1pi2p?pin
pAS)ipoipþ1

xi1xi2?xin : ð1:8Þ

We mention that there is an analogous realization of the Malvenuto–Reutenauer
Hopf algebra as a subalgebra of an algebra of non-commutative power series, due to
Duchamp, Hivert, and Thibon. To this end, one defines

F u ¼
X

i1pi2p?pin
pADesðuÞ)ipoipþ1

xiu�1ð1Þxiu�1ð2Þ?xiu�1ðnÞ : ð1:9Þ

This is discussed in [8, Section 3.1], in slightly different terms. In this realization,
the coproduct of SSym is induced by the ordinal sum of commuting alphabets
[8, Proposition 3.4].

1.3. The monomial basis of the Malvenuto–Reutenauer Hopf algebra

The descent set of a permutation uASn is the subset of ½n � 1� recording the
descents of u

DesðuÞ :¼ fpA½n � 1� j up4upþ1g: ð1:10Þ
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Thus Desð46512837Þ ¼ f2; 3; 6g: Malvenuto [22, Théorèmes 5.12, 5.13, and 5.18]
shows that there is a morphism of Hopf algebras

D : SSym - QSym

F u / FDesðuÞ:
ð1:11Þ

(This is equivalent to Theorem 3.3 in [23].) This explains our name and notation for
the fundamental basis of SSym: This map extends to power series, where it is simply
the abelianization: there is a commutative diagram

SSym + k/x1; x2;yS

Dk kab

QSym + k½x1; x2;y�

This is evident from (1.8) and (1.9). It is easy to see, however, that D is not the
abelianization of SSym:

In analogy to the basis of monomial quasi-symmetric functions, we define a new
monomial basis fMug for the Malvenuto-Reutenauer Hopf algebra. For each nX0
and uASn; let

Mu :¼
X
upv

mSn
ðu; vÞ � F v; ð1:12Þ

where upv in the weak order in Sn (described in Section 2) and mSn
is the Möbius

function of this partial order. By Möbius inversion,

F u :¼
X
upv

Mv; ð1:13Þ

so these elements Mu indeed form a basis of SSym: For instance,

M4123 ¼ F 4123 � F 4132 � F 4213 þ F 4321:

We will show that Mu maps either to MDesðuÞ or to 0 under the map

D:SSym-QSym:

2. The weak order on the symmetric group

Let InvðuÞ be the set of inversions of a permutation uASn;

InvðuÞ :¼ fði; jÞA½n� � ½n� j ioj and ui4ujg:

The inversion set determines the permutation. Given u and vASn; we write upv if
InvðuÞDInvðvÞ: This defines the left weak order on Sn: Fig. 1 shows the (left) weak
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order on S4: The weak order has another characterization

upv 3 (wASn such that v ¼ wu and cðvÞ ¼ cðwÞ þ cðuÞ;

where cðuÞ is the number of inversions of u: The cover relations u}v occur when w is
an adjacent transposition. Thus, u}v precisely when v is obtained from u by
transposing a pair of consecutive values of u; a pair ðui; ujÞ such that ioj

and uj ¼ ui þ 1: The identity permutation 1n is the minimum element of Sn and

on ¼ ðn;y; 2; 1Þ is the maximum.
This weak order is a lattice [14], whose structure we describe. First, a set J is the

inversion set of a permutation in Sn if and only if both J and its complement
InvðonÞ � J are transitively closed (ði; jÞAJ and ðj; kÞAJ imply ði; kÞAJ; and the same
for its complement). The join (least upper bound) of two permutations u and vASn is
the permutation u3v whose inversion set is the transitive closure of the union of the
inversion sets of u and v

fði; jÞ j ( chain i ¼ k0o?oks ¼ j s:t: 8r; ðkr�1; krÞAInvðuÞ,InvðvÞg: ð2:1Þ

Similarly, the meet (greatest lower bound) of u and v is the permutation u4v whose
inversion set is

fði; jÞ j 8 chains i ¼ k0o?oks ¼ j; (r s:t: ðkr�1; krÞAInvðuÞ-InvðvÞg: ð2:2Þ

The Möbius function of the weak order takes values in f�1; 0; 1g: Explicit des-
criptions can be found in [3, Corollary 3] or [9, Theorem 1.2]. We will not need that
description, but will use several basic facts on the weak order that we develop here.
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Fig. 1. The weak order on S4:
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2.1. Grassmannian permutations and the weak order

In Section 1, we defined Sðp;qÞ to be the set of minimal (in length) representatives
of (left) cosets of Sp � Sq in the symmetric group Spþq: Thus the map

l : Sðp;qÞ � Sp � Sq - Spþq

ðz; u; vÞ / z � ðu � vÞ

is a bijection. We leave the following description of the inverse to the reader.

Lemma 2.1. Let wASpþq; and set z :¼ w � ðstðw1;y;wpÞ � stðwpþ1;y;wpþqÞÞ�1:

Then zASðp;qÞ and l�1ðwÞ ¼ ðz; stðw1;y;wpÞ; stðwpþ1;y;wpþqÞÞ:

We describe the order-theoretic properties of this decomposition into cosets.
The first step is to characterize the inversion sets of Grassmannian permutations. A
subset J of ½p� � ½q� is cornered if ðh; kÞAJ implies that ði; jÞAJ whenever 1piph and
1pjpk: The reason for this definition is that a set I is the inversion set of a

Grassmannian permutation zASðp;qÞ if and only if

ðiÞ IDf1;y; pg � fp þ 1;y; p þ qg; and

ðiiÞ the shifted set fðp þ 1� i; j � pÞ j ði; jÞAIgD½p� � ½q� is cornered:
ð2:3Þ

Given an arbitrary subset J of ½p� � ½q�; let crðJÞ denote the smallest cornered subset
containing J: Denote the obvious action of ðu; vÞASp � Sq on a subset J of ½p� � ½q�
by ðu; vÞðJÞ:

Lemma 2.2. Let J be a cornered subset of ½p� � ½q� and uASp and vASq any

permutations. Then

J D crððu; vÞðJÞÞ:

Proof. Let ði; jÞAJ: The set fuðhÞ j 1phpig has i elements. Hence there is a number
h such that 1phpi and uðhÞXi: Similarly there is number k such that 1pkpj and
vðkÞXj: Since J is cornered, ðh; kÞAJ: Hence ðuðhÞ; vðkÞÞAðu; vÞðJÞ: By construction,
ipuðhÞ and jpvðkÞ; so ði; jÞAcrððu; vÞðJÞÞ; as needed. &

Denote the diagonal action of wASn on a subset I of ½n� � ½n� by wðIÞ: Suppose
w ¼ u � vASp � Sq and IDf1;y; pg � fp þ 1;y; p þ qg: Let J be the result of

shifting I ; as in (2.3)(ii). It is easy to see that the result of shifting ðu � vÞðIÞ is
ðũ; vÞðJÞ; where ũðiÞ ¼ p þ 1� uðp þ 1� iÞ:

Corollary 2.3. Let z and z0ASðp;qÞ be Grassmannian permutations, and uASp and

vASq be permutations. If ðu � vÞðInvðzÞÞDInvðz0Þ then zpz0:
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Proof. We show that InvðzÞDInvðz0Þ: Let J and J 0 be the corresponding shifted sets.
According to the previous discussion and the hypothesis, ðũ; vÞðJÞDJ 0: Hence
crððũ; vÞðJÞÞDJ 0; since J 0 is cornered. By Lemma 2.2, JDcrððũ; vÞðJÞÞ; so JDJ 0: This
implies the inclusion of inversion sets, as needed. &

The following lemma is straightforward.

Lemma 2.4. Let zASðp;qÞ; uASp; vASq and w :¼ z � ðu � vÞASpþq: There is a

decomposition of InvðwÞ into disjoint subsets

InvðwÞ ¼ InvðuÞ
a

ðp; pÞ þ InvðvÞð Þ
a

ðu�1 � v�1Þ InvðzÞð Þ:

We deduce some order-theoretic properties of the decomposition into left cosets.

Define zp;q to be the permutation of maximal length in Sðp;qÞ; so that

zp;q :¼ ðq þ 1; q þ 2; y; q þ p; 1; 2;y; qÞ:

Proposition 2.5. Let l:Sðp;qÞ � Sp � Sq-Spþq be the bijection

lðz; u; vÞ ¼ z � ðu � vÞ:

Then

(i) l�1 is order preserving. That is,

z � ðu � vÞ p z0 � ðu0 � v0Þ ) zpz0; u p u0; and v p v0:

(ii) l is order preserving when restricted to any of the following sets

fzp;qg � Sp � Sq; f1pþqg � Sp � Sq; or Sðp;qÞ � fðu; vÞg;

for any uASp; vASq:

Proof. Let w ¼ z � ðu � vÞ and w0 ¼ z0 � ðu0 � v0Þ: Suppose wpw0; so that
InvðwÞDInvðw0Þ: By Lemma 2.4, we have InvðuÞDInvðu0Þ; InvðvÞDInvðv0Þ; and

ðu00 � v00ÞðInvðzÞÞDInvðz0Þ; where u00 :¼ u0u�1 and v00 :¼ v0v�1: Therefore, upu0; vpv0;
and by Corollary 2.3, zpz0: This proves ðiÞ:

Statement (ii) follows by a similar application of Lemma 2.4, noting that

Invðzp;qÞ ¼ f1;y; pg � fp þ 1;y; ng and Invð1pþqÞ ¼ | are invariant under any

permutation in Sp � Sq: &

Since Grassmannian permutations in Sðp;qÞ are left coset representatives of
Sp � Sq in Spþq; their inverses are right coset representatives. We discuss order-

theoretic properties of this decomposition into right cosets.
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Given a subset J of ½n� � ½n�; let

eJJ ¼ fðj; iÞ j ði; jÞAJg:

We have the following key observation about the diagonal action of Sn on subsets of
½n� � ½n�:

Lemma 2.6. For any uASn; we have uð gInvðuÞInvðuÞÞ ¼ Invðu�1Þ:

Proof. Note that u�1ðuiÞ ¼ i: Thus Invðu�1Þ ¼ fuhouk j h4kg: Then

u�1ðInvðu�1ÞÞ ¼ fðh; kÞ j koh and uk4uhg ¼ gInvðuÞInvðuÞ: &

Proposition 2.7. Fix zASðp;qÞ and consider the map rz : Sp � Sq-Spþq given by

rzðu; vÞ ¼ ðu � vÞ � z�1:

Then rz is a convex embedding in the sense that

(a) rz is injective;

(b) rz is order-preserving: upu0 and vpv0 3 rzðu; vÞprzðu0; v0Þ;
(c) rz is convex: If rzðu; vÞpwprzðu0; v0Þ; for some u; u0ASp and v; v0ASq; then there

are u00ASp and v00ASq with w ¼ rzðu00; v00Þ:

It follows that

(d) rz preserves meets and joins.

Proof. Assertion (a) is immediate. Set w :¼ ðu � vÞ � z�1 ¼ rzðu; vÞ: Then w�1 ¼
z � ðu�1 � v�1Þ: By Lemmas 2.4 and 2.6, we have

InvðwÞ ¼w�1ð gInvðw�1ÞInvðw�1ÞÞ

¼ z � ðu�1 � v�1Þ gInvðu�1ÞInvðu�1Þ, ðp; pÞ þ gInvðv�1ÞInvðv�1Þ
� �

,ðu � vÞ gInvðzÞInvðzÞ
� �� �

¼ z InvðuÞ,ððp; pÞ þ InvðvÞÞ, gInvðzÞInvðzÞ
� �

:

Assertion (b) follows from this and the characterization of the weak order in terms of
inversion sets.

For (c), decompose w ¼ ðu00 � v00Þ � x�1: By assumption,

z gInvðzÞInvðzÞ
� �

D x gInvðxÞInvðxÞ
� �

D z gInvðzÞInvðzÞ
� �

:

Then z ¼ x by Lemma 2.6, so w ¼ rzðu00; v00Þ as needed. &
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2.2. Cosets of parabolic subgroups and the weak order

Write a subset S of ½n � 1� as S ¼ fp1o?opkg: In Section 1, we defined the
parabolic subgroup

SS ¼ Sp1 � Sp2�p1 �?� Sn�pk
D Sn:

Let SS be the set of minimal (in length) representatives of left cosets of SS in Sn;

SS ¼ fzASn jDesðzÞDSg:

Grassmannian permutations are the special case Sðp;n�pÞ ¼ Sfpg:

Let zS be the permutation of maximal length in SS;

zS :¼ ðn � p1 þ 1;y; n; n � p2 þ 1;y; n � p1;y; 1;y; n � pkÞ: ð2:4Þ

We record the following facts about these coset representatives:

Lemma 2.8. SS is an interval in the weak order of Sn: The minimum element is the

identity 1n and the maximum is zS:

Our proofs rely upon the following basic fact. Suppose p; q are positive integers
and T is a subset of ½p � 1�: Define the subset S of ½p þ q � 1� to be T,fpg: Then
ðz; z0Þ/z � ðz0 � 1qÞ defines a bijection

Sðp;qÞ � ST - SS: ð2:5Þ

The maximum elements are preserved under this map

zp;q � ðzT � 1qÞ ¼ zS: ð2:6Þ

The analog of Proposition 2.5 for this decomposition of Sn into left cosets of SS

follows from Proposition 2.5 by induction using (2.5) and (2.6).

Proposition 2.9. Suppose S is a subset of ½n � 1�: Let l:SS � SS-Sn be the bijection

lðz; uÞ ¼ z � u:

Then l�1 is order preserving, while l is order preserving when restricted to any of the

following sets:

fzSg � SS; f1ng � SS; or SS � fug; for any uASS:

We state the analog of Proposition 2.7.

ARTICLE IN PRESS
M. Aguiar, F. Sottile / Advances in Mathematics 191 (2005) 225–275 237



Proposition 2.10. Let S be a subset of ½n � 1�: Fix zASS and consider the map

rz:SS-Sn given by

rzðuÞ ¼ u � z�1:

Then rz is a convex embedding. In particular, it preserves meets and joins.

2.3. Descents

Let Qn denote the Boolean poset of subsets of ½n � 1�; which we identify with the
poset of compositions of n: We have the descent map Des : Sn-Qn given by
u/DesðuÞ; the descent set (1.10) of u: Let Z : Qn-Sn be the map defined by
S/zS; the maximum left coset representative of SS as in (2.4).

A Galois connection between posets P and Q is a pair ðf ; gÞ of order preserving
maps f :P-Q and g:Q-P such that for any xAP and yAQ;

f ðxÞpy 3 x p gðyÞ: ð2:7Þ

Proposition 2.11. The pair of maps ðDes;ZÞ : Sn$Qn is a Galois connection.
(See Fig. 2.)

Proof. We verify that

(a) Des :Sn-Qn is order preserving;
(b) Z:Qn-Sn is order preserving;
(c) Des3Z ¼ idQn ;
(d) ZðSÞ ¼ maxfuASn jDesðuÞ ¼ Sg:

First of all, the map Des is order preserving simply because p is a descent of u if
and only if ðp; p þ 1ÞAInvðuÞ: This is (a). The remaining assertions follow
immediately from

zS ¼maxfuASn jDesðuÞDSg

¼maxfuASn jDesðuÞ ¼ Sg;

which we know from Lemma 2.3.
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Condition (2.7) follows formally. In fact, suppose T ¼ DesðuÞDS: Then by (d),
upZðTÞ; and by (b), ZðTÞpZðSÞ; so upZðSÞ: Conversely, suppose upZðSÞ: Then
by (a) and (c), DesðuÞDDesðZðSÞÞ ¼ S: &

The Galois connection is why the monomial basis of SSym is truly analogous to
that of QSym; and explains why we consider the weak order rather than any other
order on Sn: The connection between the monomial bases of these two algebras will
be elucidated in Theorem 7.3 using the previous result.

2.4. Global descents

Definition 2.12. A permutation uASn has a global descent at a position pA½n � 1� if

8 ipp and jXp þ 1 ; ui4uj :

Equivalently, if fu1;y; upg ¼ fn; n � 1;y; n � p þ 1g: Let GDesðuÞD½n � 1� be the

set of global descents of u: Note that GDesðuÞDDesðuÞ; but these are not equal in
general.

In Section 2.3 we showed that the descent map Des :Sn-Qn is left adjoint to the
map Z:Qn-Sn; in the sense that the pair ðDes;ZÞ forms a Galois connection, as in
Proposition 2.11. That is, for uASn and SAQn;

DesðuÞ D S 3 u p ZðSÞ ¼ zS: ð2:8Þ

The notion of global descents is a very natural companion of that of (ordinary)
descents, in that the map GDes :Sn-Qn is right adjoint to Z:Qn-Sn:

Proposition 2.13. The pair of maps ðZ;GDesÞ : Qn$Sn is a Galois connection.

Proof. We already know that Z is order preserving. So is GDes; because p is a global
descent of a permutation u if and only if ði; jÞAInvðuÞ for every ipp; jXp þ 1: It
remains to check that

zS p u 3 S D GDesðuÞ: ð2:9Þ

As in the proof of Proposition 2.11, this follows from

zS ¼minfuASn jGDesðuÞDSg

¼minfuASn jGDesðuÞ ¼ Sg;

which is clear from the definition of zS: &
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We turn to properties of the decomposition of Sn into left cosets of SS related to

the notion of global descents. Recall that Sðp;qÞ is a set of representatives for the left
cosets of Sp � Sq in Spþq; and that zp;q ¼ ðq þ 1; q þ 2;y; q þ p; 1; 2;y; qÞ:

Lemma 2.14. Suppose p; q are non-negative integers and let wASpþq: Then

pAGDesðwÞ 3 w � zp;q modSp � Sq 3 wXzp;q:

Proof. First suppose that wASpþq is in the same left coset of Sp � Sq as is zp;q:

Thus, there are permutations uASp and vASq such that

w ¼ zp;q � ðu � vÞ:

If ipp; then uiAf1;y; pg and thus wiAfq þ 1;y; q þ pg; so p is a global descent of
w as needed.

For the other direction, suppose p is a global descent of w and set

%w :¼ z�1
p;q � w ¼ ðp þ 1; p þ 2;y; p þ q ; 1; 2;y; pÞ � w:

Let 1pipp: By assumption, wiAfq þ 1;y; q þ pg: Hence %wiAf1;y; pg; which
means that %w ¼ u � v for some uASp and vASq; as needed.

Noting that zp;q is a minimal coset representative and that the map l�1 is order

preserving (Proposition 2.5(a)) proves the second equivalence. &

For any subset S of ½n � 1�; we have the left coset map l:SS � SS-Sn of
Section 2.2. Given a permutation uASn; consider its ‘projection’ uS to SS; which is

defined to be the second component of l�1ðuÞ: That is, l�1ðuÞ ¼ ðz; uSÞ for some

permutation zASS: If S ¼ fp1op2o?opkg; then by Lemma 2.1,

uS ¼ stðu1;y; up1Þ � stðup1þ1;y; up2Þ �?� stðupkþ1;y; unÞ: ð2:10Þ

In particular, u| ¼ u and u½n�1� ¼ 1n:We relate this projection to the order and lattice

structure of Sn: For ioj; let ½i; jÞ :¼ fi; i þ 1;y; j � 1g:

Lemma 2.15. For any uASn and subset S of ½n � 1�;

InvðuSÞ ¼ fði; jÞAInvðuÞ j ½i; jÞ-S ¼ |g:

In particular, uSpu:

Proof. Let ioj be integers in ½n�: Suppose that there is an element pAS with ippoj:
Since SSDSp � Sn�p; we have uSASp � Sn�p; and so uSðiÞouSð jÞ: Thus

ði; jÞeInvðuSÞ: Suppose now that ½i; jÞ-S ¼ |: Then there are consecutive elements
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p and q of S such that poiojpq: By (2.10),

uSðiÞ ¼ p þ stðupþ1;y; uqÞðiÞ and uSð jÞ ¼ p þ stðupþ1;y; uqÞð jÞ:

By (1.2), this implies that

uSðiÞ4uSð jÞ 3 uðiÞ 4 uð jÞ;

and thus ði; jÞAInvðuSÞ 3 ði; jÞAInvðuÞ: This completes the proof. &

Proposition 2.16. Let u; vASn and S;T be subsets of ½n � 1�: Then

(i) If upv then uSpvS and if TDS then uTXuS:
(ii) uS4vT ¼ ðu4vÞS,T;

(iii) If SDGDesðvÞ and TDGDesðuÞ; then uS3vT ¼ ðu3vÞS-T:

Proof. The first statement is an immediate consequence of Lemma 2.15. For the
second, we use (2.2) to show that InvðuS4vTÞ ¼ Invððu4vÞS,TÞ:

First, suppose ði; jÞAInvððu4vÞS,TÞ: Then by Lemma 2.15 and (2.2), we have

½i; jÞ-ðS,TÞ ¼ |; and given a chain i ¼ k0o?oks ¼ j; there is an index r such that

ðkr�1; krÞAInvðuÞ-InvðvÞ: Hence we also have ½kr�1; krÞ-ðS,TÞ ¼ |; and thus
ðkr�1; krÞAInvðuSÞ-InvðvTÞ: Thus ði; jÞAInvðuS4vTÞ:

We show the other inclusion. Let ði; jÞAInvðuS4vTÞ: Considering the chain ioj;

we must have ði; jÞAInvðuSÞ-InvðvTÞ: In particular, ½i; jÞ-ðS,TÞ ¼ |: On the other
hand, for any chain i ¼ k0o?oks ¼ j there is an index r such that
ðkr�1; krÞAInvðuSÞ-InvðvTÞ: Since this is a subset of InvðuÞ-InvðvÞ; we have

ði; jÞAInvðu4vÞ: Together with ½i; jÞ-S,T ¼ |; we see that ði; jÞAInvððu4vÞS,TÞ;
proving the second statement.

For the third statement, first note that statement ðiÞ implies that uSp
ðu3vÞSpðu3vÞS-T and similarly vTpðu3vÞS-T: Thus we have uS3vTpðu3vÞS-T:

To show the other inequality, we need the assumptions on S and T: With those
assumptions, we show Invððu3vÞS-TÞDInvðuS3vTÞ:

Suppose that SDGDesðvÞ and TDGDesðuÞ; so that S consists of global descents
of v and T consists of global descents of u: Let ði; jÞAInvððu3vÞS-TÞ: Then, by

Lemma 2.15 and (2.1), ½i; jÞ-S-T ¼ | and there is a chain i ¼ k0o?oks ¼ j such
that for every r; ðkr�1; krÞAInvðuÞ,InvðvÞ: We refine this chain so that every pair of
consecutive elements belongs to InvðuSÞ,InvðvTÞ:

If ½kr�1; krÞ-ðS,TÞ ¼ | then, by Lemma 2.15, ðkr�1; krÞAInvðuSÞ,InvðvTÞ and
this interval need not be refined. If however the intersection is not empty, then
choose any refinement

kr�1 ¼ k
ðrÞ
0 ok

ðrÞ
1 o?okðrÞ

sr
¼ kr;

with the property that each interval ½kðrÞ
t�1; k

ðrÞ
t Þ contains exactly one element of S or T;

but not an element of both. This is possible because ½i; jÞ-S-T ¼ |: We claim

that each pair ðkðrÞ
t�1; k

ðrÞ
t Þ is in InvðuSÞ,InvðvTÞ: In fact, if ½kðrÞ

t�1; k
ðrÞ
t Þ contains an
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element pAS; then that is a global descent of v; so ðkðrÞ
t�1; k

ðrÞ
t ÞAInvðvÞ: Thus

ðkðrÞ
t�1; k

ðrÞ
t ÞAInvðvTÞ; since ½kðrÞ

t�1; k
ðrÞ
t Þ-T ¼ | by our construction of the refinement.

Similarly, if ½kðrÞ
t�1; k

ðrÞ
t Þ contains an element of T; then ðkðrÞ

t�1; k
ðrÞ
t ÞAInvðuSÞ: We have

thus constructed a chain from i to j with the required property, which shows that
ði; jÞAInvðuS3vTÞ and completes the proof. &

We calculate the descents and global descents of some particular permutations.
The straightforward proof is left to the reader.

Lemma 2.17. Let uASp and vASq: Then

(i) Desðu � vÞ ¼ DesðuÞ,ðp þDesðvÞÞ;
(ii) GDesðu � vÞ ¼ p þGDesðvÞ;
(iii) Desðzp;q � ðu � vÞÞ ¼ DesðuÞ,fpg,ðp þDesðvÞÞ;
(iv) GDesðzp;q � ðu � vÞÞ ¼ GDesðuÞ,fpg,ðp þGDesðvÞÞ:

More generally, let uðiÞASpi
; i ¼ 1;y; k; S ¼ fp1; p1 þ p2;y; p1 þ?þ pk�1gD

½n � 1�: Then

(v) Desðuð1Þ �?� uðkÞÞ ¼
Sk

i¼1 ðp1 þ?þ pi�1 þDesðuðiÞÞÞ;
(vi) GDesðuð1Þ �?� uðkÞÞ ¼ p1 þ?þ pk�1 þGDesðuðkÞÞ;
(vii) DesðzS � ðuð1Þ �?� uðkÞÞÞ ¼ S,

Sk
i¼1 ðp1 þ?þ pi�1 þDesðuðiÞÞÞ;

(viii) GDesðzS � ðuð1Þ �?� uðkÞÞÞ ¼ S,
Sk

i¼1 ðp1 þ?þ pi�1 þGDesðuðiÞÞÞ:

Lemma 2.18. Let uASn and SD½n � 1�: Then

SDGDesðuÞ 3 u ¼ zSuS:

Proof. The reverse implication follows from Lemma 2.17(viii). The other follows by
induction from Lemma 2.14 and (2.6). &

3. The coproduct of SSym

The coproduct of SSym (1.3) takes a simple form on the monomial basis. We
derive this formula using some results of Section 2. For a permutation uASn; define

GDesðuÞ to be GDesðuÞ,f0; ng:

Theorem 3.1. Let uASn: Then

DðMuÞ ¼
X

pAGDesðuÞ

Mstðu1;y;upÞ#Mstðupþ1;y;unÞ: ð3:1Þ
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Proof. Let D0:SSym-SSym#SSym be the map whose action on the monomial
basis is defined by the sum (3.1). We show that D0 is the coproduct D; as defined
by (1.3). We use the following notation. For wASn and 0pppn; let

w
p

ð1Þ :¼ stðw1;y;wpÞ and w
p

ð2Þ :¼ stðwpþ1;y;wnÞ: By virtue of Lemmas 2.1 and 2.14,

we have

v ¼ zp;n�p � ðvp

ð1Þ � v
p

ð2ÞÞ 3 pAGDesðvÞ:

Therefore,

D0ðF uÞ ¼
X
upv

D0ðMvÞ ¼
X
upv

X
pAGDesðvÞ

Mv
p

ð1Þ
#Mv

p

ð2Þ

¼
Xn

p¼0

X
upv

v¼zp;n�p�ðv p

ð1Þ�v
p

ð2ÞÞ

Mv
p

ð1Þ
#Mv

p

ð2Þ
¼
Xn

p¼0

X
v1; v2

upzp;n�p�ðv1�v2Þ

Mv1#Mv2 :

Write u ¼ z � ðup

ð1Þ � u
p

ð2ÞÞ for some zASðp;n�pÞ which depends on p: By

Proposition 2.5,

z � ðup

ð1Þ � u
p

ð2ÞÞpzp;n�p � ðv1 � v2Þ 3 u
p

ð1Þpv1 and u
p

ð2Þpv2:

Therefore,

D0ðF uÞ ¼
Xn

p¼0

X
v1; v2

u
p

ð1Þpv1;u
p

ð2Þpv2

Mv1#Mv2 ¼
Xn

p¼0

X
u

p

ð1Þpv1

Mv1#
X

u
p

ð2Þpv2

Mv2

¼
Xn

p¼0

F u
p

ð1Þ
#F u

p

ð2Þ
¼ DðF uÞ:

Remark 3.2. The action of the coproduct of SSym on the fundamental basis can
also be expressed in terms of the weak order. To see this, let uASn and 0pppn and

write u ¼ z � ðup

ð1Þ � u
p

ð2ÞÞ: By Proposition 2.5, u
p

ð1Þ � u
p

ð2Þpupzp;n�p � ðup

ð1Þ � u
p

ð2ÞÞ:
Moreover, u

p

ð1Þ and u
p

ð2Þ are the only permutations in Sp and Sn�p with this property,

again by Proposition 2.5. Therefore, equation (1.3) is also described by DðF uÞ ¼P
F v#Fw; where the sum is over all p from 0 to n and all permutations vASp and

wASn�p such that v � wpupzp;n�p � ðv � wÞ: This fact (in its dual form) is due to

Loday and Ronco [20, Theorem 4.1], who were the first to point out the relevance of
the weak order to the Hopf algebra structure of SSym:
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4. The product of SSym

We give an explicit formula for the product of SSym in terms of its monomial
basis and a geometric interpretation for the structure constants. Remarkably, these
are still non-negative integers. For instance,

M12 �M21 ¼M4312 þM4231 þM3421 þM4123 þM2341

þ M1243 þM1423 þM1342 þ 3M1432 þ 2M2431 þ 2M4132: ð4:1Þ

The structure constants count special ways of shuffling two permutations, according
to certain conditions involving the weak order. Specifically, for uASp; vASq and

wASpþq; define Aw
u;vDSðp;qÞ to be those zASðp;qÞ satisfying

ðiÞ ðu � vÞ � z�1pw; and

ðiiÞ if upu0 and vpv0 satisfy ðu0 � v0Þ � z�1pw;

then u ¼ u0 and v ¼ v0:

ð4:2Þ

Set aw
u;v :¼ #Aw

u;v: We will prove the following theorem.

Theorem 4.1. For any uASp and vASq; we have

Mu � Mv ¼
X

wASpþq

aw
u;v Mw: ð4:3Þ

For instance, in (4.1) the coefficient of M2431 in M12 � M21 is 2 because among the

six permutations in Sð2;2Þ;

1234; 1324; 1423; 2314; 2413; 3412;

only the first two satisfy conditions (i) and (ii) of (4.2). In fact, 2314; 2413 and 3412
do not satisfy (i), while 1423 satisfies (i) but not (ii).

The structure constants aw
u;v admit a geometric-combinatorial description in terms

of the permutahedron. To derive it, recall the convex embeddings of Proposition 2.7.

rz : Sp � Sq - Spþq; rzðu; vÞ :¼ ðu � vÞ � z�1:

Since rz preserves joins, we may further rewrite definition (4.2) of Aw
u;v as

Aw
u;v ¼ fzASðp;qÞ j ðu; vÞ ¼ max r�1

z ½1;w�g; ð4:4Þ

where ½w;w0� :¼ fw00 j wpw00pw0g denotes the interval between w and w0:
The vertices of the ðn � 1Þ-dimensional permutahedron can be indexed by the

elements of Sn so that its 1-skeleton is the Hasse diagram of the weak order (see
Fig. 1). Facets of the permutahedron are products of two lower dimensional
permutahedra, and the image of rz is the set of vertices in a facet. Moreover, every
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facet arises in this way for a unique triple ðp; q; zÞ with p þ q ¼ n and zASðp;qÞ;
see [24, Lemma 4.2], or [4, Exercise 2.9], or [18, Proposition A.1]. Let us say that
such a facet has type ðp; qÞ: Fig. 3 displays the image of r1324; a facet of the
3-permutahedron of type ð2; 2Þ; and the permutation 2431:

The description (4.4) of Aw
u;v (and hence of aw

u;v) can be interpreted as follows:

Given uASp; vASq; and wASpþq; the structure constant aw
u;v counts the number of

facets of type ðp; qÞ of the ðp þ q � 1Þ-permutahedron such that the vertex rzðu; vÞ is
below w and it is the maximum vertex in that facet below w:

For instance, the facet r1324 contributes to the structure constant a243112;21 because the

vertex r1324ð12; 21Þ ¼ 1423 satisfies the required properties in relation to the vertex
w ¼ 2431; as shown in Fig. 3.

This description of the product of SSym has an analog for QSym that we present
in Section 7.

Proof of Theorem 4.1. Expand the product Mu � Mv in the fundamental basis and
then use Formula (1.1) to obtain

Mu � Mv ¼
X
upu0
vpv0

mðu; u0Þmðv; v0Þ F u0 � F v0

¼
X

zASðp;qÞ

X
upu0
vpv0

mðu; u0Þmðv; v0ÞF ðu0�v0Þ�z�1 :
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Expressing this result in terms of the monomial basis and collecting like terms gives

Mu �Mv ¼
X

zASðp;qÞ

X
upu0; vpv0

ðu0�v0Þ�z�1pw

mðu; u0Þmðv; v0ÞMw

¼
X

w

X
upu0
vpv0

mðu; u0Þmðv; v0Þbw
u0;v0Mw;

where bw
u0;v0 is the number of permutations in the set

Bw
u0;v0 :¼ fzASðp;qÞ j ðu0 � v0Þ � z�1pwg:

The theorem will follow once we show that

aw
u;v ¼

X
upu0; vpv0

mðu; u0Þmðv; v0Þbw
u0;v0 ;

or equivalently, by Möbius inversion on Sp � Sq;

bw
u;v ¼

X
upu0; vpv0

aw
u0;v0 :

We prove this last equality by showing that

Bw
u;v ¼

a
upu0; vpv0

Aw
u0;v0 ;

where the union is disjoint.
To see this, first suppose zAAw

u;v-Aw
u0;v0 : Then, by condition (i) of (4.2),

ðu � vÞ � z�1pw and ðu0 � v0Þ � z�1pw:

By Proposition 2.7(d),

ððu3u0Þ � ðv3v0ÞÞ � z�1pw:

But then, by condition (ii) of (4.2),

u ¼ u3u0 ¼ u0 and v ¼ v3v0 ¼ v0;

so the union is disjoint.
Next, suppose that zAAw

u0;v0 for some upu0 and vpv0: Then, by condition (i) of

(4.2), ðu0 � v0Þ � z�1pw: By Proposition 2.7(c) we have, ðu � vÞ � z�1pw; so zABw
u;v:

This proves one inclusion.
For the other inclusion, suppose that zABw

u;v: Define

ð %u; %vÞ :¼
_

fðu0; v0Þ j upu0; vpv0; and ðu0 � v0Þ � z�1pwg:
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Then zAAw
%u; %v: condition (i) is satisfied because rz preserves joins, and (ii) simply by

definition. This completes the proof. &

5. The antipode of SSym

Malvenuto left open the problem of an explicit formula for the antipode of SSym
[22, pp. 59–60]. We solve that problem, giving formulas that identify the coefficients
of the antipode in terms of both the fundamental and monomial basis in explicit
combinatorial terms.

We first review a general formula for the antipode of a connected Hopf
algebra H; due to Takeuchi [35, Lemma 14] (see also [25]). Let H be an arbitrary
bialgebra with structure maps: multiplication m:H#H-H; unit u:Q-H; comulti-

plication D:H-H#H; and counit e:H-Q: Set mð1Þ ¼ m; Dð1Þ ¼ D; and for any
kX2;

mðkÞ ¼ mðmðk�1Þ#idÞ : H#kþ1-H; and

DðkÞ ¼ ðDðk�1Þ#idÞD : H-H#kþ1:

These are the higher or iterated products and coproducts. We also set

mð�1Þ ¼ u : Q-H;

Dð�1Þ ¼ e : H-Q; and

mð0Þ ¼ Dð0Þ ¼ id : H-H:

If f : H-H is any linear map, the convolution powers of f are, for any kX0;

f �k ¼ mðk�1Þf #kDðk�1Þ:

In particular, f �0 ¼ ue and f �1 ¼ f :
We set p :¼ id� ue: If p is locally nilpotent with respect to convolution, then

id ¼ ueþ p is invertible with respect to convolution, with inverse

S ¼
X
kX0

ð�pÞ�k ¼
X
kX0

ð�1Þk
mðk�1Þp#kDðk�1Þ: ð5:1Þ

This is certainly the case if H is a graded connected bialgebra, in which case p
annihilates the component of degree 0 (and hence p�k annihilates components of
degree ok). Thus (5.1) is a general formula for the antipode of a graded connected
Hopf algebra.

We will make use of this formula to find explicit formulas for the antipode of
SSym: The first task is to describe the higher products and coproducts explicitly. We
begin with the higher coproducts in terms of the fundamental and monomial bases.
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Proposition 5.1. Let vASn; nX0; and kX1: Then

(i) DðkÞðF vÞ ¼
P

0pp1p?ppkpn

F stðv1; y; vp1 Þ#?#F stðvpkþ1; y; vnÞ; and

(ii) DðkÞðMvÞ ¼
P

0pp1pyppkpn

piAGDesðvÞ

Mstðv1; y; vp1 Þ#?#Mstðvpkþ1; y; vnÞ:

Proof. Both formulas follow by induction from the corresponding descriptions of
the coproduct, Eqs. (1.3) and (3.1). &

We describe higher products in terms of minimal coset representatives SS of
parabolic subgroups, whose basic properties were discussed in Section 2.2. Recall that

for a subset S ¼ fp1op2o?opkg of ½n � 1�; we have SS ¼ fzASn jDesðzÞDSg:
Analogously to (4.2), given permutations vð1ÞASp1 ; vð2ÞASp2�p1 ;y; vðkþ1ÞASn�pk

;

define Aw
vð1Þ;vð2Þ;y;vðkþ1Þ

DSS to be those zASS satisfying

ðiÞ ðvð1Þ � vð2Þ �?� vðkþ1ÞÞ � z�1pw; and

ðiiÞ if vðiÞpv0ðiÞ 8i and ðv0ð1Þ � v0ð2Þ �?� v0ðkþ1ÞÞ � z
�1pw;

then vðiÞ ¼ v0ðiÞ; 8i:

ð5:2Þ

Set aw
vð1Þ;vð2Þ;y;vðkþ1Þ

:¼ #Aw
vð1Þ;vð2Þ;y;vðkþ1Þ

:

Proposition 5.2. Let S and vð1Þ;y; vðkþ1Þ be as in the preceding paragraph. Then

(i) F vð1Þ � F vð2Þ?F vðkþ1Þ ¼
P

zASS

Fðvð1Þ�vð2Þ�?�vðkþ1ÞÞ�z�1 and

(ii) Mvð1Þ � Mvð2Þ?Mvðkþ1Þ ¼
P

wASn

aw
vð1Þ;vð2Þ;y;vðkþ1Þ

Mw:

Proof. The first formula follows immediately by induction from (1.1) (the case
k ¼ 2), using (2.5). The second formula can be deduced from (i) in the same way as in
the proof of Theorem 4.1. &

The structure constants for the iterated product admit a geometric description
similar to that of the product. The image of the map

rz : SS-Sn; ðvð1Þ �?� vðkþ1ÞÞ / ðvð1Þ �?� vðkþ1ÞÞ � z�1;

consists of the vertices of a face of codimension k in the ðn � 1Þ-permutahedron,
and every such face arises in this way for a unique pair ðS; zÞ with SD½n � 1�
having k elements and zASS: Let us say that such a face has type S: The structure
constant aw

vð1Þ;y;vðkþ1Þ
counts the number of faces of type S with the property that
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the vertex rzðvð1Þ;y; vðkþ1ÞÞ is below w and it is the maximum vertex in its face

below w:
We next determine the convolution powers of the projection p ¼ id� ue: Recall

that for any subset S ¼ fp1op2o?opkgD½n � 1� and vASn we have

vS :¼ stðv1;y; vp1Þ � stðvp1þ1;y; vp2Þ �?� stðvpkþ1;y; vnÞ A Sn;

as given by (2.10). We slightly amend our notation in order to simplify some
subsequent statements. For v;wASn and SD½n � 1�; set ASðv;wÞ :¼ Aw

vð1Þ;y;vðkþ1Þ
;

where vð1Þ;y; vðkþ1Þ are the factors of vS in the definition above. Comparing with

(5.2), we see that ASðv;wÞDSS consists of those zASS satisfying

ðiÞ vSz
�1pw; and

ðiiÞ if vpv0 and v0Sz
�1pw then v ¼ v0:

ð5:3Þ

Similarly, we define aSðv;wÞ :¼ #ASðv;wÞ: If vð1Þ;y; vðkþ1Þ are the factors in the

definition of vS; then

aSðv;wÞ ¼ aw
vð1Þ;y;vðkþ1Þ

: ð5:4Þ

Let ð½n�1�
k�1

Þ be the collection of subsets of ½n � 1� of size k � 1:

Proposition 5.3. Let n; kX1 and vASn: Then

(i) p�kðF vÞ ¼
P

wASn

P
SA

½n�1�
k�1

� �
Desðw�1vSÞDS

Fw; and

(ii) p�kðMvÞ ¼
P

wASn

P
SA

GDesðvÞ
k�1

� � aSðv;wÞMw:

Proof. By Proposition 5.1(i),

Dðk�1ÞðF vÞ ¼
X

0pp1p?ppk�1pn

F stðv1;y;vp1 Þ#F stðvp1þ1;y;vp2 Þ#?#F stðvpk�1þ1;y;vnÞ:

Suppose that an equality pi ¼ piþ1 occurs (where we define p0 ¼ 0 and pk ¼ n). The
corresponding permutation stðvpiþ1;y; vpiþ1

Þ is then simply the unique permutation
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in S0; which indexes the element 1AkerðpÞ: Therefore,

p�kðF vÞ ¼mðk�1Þp#kDðk�1ÞðF vÞ

¼
X

0op1op2o?opk�1on

F stðv1;y;vp1 Þ � F stðvp1þ1;y;vp2 Þ?F stðvpk�1þ1;y;vnÞ

¼
X

0op1op2o?opk�1on

X
zASfp1 ;p2 ;y;pk�1g

F ðstðu1;y;up1 Þ�?�stðupk�1þ1;y;unÞÞ�z�1 ;

the last equality by the formula of Proposition 5.2(i) for the iterated product.

Changing the index of summation in the first sum to SAð½n�1�
k�1

Þ and using the

definition of vS gives

p�kðF vÞ ¼
X

SA
½n�1�
k�1

� � X
zASS

F vSz
�1 :

Again reindexing the sum and using that SS consists of permutations whose descent
set is a subset of S; we obtain

p�kðF vÞ ¼
X

wASn

X
SA

½n�1�
k�1

� �
w�1vSASS

Fw ¼
X

wASn

X
SA

½n�1�
k�1

� �
Desðw�1vSÞDS

Fw;

establishing (i).
The second formula in terms of the monomial basis follows in exactly the same

manner from Propositions 5.1(i) and 5.2(ii) for the higher coproducts and products
in terms of the monomial basis, using (5.4). &

We derive explicit formulas for the antipode on both bases. The formula for the
fundamental basis is immediate from Proposition 5.3(i) and (5.1).

Theorem 5.4. For v;wASn set

lðv;wÞ :¼ #fSD½n � 1� jDesðw�1vSÞDS and #S is oddg

�#fSD½n � 1� jDesðw�1vSÞDS and #S is eveng:

Then
SðF vÞ ¼

X
wASn

lðv;wÞ Fw: ð5:5Þ

The coefficients of the antipode on the fundamental basis may indeed be positive
or negative. For instance

SðF 231Þ ¼ F 132 � F 213 � 2F 231 þF 312:

ARTICLE IN PRESS
M. Aguiar, F. Sottile / Advances in Mathematics 191 (2005) 225–275250



The coefficient of F 312 is 1 because f1g; f2g; and f1; 2g are the subsets S of f1; 2g
which satisfy Desðð312Þ�1ð231ÞSÞDS:

Our description of these coefficients is semi-combinatorial, in the sense that
it involves a difference of cardinalities of sets. On the monomial basis the situation is
different. The sign of the coefficients of SðMvÞ only depends on the number of
global descents of v: We provide a fully combinatorial description of these

coefficients. Let v;wASn and suppose SDGDesðvÞ: Define CSðv;wÞDSS to be those

zASS satisfying

ðiÞ vSz
�1pw;

ðiiÞ if vpv0 and v0Sz
�1pw then v ¼ v0; and

ðiiiÞ if DesðzÞDRDS and vRz
�1pw then R ¼ S:

ð5:6Þ

Set kðv;wÞ :¼ #CGDesðvÞðv;wÞ:

Theorem 5.5. For v;wASn; we have

SðMvÞ ¼ ð�1Þ#GDesðvÞþ1
X

wASn

kðv;wÞMw: ð5:7Þ

For instance,

SðM3412Þ ¼M1234 þ 2M1324 þM1342 þM1423

þ M2314 þM2413 þM3124 þM3142 þM3412:

Consider the coefficient of M3412: In this case, S ¼ GDesð3412Þ ¼ f2g; so

SS ¼ f1234; 1324; 1423; 2314; 2413; 3412g:

Then 1234 satisfies (i) and (ii) of (5.6) but not (iii), 1324 satisfies (i) and (iii) but not

(ii), 1423, 2314 and 2413 do not satisfy (i), and 3412 is the only element of Sf2g that
satisfies all three conditions of (5.6). Therefore CSð3412; 3412Þ ¼ f3412g and the
coefficient is kð3412; 3412Þ ¼ 1:

Remark 5.6. The antipode of SSym has infinite order. In fact, one may verify by
induction that

S2mðM231Þ ¼ M231 þ 2mðM213 �M132Þ 8 mAZ:

Proof of Theorem 5.5. By formula (5.1) and Proposition 5.3(ii), we have

SðMvÞ ¼
X

wASn

X
SDGDesðvÞ

ð�1Þ#Sþ1aSðv;wÞMw:
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For any TDGDesðvÞ; define

gTðv;wÞ :¼
X
SDT

ð�1Þ#T\SaSðv;wÞ ¼
X
SDT

mðS;TÞaSðv;wÞ; ð5:8Þ

where mð�; �Þ is the Möbius function of the Boolean poset Qn: We then have

SðMvÞ ¼ ð�1Þ#GDesðuÞþ1
X

wASn

gGDesðvÞðv;wÞMw:

We complete the proof by showing that kðv;wÞ ¼ gGDesðvÞðv;wÞ; and more generally

that gSðv;wÞ ¼ #CSðv;wÞ; where CSðv;wÞ is defined in (5.6).
Möbius inversion using the definition (5.8) of gTðv;wÞ gives

aTðv;wÞ ¼
X
SDT

gSðv;wÞ:

We prove this last equality by showing that

ATðv;wÞ ¼
a
SDT

CSðv;wÞ; ð5:9Þ

where the union is disjoint. This implies that gSðv;wÞ ¼ #CSðv;wÞ; which will
complete the proof. We argue that this is a disjoint union in several steps.

Claim 1. If SDTDGDesðvÞ then ASðv;wÞDATðv;wÞ:

Let zAASðv;wÞ: First of all, zASSDST; as SS is the set of permutations with

descent set a subset of S: By condition (i) of (5.6), vSz
�1pw: On the other hand,

Proposition 2.16(i) implies that uTpuS and both permutations are elements of the

parabolic subgroup SS: Hence by Proposition 2.10, uTz
�1puSz

�1: Thus uTz
�1pw;

which establishes condition (i) of (5.6) for z to be in ATðv;wÞ:
Now suppose that vpv0 with v0Tz

�1pw: Since vSz
�1pw; we deduce that

w X ðvSz�1Þ3ðv0Tz
�1Þ ¼ ðvS3v0TÞz

�1 ¼ ðv3v0ÞS-Tz
�1 ¼ vSz

�1:

The first equality is because rz is a convex embedding and hence preserves joins by

Proposition 2.10, and the second follows from Proposition 2.16(iii) as
S;TDGDesðvÞDGDesðv0Þ: Hence, by condition (ii) for ASðv;wÞ; we have v ¼ v0:
This establishes (ii) for z to be in ATðv;wÞ and completes the proof of Claim 1.

Claim 2. If S;TDGDesðvÞ; then ASðv;wÞ-ATðv;wÞ ¼ AS-Tðv;wÞ:

The inclusion AS-Tðv;wÞDASðv;wÞ-ATðv;wÞ is a consequence of Claim 1. To

prove the converse, let zAASðv;wÞ-ATðv;wÞ: Note that zASS-ST; which equals

SS-T:
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By condition (i) for zAASðv;wÞ and for zAATðv;wÞ; we have vSz
�1pw and

vTz
�1pw: Therefore,

w X ðvSz�1Þ3ðvTz�1Þ ¼ ðvS3vTÞz�1 ¼ vS-Tz
�1:

As before, this uses Proposition 2.16(iii), which applies as S;TDGDesðuÞ: This
proves condition (i) of (5.6) for z to be in AS-Tðv;wÞ:

Now suppose that vpv0 with v0S-Tz
�1pw: By Proposition 2.16(i), v0Spv0S-T: Then

by Proposition 2.10, v0Sz
�1pv0S-Tz

�1: Thus v0Sz
�1pw and by condition (ii) for

ASðv;wÞ we deduce that v ¼ v0: This proves condition (ii) for z to be in AS-Tðv;wÞ;
and establishes Claim 2.

We complete the proof by showing that for TDGDesðvÞ we have the
decomposition (5.9) of ATðv;wÞ into disjoint subsets CSðv;wÞ: Comparing the
definitions (5.3) and (5.6), we see that CSðv;wÞDASðv;wÞ: Together with Claim 1 this
implies that the right-hand side of (5.9) is contained in the left hand side.

We show the union is disjoint. Suppose there is a permutation
zACSðv;wÞ-CS0 ðv;wÞ: Then zAASðv;wÞ-AS0 ðv;wÞ which equals AS-S0 ðv;wÞ; by

Claim 2. Hence, by condition (i) for z to be in AS-S0 ðv;wÞ; we have vS-S0z
�1pw: But

then, from condition (iii) for CSðv;wÞ and for CS0 ðv;wÞ; we deduce that S ¼ S-S0 ¼
S0; proving the union is disjoint.

We show that ATðv;wÞ is contained in the union in (5.9). Let zAATðv;wÞ and
set

S :¼
\

fR jRDT; zAARðv;wÞg: ð5:10Þ

By Claim 2,

ASðv;wÞ ¼
\

fARðv;wÞ jRDT; zAARðv;wÞg;

so zAASðv;wÞ: To show that zACSðv;wÞ; we must verify condition (iii) of (5.6).

Suppose DesðzÞDRDS and vRz
�1pw: We need to show that SDR: By the

definition (5.10) of S; it suffices to show that zAARðv;wÞ: By our assumption that

vRz
�1pw; condition (i) for z to be in ARðv;wÞ holds. We show that condition (ii) also

holds. Suppose vpv0 and v0Rz
�1pw: By Proposition 2.16(i) we have v0Spv0R; and so by

Proposition 2.10, v0Sz
�1pv0Rz

�1: Thus v0Sz
�1pw; and by condition (ii) for z to be in

ASðv;wÞ; we have v ¼ v0: This establishes condition (ii) for z to be in ARðv;wÞ: Thus,
zAARðu;wÞ; and as explained above, shows that (5.9) is a disjoint union and
completes the proof of the theorem. &

6. Cofreeness, primitive elements, and the coradical filtration of SSym

The monomial basis reveals the existence of a second coalgebra grading on SSym;
given by the number of global descents of the indexing permutations. We show that
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with respect to this grading, SSym is a cofree graded coalgebra. We deduce an
elegant description of the coradical filtration: it corresponds to a filtration of the
symmetric groups by certain lower order ideals determined by the number of global
descents. In particular, the space of primitive elements is spanned by thoseMu where
u has no global descents.

We review the notion of cofree graded coalgebras. Let V be a vector space and set

QðVÞ :¼
M
kX0

V#k:

The space QðVÞ; graded by k; becomes a graded coalgebra with the deconcatenation

coproduct

Dðv1#y#vkÞ ¼
Xk

i¼0

ðv1#?#viÞ#ðviþ1#?#vkÞ;

and counit eðv1#?#vkÞ ¼ 0 for kX1: QðVÞ is connected, in the sense that the
component of degree 0 is identified with the base field via e:

We call QðVÞ the cofree graded coalgebra cogenerated by V : The canonical
projection p : QðVÞ-V satisfies the following universal property. Given a graded

coalgebra C ¼ "kX0 Ck and a linear map j : C-V where jðCkÞ ¼ 0 when ka1;
there is a unique morphism of graded coalgebras #j : C-QðVÞ such that the
following diagram commutes:

Explicitly, #j is defined by

#jjCk
¼ j#kDðk�1Þ: ð6:1Þ

In particular, #jjC0
¼ e; #jjC1

¼ j; and #jjC2
¼ ðj#jÞD:

We establish the cofreeness of SSym by first defining a second coalgebra grading.

Let S0 :¼ S0; and for kX1; let

Sk
n :¼ fuASn j u has exactly k � 1 global descentsg; and

Sk :¼
a
nX0

Sk
n :

For instance,

S1 ¼f1g , f12g , f123; 213; 132g , f1234; 2134; 1324; 1243; 3124;

2314; 2143; 1423; 1342; 3214; 3142; 2413; 1432g , ?:

Let ðSSymÞk be the vector subspace of SSym spanned by fMu j uASkg:
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Theorem 6.1. The decomposition SSym ¼ "kX0 ðSSymÞk
is a coalgebra grading.

Moreover, endowed with this grading, SSym is a cofree graded coalgebra.

Proof. Let uASk
n and write GDesðuÞ ¼ fp1o?opk�1g: By Theorem 3.1,

DðMuÞ ¼ 1#Mu þ
Xk�1

i¼1

Mstðu1;y;upi Þ#Mstðupiþ1;y;unÞ þMu#1:

Since stðu1;y; upi
Þ and stðupiþ1;y; unÞ have i � 1 and k � 1� i global descents, we

have

DððSSymÞkÞ D
Mk

i¼0

ðSSymÞi#ðSSymÞk�i:

Thus SSym ¼ "kX0 ðSSymÞk is a graded coalgebra.

Let V ¼ ðSSymÞ1 and j : SSym-V the projection associated to the grading. Let
#j : SSym-QðVÞ be the morphism of graded coalgebras into the cofree graded
coalgebra on V : For u as above, Proposition 5.1 gives,

Dðk�1ÞðMuÞ ¼
X

0pq1p?pqk�1pn

qiAGDesðuÞ

Mstðu1;y;uq1 Þ#?#Mstðuqk�1þ1;y;unÞ:

Among these chains 0pq1p?pqk�1pn of global descents of u; there is the chain
0op1o?opk�1on: In any other chain there must be at least one equality, say
qi ¼ qiþ1: Then stðuqiþ1;y; uqiþ1

Þ is the empty permutation and the corresponding

term is just the identity 1; which is annihilated by j: Therefore, by (6.1), #j is given
by

#jðMuÞ ¼ Mstðu1;y;up1 Þ#?#Mstðupk�1þ1;y;unÞ A V#k:

Consider the map c : V#k-ðSSymÞk that sends

Mvð1Þ#?#MvðkÞ/MzT�ðvð1Þ�?�vðkÞÞ;

where each vðiÞASqi
and T ¼ fq1; q1 þ q2;y; q1 þ?þ qk�1gD½n � 1�:

Lemma 2.17 implies that GDesðzT � ðvð1Þ �?� vðkÞÞÞ ¼ T; since each vðiÞ has no

global descents. Together with (2.10) this shows that #j3c ¼ id:
On the other hand, letting S ¼ GDesðuÞ; Lemma 2.18 implies that

u ¼ zS � ðstðu1;y; up1Þ �?� stðupk�1þ1;y; unÞÞ:

This shows that c3 #j ¼ id: Thus #j is an isomorphism of graded coalgebras. &

Remark 6.2. If V is finite dimensional then the graded dual of QðVÞ is simply the
(free) tensor algebra TðV�Þ: More generally, suppose V ¼ "nX1Vn is a graded
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vector space for which each component Vn is finite dimensional. Then QðVÞ admits
another grading, for which the elements of Vn1#?#Vnk

have degree n1 þ?þ nk

(with respect to the other grading, these elements have degree k). With respect to this
new grading, the homogeneous components are finite dimensional, and the graded
dual of QðVÞ is the tensor algebra on the graded dual of V (again a free algebra).

In our situation, SSym ¼ QðVÞ; with V graded by the size n of the indexing
permutations uASn: The corresponding grading on SSym is the original one, for
which Mu has degree n if uASn: Its graded dual is therefore a free algebra. It is
known that SSym is self-dual with respect to this grading (see Section 9). It follows
that SSym is also a free algebra. This is a result of Poirier and Reutenauer [28] who
construct a different set of algebra generators, not directly related to the monomial
basis. (See Remark 6.5.)

Let C be a graded connected coalgebra. The coradical Cð0Þ of C is the
1-dimensional component in degree 0 (identified with the base field via the counit).
The primitive elements of C are

PðCÞ :¼ fxAC j DðxÞ ¼ x#1þ 1#xg:

Set Cð1Þ :¼ Cð0Þ"PðCÞ; the first level of the coradical filtration. More generally, the
kth level of the coradical filtration is

CðkÞ :¼ ðDðkÞÞ�1
X

iþj¼k

C#i#Cð0Þ#C#j

 !
:

We have Cð0ÞDCð1ÞDCð2ÞD?DC ¼
S

kX0 CðkÞ; and

DðCðkÞÞ D
X

iþj¼k

CðiÞ#CðjÞ:

Thus, the coradical filtration measures the complexity of iterated coproducts.
Suppose now that C is a cofree graded coalgebra QðVÞ: Then the space of

primitive elements is just V ; and the kth level of the coradical filtration is "k
i¼0 V#i:

These are straightforward consequences of the definition of the deconcatenation
coproduct.

Define

SðkÞ
n :¼

ak

i¼0

Sk
n and SðkÞ :¼

ak

i¼0

Sk:

In other words, Sð0Þ ¼ S0 and for kX1;

SðkÞ
n ¼ fuASn j u has at most k�1 global descentsg:

In Proposition 2.13 we showed that GDes :Sn-Qn is order-preserving. Since Qn is

ranked by the cardinality of a subset, it follows that SðkÞ
n is a lower order ideal of Sn;
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with SðkÞ
n DSðkþ1Þ

n : The coradical filtration corresponds precisely to this filtration of

the weak order on the symmetric groups by lower ideals.

Corollary 6.3. A linear basis for the kth level of the coradical filtration of

SSym is

fMu j uASðkÞg:

In particular, a linear basis for the space of primitive elements is

fMu j u has no global descentsg:

Proof. This follows from the preceding discussion. &

The original grading of SSym ¼ "nQSn yields a grading on the subspace

PðSSymÞ of primitive elements and on each ðSSymÞk: Let G1ðtÞ denote the Hilbert
series of the space of primitive elements, or equivalently, the generating function for
the set of permutations in Sn with no global descents,

G1ðtÞ :¼
X
nX1

dimQðPnðSSymÞÞ tn:

More generally, let GkðtÞ be the Hilbert series of ðSSymÞk; or equivalently, the
generating function for permutations in Sn with exactly k � 1 global descents,

GkðtÞ :¼
X
nXk

dimQððSSymÞk
nÞ tn:

For instance,

G1ðtÞ ¼ t þ t2 þ 3t3 þ 13t4 þ 71t5 þ 461t6 þ 3447t7 þ?

G2ðtÞ ¼ t2 þ 2t3 þ 7t4 þ 32t5 þ 177t6 þ 1142t7 þ?

G3ðtÞ ¼ t3 þ 3t4 þ 12t5 þ 58t6 þ 327t7 þ 2109t8 þ?:

There are well-known relationships between the Hilbert series of a graded space V ;

its powers V#k and their sum QðVÞ: In our case, these give the following formulas.

Corollary 6.4. We have

(i)

dimQðPnðSSymÞÞ ¼ ð�1Þn�1

1! 2! y y n!
1 1! y y ðn � 1Þ!
0 1 1! y ðn � 2Þ!
^ & & & ^
0 y 0 1 1!

����������

����������
:
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(ii) G1ðtÞ ¼ 1� 1P
nX0 n! tn

:

(iii) GkðtÞ ¼ ðG1ðtÞÞk:

Remark 6.5. Formula (i) is analogous to a formula for ordinary descents in [32,
Example 2.2.4]. Formulas (ii) and (iii) in Corollary 6.4 are due to Lentin [17, Section
6.3], see also Comtet [6, Exercise VI.14]. These references do not consider global
descents, but rather the problem of decomposing a permutation uASn as a non-
trivial product u ¼ v � w: This is equivalent to our study of global descents, as we
may write u ¼ v � w with vASp exactly when n þ 1� p is a global descent of uon:

For instance, u ¼ 563241 has global descents f2; 5g and uo6 ¼ 142365 ¼ 1� 312�
21: See the Encyclopedia of Integer Sequences [31] (A003319 and A059438) for
additional references in this connection.

Poirier and Reutenauer [28] showed that the elements of the dual basis fF�
ug

indexed by the connected permutations freely generate ðSSymÞ�: Duchamp et al.
dualize the resulting linear basis, giving a different basis than we do for the space of
primitive elements [8, Proposition 3.6].

7. The descent map to quasi-symmetric functions

We study the effect of the morphism of Hopf algebras (1.11)

D : SSym - QSym; defined by F u / FDesðuÞ

on the monomial basis. Here, we use subsets S of ½n � 1� to index monomial and
fundamental quasi-symmetric functions of degree n; as discussed at the end of
Section 1.2. Our main tool is the Galois connection Sn$Qn of Section 2.3.

When we have a Galois connection between posets P and Q given by a pair of
maps f : P-Q and g : Q-P as in (2.7), a classical theorem of Rota [30, Theorem 1]
states that the Möbius functions of P and Q are related by

8 xAP and wAQ;
X
yAP

xpy; f ðyÞ¼w

mPðx; yÞ ¼
X
vAQ

vpw; gðvÞ¼x

mQðv;wÞ:

A conceptual proof of this simple but extremely useful result can be found in [1].

Definition 7.1. A permutation uASn is closed if it is of the form u ¼ zT for some
TAQn:

Equivalently, in view of (2.8) and (2.9), u is closed if and only if DesðuÞ ¼
GDesðuÞ:
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From Proposition 2.11, we deduce the following fact about the Möbius function of
the weak order.

Corollary 7.2. Let uASn and SAQn: ThenX
upvASn
DesðvÞ¼S

mSn
ðu; vÞ ¼

mQn
ðDesðuÞ;SÞ if u is closed;

0 if not:

�
ð7:1Þ

Proof. Rota’s formula says in this case thatX
upvASn
DesðvÞ¼S

mSn
ðu; vÞ ¼

X
TDSAQn
zT¼u

mQn
ðT;SÞ:

If u is not closed, then the index set on the right hand side is empty. If u is closed,
then the index set consists only of the set T ¼ DesðuÞ; by assertion (c) in the proof of
Proposition 2.11. &

While there are explicit formulas for the Möbius function of the weak order, it is
precisely the above result that allows us to obtain the description of the map
D :SSym-QSym in terms of the monomial bases.

Theorem 7.3. Let uASn: Then

DðMuÞ ¼
MGDesðuÞ if u is closed;

0 if not:

�

Proof. By definition, Mu ¼
P

upv mSn
ðu; vÞF v; hence

DðMuÞ ¼
X
upv

mSn
ðu; vÞFDesðvÞ

¼
X
S

X
upv

DesðvÞ¼S

mSn
ðu; vÞ

0BB@
1CCAFS

¼
P

SmQn
ðDesðuÞ;SÞ FS if u is closed

0 if not:

�
We complete the proof by noting that

MDesðuÞ ¼
X
S

mQn
ðDesðuÞ;SÞ FS

by the definition of MDesðuÞ; and that since u is closed, DesðuÞ ¼ GDesðuÞ: &
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Malvenuto shows that D is a morphism of Hopf algebras by comparing the
structures on the fundamental bases of SSym and QSym: We do the same for the
monomial bases of SSym and QSym:

To compare the coproducts, first note that for any subsets SD½p � 1� and
TD½q � 1�;

zS,fpg,T ¼ zp;q � ðzS � zTÞ:

Therefore, if uASn and pAGDesðuÞ; then

u is closed 3 both stðu1;y; upÞ and stðupþ1;y; unÞ are closed:

It follows that applying the map D :SSym-QSym to formula (3.1) gives the usual
formula (1.6) for the coproduct of monomial quasi-symmetric functions.

For instance, we compare formula (4.1) with (1.5). Since DðM21Þ ¼ Mð1;1Þ and

DðM12Þ ¼ Mð2Þ; applying D to (4.1) results in (1.5). Indeed, the indices u in the first

row of (4.1) all are closed, while none in the second row are closed. It is easy to verify
that the five terms on the right in the first row in (4.1) map to the five terms on the
right in (1.5).

The situation is different for the products. The geometric description of the
structure constants of the product on the monomial basis of SSym (4.4) admits an
analogue for QSym; but this turns out to be very different from the known
description in terms of quasi-shuffles (1.4). We present this new description of the
structure constants for the product of monomial quasi-symmetric functions.

The role of the permutahedron is now played by the cube. Associating a subset S
of ½n � 1� to its characteristic function gives a bijection between subsets of ½n � 1� and
vertices of the ðn � 1Þ-dimensional cube ½0; 1�n�1: Coordinatewise comparison
corresponds to subset inclusion, and the 1-skeleton of the cube becomes the Hasse
diagram of the Boolean poset Qn: In this way, we identify Qn with the vertices of the
ðn � 1Þ-dimensional cube.

For each Grassmannian permutation zASðp;qÞ; consider the map

rz : Qp �Qq - Qpþq; ðS;TÞ / DesððzS � zTÞ � z�1Þ:

We describe this map rz in more detail. To that end, set

ConspðzÞ :¼ fiA½p þ q � 1� j z�1ðiÞ þ 1 ¼ z�1ði þ 1Þ and z�1ðiÞapg;

and recall that the vertices in a face of the cube are an interval in the Boolean poset,
with every interval corresponding to a unique face.

Lemma 7.4. Let p; q be positive integers and zASðp;qÞ: The image of rz is the face

½Desðz�1Þ; Desðz�1Þ
a

ConspðzÞ�;

which is isomorphic to the Boolean poset of subsets of ConspðzÞ:
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Proof. This is an immediate consequence of an alternative (and direct) description of
rzðS;TÞ: For TAQq; set p þ T :¼ fp þ t j tATg: Then, for ðS;TÞAQp �Qq; we have

rzðS;TÞ ¼ Desðz�1Þ
a

ðConspðzÞ-zðS,ðp þ TÞÞÞ: ð7:2Þ

Assuming this for a moment, we note that the association ðS;TÞ/zðS,ðp þ TÞÞ is a
bijection between Qp �Qq and subsets of fi j z�1ðiÞapg: Intersecting with ConspðzÞ
we obtain a surjection onto subsets of ConspðzÞ; which yields the desired description

of the image of rz:

We prove (7.2). Let ðS;TÞAQp �Qq and set w :¼ ðzS � zTÞ � z�1 so that DesðwÞ ¼
rzðS;TÞ: Note that DesðzS � zTÞ ¼ S,ðp þ TÞ (this is a particular case of Lemma

2.17) and if ippoj; then ðzS � zTÞðiÞppoðzS � zTÞðjÞ:
Let iA½n � 1�: We consider whether or not i is a descent of w: First, suppose

iADesðz�1Þ: Since the values 1; 2;y; p and p þ 1; p þ 2;y; p þ q occur in order in

the permutation z�1 (because zASðp;qÞ), we must have z�1ðiÞ4pXz�1ði þ 1Þ and so
wðiÞ4pXwði þ 1Þ; thus iADesðwÞ:

Now suppose that i is not a descent of z�1: If z�1ðiÞ þ 1oz�1ði þ 1Þ; then we must

have z�1ðiÞppoz�1ði þ 1Þ; again because zASðp;qÞ: Hence wðiÞppowði þ 1Þ and i is

not a descent of w: If instead we have z�1ðiÞ þ 1 ¼ z�1ði þ 1Þ; then there are

two cases to consider. If i ¼ z�1ðpÞ; then this forces z to be 1pþq so wðiÞ ¼
wðpÞppowði þ 1Þ; and we conclude that i is not a descent of w: If iaz�1ðpÞ; then
iAConspðzÞ and we see that i is a descent of w exactly when z�1ðiÞAS,ðp þ TÞ: This
proves (7.2) and completes the proof of the lemma. &

Unlike the case of the permutahedron, the image of rz need not be a facet. Indeed,

by Lemma 7.4, the image of rz is a facet only if #ConspðzÞ ¼ p þ q � 2; and this

occurs only when z ¼ 1pþq or z ¼ zp;q: Fig. 4 displays the vertices of the 3-cube and

Fig. 5 shows which faces occur as the image rzðQp �QqÞ: Observe that while not all

faces occur as images of some rzðQp �QqÞ; any face that does occur is the image of a

unique such map. This is the general case.

Lemma 7.5. A face of Qn is the image of Qp �Qn�p under a map rz for at most one

pair ðz; pÞ:

Proof. Suppose zASðp;n�pÞ for some 0opon: We will observe that the pair of sets

Desðz�1Þ and ConspðzÞ determines z and p uniquely by describing these sets.

Suppose first that z ¼ 1n: Then Desðz�1Þ ¼ | and ConspðzÞ ¼ ½n � 1� � fpg:
Suppose now that zASðp;n�pÞ is not the identity permutation. Then z determines p

and Desðz�1Þa|: Since the values 1; 2;y; p and p þ 1;y; n occur in order in z�1;
there exist numbers

0pb0oa1ob1o?oakobkpn
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such that the values in ½p� occur in order in the intervals

½0; b0�; ½a1 þ 1; b1�;y; ½ak þ 1; bk�;

and the values in fp þ 1;y; ng in the complementary set. Thus Desðz�1Þ ¼
fa1;y; akg and ConspðzÞ ¼ ½n � 1� � fb0; a1; b1; a2;y; ak; bkg:

It follows that z and p determine and are determined by the sets Desðz�1Þ and
ConspðzÞ; which completes the proof of the lemma. &

Theorem 7.6. Suppose p; q are positive integers. Let SD½p � 1�; TD½q � 1� and

RD½p þ q � 1�: The coefficient of Mpþq;R in Mp;S � Mq;T is

#fzASðp;qÞ j ðS;TÞ ¼ max r�1
z ½|;R�g: ð7:3Þ
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Fig. 4. Vertices of the cube.

Fig. 5. (a) The facets of the cube: r1234ðQp �QqÞ and rzp;q ðQp �QqÞ ¼ ðrzp;q ðpÞÞ: (b) The edges and vertices

rzðQp �QqÞ; za1234; zp;q:
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In other words, this coefficient counts the number of faces of the cube of type ðp; qÞ with

the property that the vertex rzðS;TÞ is below R and it is the maximal vertex in the face

rzðQp �QqÞ below.

Proof. By Theorem 7.3, Mp;S � Mq;T ¼ DðMzS � MzTÞ: We expand the product using

Theorem 4.1, and then apply the map D and Theorem 7.3 to obtain

Mp;S � Mq;T ¼ DðMzS � MzTÞ ¼ D
X

wASpþq

aw
zS;zT

Mw

0@ 1A ¼
X

RAQpþq

azR
zS;zT

Mpþq;R:

According to (4.4),

azRzS;zT ¼ #fzASðp;qÞ j ðzS; zTÞ ¼ max r�1
z ½1; zR�g:

By Proposition 2.11, for any S; T; and R we have

DesððzS � zTÞ � z�1Þ D R 3 ðzS � zTÞ � z�1pzR:

In other words,

rzðS;TÞpR 3 rzðzS; zTÞpzR:

This implies that the structure constant azR
zS;zT

is as stated. &

We give an example. Let p ¼ 1; q ¼ 3; S ¼ | and T ¼ f1g: In terms of
compositions, we have M|;1 ¼ Mð1Þ; and Mf1g;3 ¼ Mð1;2Þ: Eq. (1.4) gives

M|;1 � Mf1g;3 ¼ Mð1Þ � Mð1;2Þ ¼ 2Mð1;1;2Þ þ Mð1;2;1Þ þ Mð2;2Þ þ Mð1;3Þ

¼ 2Mf1;2g;4 þ Mf1;3g;4 þ Mf2g;4 þ Mf1g;4:

On the other hand, (7.3) also predicts that the coefficient of Mf1;2g is 2: Of the four

possible faces of type ð1; 3Þ; only two satisfy the required condition. One corresponds
to the shuffle 1234 (it is a facet) and the other to 2134 (it is an edge). They are shown

in Fig. 6, together with the vertices r1234ð|; f1gÞ ¼ f2g; r2134ð|; f1gÞ ¼ f1g; and the
vertex f1; 2g:

8. SSym is a crossed product over QSym

We obtain a decomposition of the algebra structure of SSym as a crossed product
over the Hopf algebra QSym: We refer the reader to [26, Section 7] for a review of
this construction in the general Hopf algebraic setting. Let us only say that the
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crossed product of a Hopf algebra K with an algebra A with respect to a Hopf
cocycle s : K#K-A is a certain algebra structure on the space A#K ; denoted
by A#sK :

Theorem 8.1. The map Z :QSym-SSym; MS/MzS ; is a morphism of coalgebras

and a right inverse to the morphism of Hopf algebras D :SSym-QSym:

Proof. This is immediate from Theorems 3.1 and 7.3. &

In this situation, an important theorem of Blattner, Cohen, and Montgomery [5]
applies. Namely, suppose p : H-K is a morphism of Hopf algebras that admits a
coalgebra splitting (right inverse) g : K-H: Then there is a crossed product

decomposition

H D A#sK ;

where A; a subalgebra of H; is the left Hopf kernel of p:

A ¼ fhAH j
X

h1#pðh2Þ ¼ h#1g

and the Hopf cocycle s : K#K-A is

sðk; k0Þ ¼
X

gðk1Þgðk0
1ÞSgðk2k0

2Þ: ð8:1Þ

This result, as well as some generalizations, can be found in [26, Section 7]. Note that
if p and g preserve gradings, then so does the rest of the structure.

Let A be the left Hopf kernel of D :SSym-QSym and An its nth homo-
geneous component. Once again the monomial basis of SSym proves useful in
describing A:

Theorem 8.2. A basis for An is the set fMug where u runs over all permutations of n

that are not of the form

�? � 12yn � k ð�Þ
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Fig. 6. The faces r1234 and r2134 of type (1,3), and the vertex f1; 2g:
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for any k ¼ 0;y; n � 1: In particular,

dim An ¼ n!�
Xn�1

k¼0

k!:

Proof. By the theorem of Blattner et al., SSymDA#sQSym; in particular
SSymDA#QSym as vector spaces. The generating functions for the dimensions
of these algebras are therefore related by

XN
nX0

n!tn ¼
X
nX0

antn � 1þ
X
nX1

2n�1tn

 !
¼
X
nX0

antn � 1

1�
P

nX1 tn
:

It follows that an ¼ n!�
Pn�1

k¼0k! as claimed.

Observe that an counts the permutations in Sn that are not of the form ð�Þ: Since
the Mu are linearly independent, it suffices to show that if u is not of that form then
Mu is in the Hopf kernel. Now, for any uASn and pAGDesðuÞ; we have that
stðupþ1;y; unÞ ¼ ðupþ1;y; unÞ: Hence, if u is not of the form ð�Þ; the same is true of

stðupþ1;y; unÞ and therefore this permutation is not closed. It follows from

Theorems 3.1 and 7.3 that ðid#DÞDðMuÞ ¼ Mu#1:

Remark 8.3. These results were motivated by a question of Nantel Bergeron, who
asked (in dual form) if SSym is cofree as right comodule over QSym: This is an
immediate consequence of the crossed product decomposition.

Consider again the general situation of a morphism of Hopf algebras p : H-K with
a coalgebra splitting g : K-H: This induces an exact sequence of Lie algebras

0-PðHÞ-A-PðHÞ !p PðKÞ-0 ð8:2Þ

with a linear splitting PðKÞ !g PðHÞ; where PðHÞ denotes the space of primitive

elements of H; viewed as a Lie algebra under the commutator bracket ½h; h0� ¼
hh0 � h0h:

The Hopf cocycle restricts to a linear map s : PðKÞ#PðKÞ-PðHÞ-A; in fact,
for primitive elements k and k0; (8.1) specializes to

sðk; k0Þ ¼ Sgðkk0Þ � gðk0ÞgðkÞ ð8:3Þ

and a direct calculation shows that this element of H is primitive. Moreover,
the Lie cocycle corresponding to (8.2) is the map *s : PðKÞ4PðKÞ-PðHÞ-A

given by

*sðk; k0Þ ¼ ½gðkÞ; gðk0Þ� � gð½k; k0�Þ ¼ sðk; k0Þ � sðk0; kÞ: ð8:4Þ
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This map is a non-abelian Lie cocycle in the sense that the following conditions hold.
For k; k0APðKÞ and aAPðHÞ-A;

k � ðk0 � aÞ � k0 � ðk � aÞ ¼ ½ *sðk; k0Þ; a� þ ½k; k0� � a

k � *sðk0; k00Þ � k0 � *sðk; k00Þ þ k00 � *sðk; k0Þ ¼ *sð½k; k0�; k00Þ � *sð½k; k00�; k0Þ þ *sð½k0; k00�; kÞ

where k � a ¼ ½gðkÞ; a�:
Let us apply these considerations to the morphism SSym !D QSym and the

coalgebra splitting QSym !Z QSym: The structure constants of the Hopf cocycle s

do not have constant sign. However, its restriction to primitive elements of QSym
has non-negative structure constants on the monomial bases. They turn out to be
particular structure constants of the product of SSym:

Recall that these structure constants aw
u;v are defined for uASp; vASq and wASpþq

by the identity

Mu � Mv ¼
X

wASpþq

aw
u;vMw:

The combinatorial description of these constants showing their non-negativity is
given by (4.2).

Lemma 8.4. For p; qX1; and wASpþq closed, we have aw
1p;1q

¼ 0 except in the

following cases

a1pþq

1p;1q
¼ 1; a

zp;p

1p;1p
¼ 2 and if paq; then a

zp;q

1p;1q
¼ 1:

Proof. Apply the map D to the productX
wASpþq

aw
1p;1q

Mw ¼ M1p � M1q ;

to obtain (using (1.4))X
wASpþq

aw
1p;1q

DðMwÞ ¼ MðpÞ � MðqÞ ¼ Mðp;qÞ þ Mðq;pÞ þ MðpþqÞ:

The result is immediate, as DðMwÞ ¼ 0 unless w is closed, and we have DðMzp;qÞ ¼
Mðp;qÞ and DðM1pþqÞ ¼ MðpþqÞ: &

We use this lemma to give a combinatorial description of s and the Lie cocycle *s
on primitive elements. By (1.6), fMðnÞgnX1 is a linear basis for the space of primitive

elements of QSym: Thus PðQSymÞ is an abelian Lie algebra with each homogeneous
component of dimension 1: Recall that fMu j u has no global descentsg is a basis of
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the primitive elements of SSym; and thus A-PðSSymÞ has a basis given by those
Mu where u has no global descents and u is not an identity permutation, 1n:

Theorem 8.5. For any p; qX1;

sðMðpÞ;MðqÞÞ ¼
X

wazp;q; zq;p; 1pþq

aw
1q;1p

Mw

*sðMðpÞ;MðqÞÞ ¼
X

w

ðaw
1q;1p

� aw
1p;1q

ÞMw:

Proof. Since MðpÞ � MðqÞ ¼ Mðp;qÞ þ Mðq;pÞ þ MðpþqÞ; (8.3) gives

sðMðpÞ;MðqÞÞ ¼SZðMðp;qÞ þ Mðq;pÞ þ MðpþqÞÞ � ZðMðqÞÞ � ZðMðpÞÞ

¼SðMzp;q þMzq;p þM1pþqÞ �M1q � M1p :

Using (5.1) and (3.1), we compute SðMzp;qÞ ¼ M1p � M1q �Mzp;q and SðM1pþqÞ ¼
�M1pþq : Therefore,

sðMðpÞ;MðqÞÞ ¼ M1p � M1q �Mzp;q �Mzq;p �M1pþq :

The formula for sðMðpÞ;MðqÞÞ follows by expanding the product and using

Lemma 8.4. The expression for *s follows immediately from (8.4). &

9. Self-duality of SSym and applications

The Hopf algebra SSym is self-dual. This appears in [16; 22, Section 5.2; 23,
Theorem 3.3]. We provide a proof below, for completeness. We investigate the
combinatorial implications of this self-duality, particularly when expressed in terms
of the monomial basis. We explain how a result of Foata and Schützenberger on the
numbers

dðS;TÞ ¼ #fxASn jDesðxÞ ¼ S; Desðx�1Þ ¼ Tg

is a consequence of self-duality of SSym and obtain analogous results for the
numbers

yðu; vÞ :¼ #fxASn j xpu; x�1pvg:

The Hopf algebra SSym is connected and graded with each homogeneous

component finite dimensional. We consider its graded dual ðSSymÞ� whose
homogeneous component in degree n is the linear dual of the homogeneous
component in degree n of SSym: Let fF�

u j uASn; nX0g and fM�
u j uASn; nX0g be
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the bases of ðSSymÞ� dual to the fundamental and monomial bases of SSym;

respectively. ðSSymÞ� is another graded connected Hopf algebra.

Theorem 9.1. The map

Y:ðSSymÞ�-SSym; F�
u/F u�1 ð9:1Þ

is an isomorphism of Hopf algebras. On the monomial basis it is given by

YðM�
uÞ ¼

X
v

yðu; vÞMv: ð9:2Þ

Proof. Note that Y� ¼ Y: Therefore, it suffices to show that Y is a morphism
of coalgebras. We rewrite the product (1.1) of SSym: Let uASp and vASq:

Then

F u � F v ¼
X

wASpþq

#fzASðp;qÞ j ðu � vÞ � z�1 ¼ wg Fw:

Therefore the (dual) coproduct of ðSSymÞ� is

DðF�
wÞ ¼

X
pþq¼n

X
uASp;vASq

#fzASðp;qÞ j ðu � vÞ � z�1 ¼ wgF�
u#F�

v :

On the other hand, as observed in (3.2), the coproduct of SSym can be written as

DðFwÞ ¼
X

pþq¼n

X
uASp;vASq

#fzASðp;qÞ j z � ðu � vÞ ¼ wg F u#F v:

It follows that Y is a morphism of coalgebras because

w ¼ z � ðu � vÞ 3 w�1 ¼ ðu�1 � v�1Þ � z�1:

Since F u ¼
P

upx Mx; we have M�
u ¼

P
xpu F�

x: Therefore,

YðM�
uÞ ¼

X
xpu

F x�1 ¼
X
xpu

X
x�1pv

Mv ¼
X

v

yðu; vÞMv: &

Formula (9.2) for the morphism Y of Hopf algebras has combinatorial
implications which we develop. Recall that awðu; vÞ and kðu;wÞ denote the structure
constants of the product and antipode of SSym in terms of the monomial basis.
These integers were described in Theorems 4.1 and 5.5. Consider y; aw; and k to be
matrices with rows and columns indexed by elements of Sn:

Theorem 9.2. For any uASp; vASq; and wASpþq; we have

(i) ðyawyÞðu; vÞ ¼ yðzp;q � ðu � vÞ; wÞ;
(ii) kty ¼ yk:
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Proof. By Lemma 2.14, the coproduct of SSym (3.1) can be written as

DðMwÞ ¼
X

pþq¼n

X
uASp;vASq

zp;q�ðu�vÞ¼w

Mu#Mv:

Therefore, the dual product is

M�
u � M�

v ¼ M�
zp;q�ðu�vÞ:

Thus, the right-hand side of (i) is the coefficient of Mw in YðM�
u � M�

vÞ: On the other

hand, since yðu; vÞ ¼ yðv; uÞ; we have

ðyawyÞðu; vÞ ¼
X

x;yASn

yðu; xÞawðx; yÞyðy; vÞ ¼
X

x;yASn

yðu; xÞyðv; yÞawðx; yÞ:

Thus the left-hand side of (i) is the coefficient ofMw inYðM�
uÞ �YðM�

vÞ: SinceY is a

morphism of algebras, (i) holds.
The second formula directly expresses that Y preserves antipodes, since the

antipode of ðSSymÞ� is the dual of the antipode of SSym: &

One may view Theorem 9.2(i) as a recursion reducing the computation of yðu; vÞ to
the case when u and v have no global descents, by virtue of Lemma 2.14. On the
other hand, since y is an invertible matrix, this provides another semi-combinatorial
description of the structure constants awðu; vÞ:

One may also impose the condition that Y preserves coproducts, but this leads
again to (i) of Theorem 9.2. On the other hand, the equivalent of (ii) of Theorem 9.2
for the fundamental basis leads to the following non-trivial identity.

Proposition 9.3. For any u and vASn;

#fSD½n � 1� jDesðvuSÞDS and #S is oddg

þ#fSD½n � 1� jDesðuvSÞDS and #S is eveng

¼ #fSD½n � 1� jDesðvuSÞDS and #S is eveng

þ#fSD½n � 1� jDesðuvSÞDS and #S is oddg:

Proof. The formula above is equivalent to

lðu; v�1Þ ¼ lðv; u�1Þ; ð9:3Þ

where lð�; �Þ is the structure constant for the antipode with respect to the
fundamental basis, as proven in Theorem 5.4. But (9.3) expresses that Y preserves
antipodes (on the fundamental basis and its dual). &
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We turn now to quasi-symmetric functions. The dual QSym� of QSym is the Hopf
algebra of non-commutative symmetric functions of Gelfand et al. [12]. It is the free
associative algebra with generators fM�

|;n j nX0g: This statement is dual to formula

(1.6) for the coproduct of QSym:
Define numbers

bðS;TÞ :¼ #fuASn jDesðuÞDS; Desðu�1ÞDTg;

cðS;TÞ :¼ #fuASn jDesðuÞDS; Desðu�1Þ+Tg;

dðS;TÞ :¼ #fuASn jDesðuÞ ¼ S; Desðu�1Þ ¼ Tg:

Let F denote the composite

QSym� !D
�
ðSSymÞ� !Y SSym !D QSym:

Proposition 9.4. The morphism F:QSym�-QSym sends

F�
S /

X
TAQn

dðS;TÞFT and M�
S /

X
TAQn

bðS;TÞMT;

for SAQn:

Proof. Since DðF uÞ ¼ FDesðuÞ; the dual map satisfies D�ðF�
SÞ ¼

P
DesðuÞ¼S F�

u: Also,

Theorem 7.3 dualizes to D�ðM�
SÞ ¼ M�

zS
: The descriptions of the composite above

follow now from those for Y in (9.1) and (9.2), plus that yðzS; zTÞ ¼ bðS;TÞ; which in
turn follows from (2.8). &

We now use the fact that F:QSym�-QSym is a morphism of Hopf algebras. The
image of F is precisely the subalgebra of QSym consisting of symmetric functions.
Since QSym� is generated by fM�

|;n j nX0g; its image FðQSym�Þ is generated by

FðM�
|;nÞ; for nX0: Observe that bð|;TÞ ¼ 1 for every TAQn as 1n is the only

permutation u in Sn with DesðuÞD| and | ¼ Desð1�1
n ÞDT: Thus

FðM�
|;nÞ ¼

X
TAQn

MT ¼ F|;n:

Formula (1.8) shows that F|;n is the complete homogeneous symmetric function of

degree n: These generate the algebra of symmetric functions [21,33]. Thus, F is the
abelianization map from non-commutative to commutative symmetric functions. We
will not use this, but rather the explicit expression of F of Proposition 9.4.

Let aRðS;TÞ denote the structure constants of the product of QSym with respect to
its monomial basis. These integers are combinatorially described by (1.4) or (7.3).
The following analog of Theorem 9.2 provides a recursion for computing the
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numbers bðS;TÞ in terms of the structure constants aRðS;TÞ: We view aR and b as
matrices with entries indexed by subsets of ½n � 1�:

Proposition 9.5. For any SD½p � 1�; TD½q � 1�; and RD½p þ q � 1�;

ðbaRbÞðS;TÞ ¼ bðS,fpg,ðp þ TÞ;RÞ: ð9:4Þ

Proof. The dual of the coproduct of QSym (1.6) is

M�
S � M�

T ¼ M�
S,fpg,ðpþTÞ:

Thus, the right-hand side of (9.4) is the coefficient of MR in FðM�
S � M�

TÞ: On the

other hand, since bðS;TÞ ¼ bðT;SÞ; we have

ðbaRbÞðS;TÞ ¼
X
S0;T0

bðS;S0ÞaRðS0;T0ÞbðT0;TÞ ¼
X
S0;T0

bðS;S0ÞbðT;T0ÞaRðS0;T0Þ:

Thus the left hand side of (9.4) is the coefficient of MR in FðM�
SÞ � FðM�

TÞ: Since F is

a morphism of algebras, (9.4) holds. &

Expressing that Y preserves the antipode in terms of the fundamental basis and its
dual gives a result of Foata and Schützenberger [11], which Gessel obtained in his
original work on quasi-symmetric functions by other means [13, Corollary 6]
(Eq. (iv) in the following corollary). For SD½n � 1�; define

Sc ¼ fiA½n � 1� j ieSg

eSS ¼ fiA½n � 1� j n � iASg:

Corollary 9.6. For S;TD½n � 1�; the numbers dðS;TÞ satisfy

(i) dðS;TÞ ¼ dðT;SÞ;
(ii) dðS;TÞ ¼ dðeSS; eTTÞ;
(iii) dðS;TÞ ¼ dðSc;TcÞ; and

(iv) dðS;TÞ ¼ dðeSS;TÞ:
Proof. The symmetry (i) follows by considering the bijection u/u�1: Similarly, (ii)

follows by considering the bijection u/onuo�1
n ; where on ¼ ðn;y; 2; 1Þ; as it is easy

to see that Desðonuo�1
n Þ ¼ gDesðuÞDesðuÞ:

The antipode of QSym is [22, Corollaire 4.20]

SðFTÞ ¼ ð�1Þn
FeTTc

:

Since F preserves antipodes, its explicit description in Proposition 9.4 implies that

dðeSSc;TÞ ¼ dðS; eTTcÞ: Together with (ii) this yields (iii).
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Finally, to deduce (iv), consider the bijection u/onu: Note that DesðonuÞ ¼
DesðuÞc: Therefore

DesððonuÞ�1Þ ¼ Desðononu�1o�1
n Þ ¼ Desðonuo�1

n Þc ¼ gDesðu�1ÞDesðu�1Þc
:

This shows that dðS;TÞ ¼ dðSc; eTTcÞ: Together with (ii) and (iii) this gives (iv). &

Expressing the preservation of the antipode under F in terms of monomial quasi-
symmetric functions and their duals gives further, similar results.

Proposition 9.7. The map SF ¼ FS�:QSym�-QSym sends

M�
S / ð�1Þn

X
R

cðS; eRRcÞMR ¼ ð�1Þn
X
R

cðR; eSScÞMR:

Therefore,

cðS; eRRcÞ ¼ cðR; eSScÞ:

Proof. We will show that SFðM�
SÞ ¼ ð�1Þn P

RcðS; eRRcÞMR: One shows similarly that

FS�ðM�
SÞ ¼ ð�1Þn P

R cðR; eSScÞMR:

As mentioned in (1.7), the antipode of QSym is

SðMTÞ ¼ ð�1Þ#Tþ1
X
R DT

MeR:
Combining this with Proposition 9.4 shows that SF sends

M�
S /

X
T

bðS;TÞð�1Þ#Tþ1
X
RDT

MeR:
Thus, we have to show that for each S and R;X

RDT

ð�1Þ#Tþ1
bðS;TÞ ¼ ð�1Þn

cðS;RcÞ:

Now,X
RDT

ð�1Þ#Tþ1
bðS;TÞ ¼

X
RDT

X
T0DT

ð�1Þ#Tþ1#fu jDesðuÞDS; Desðu�1Þ ¼ T0g

¼
X
T0

#fu jDesðuÞDS; Desðu�1Þ ¼ T0g
X

R,T0DT

ð�1Þ#Tþ1

¼
X

T0:R,T0¼½n�1�
ð�1Þn#fu jDesðuÞDS; Desðu�1Þ ¼ T0g

ARTICLE IN PRESS
M. Aguiar, F. Sottile / Advances in Mathematics 191 (2005) 225–275272



¼ð�1Þn#fu jDesðuÞDS; Desðu�1Þ,R ¼ ½n � 1�g

¼ ð�1Þn#fu jDesðuÞDS;Desðu�1Þ+Rcg

¼ ð�1Þn
cðS;RcÞ:

For completeness, we include the consequences on the numbers b and c that
follow. Note that these also follow directly from

bðS;TÞ ¼
X
S0DS
T 0DT

dðS;TÞ and cðS;TÞ ¼
X
S0DS
T 0+T

dðS;TÞ:

Corollary 9.8. For any S; TD½n � 1�;

(i) bðS;TÞ ¼ bðT;SÞ;
(ii) bðS;TÞ ¼ bðeSS; eTTÞ; and cðS;TÞ ¼ cðeSS; eTTÞ;
(iii) cðS;TÞ ¼ cðTc;ScÞ;
(iv) bðS;TÞ ¼ bðeSS;TÞ; and cðS;TÞ ¼ cðeSS;TÞ:
Acknowledgments
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MR96g:05146.

[29] C. Reutenauer, Free Lie Algebras, The Clarendon Press, Oxford University Press, New York, 1993

Oxford Science Publications. MR94j:17002.

[30] G.-C. Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z.
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