33,520 research outputs found

    Evaluating complex digital resources

    Get PDF
    Squires (1999) discussed the gap between HCI (Human Computer Interaction) and the educational computing communities in their very different approaches to evaluating educational software. This paper revisits that issue in the context of evaluating digital resources, focusing on two approaches to evaluation: an HCI and an educational perspective. Squires and Preece's HCI evaluation model is a predictive model ‐ it helps teachers decide whether or not to use educational software ‐ whilst our own concern is in evaluating the use of learning technologies. It is suggested that in part the different approaches of the two communities relate to the different focus that each takes: in HCI the focus is typically on development and hence usability, whilst in education the concern is with the learner and teacher use

    The seamless integration of Web3D technologies with university curricula to engage the changing student cohort

    Get PDF
    The increasing tendency of many university students to study at least some courses at a distance limits their opportunities for the interactions fundamental to learning. Online learning can assist but relies heavily on text, which is limiting for some students. The popularity of computer games, especially among the younger students, and the emergence of networked games and game-like virtual worlds offers opportunities for enhanced interaction in educational applications. For virtual worlds to be widely adopted in higher education it is desirable to have approaches to design and development that are responsive to needs and limited in their resource requirements. Ideally it should be possible for academics without technical expertise to adapt virtual worlds to support their teaching needs. This project identified Web3D, a technology that is based on the X3D standards and which presents 3D virtual worlds within common web browsers, as an approach worth exploring for educational application. The broad goals of the project were to produce exemplars of Web3D for educational use, together with development tools and associated resources to support non-technical academic adopters, and to promote an Australian community of practice to support broader adoption of Web3D in education. During the first year of the project exemplar applications were developed and tested. The Web3D technology was found to be still in a relatively early stage of development in which the application of standards did not ensure reliable operation in different environments. Moreover, ab initio development of virtual worlds and associated tools proved to be more demanding of resources than anticipated and was judged unlikely in the near future to result in systems that non-technical academics could use with confidence. In the second year the emphasis moved to assisting academics to plan and implement teaching in existing virtual worlds that provided relatively easy to use tools for customizing an environment. A project officer worked with participating academics to support the teaching of significant elements of courses within Second LifeTM. This approach was more successful in producing examples of good practice that could be shared with and emulated by other academics. Trials were also conducted with ExitRealityTM, a new Australian technology that presents virtual worlds in a web browser. Critical factors in the success of the project included providing secure access to networked computers with the necessary capability; negotiating the complexity of working across education, design of virtual worlds, and technical requirements; and supporting participants with professional development in the technology and appropriate pedagogy for the new environments. Major challenges encountered included working with experimental technologies that are evolving rapidly and deploying new networked applications on secure university networks. The project has prepared the way for future expansion in the use of virtual worlds for teaching at USQ and has contributed to the emergence of a national network of tertiary educators interested in the educational applications of virtual worlds

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves

    Xel-FPGAs: An End-to-End Automated Exploration Framework for Approximate Accelerators in FPGA-Based Systems

    Full text link
    Generation and exploration of approximate circuits and accelerators has been a prominent research domain to achieve energy-efficiency and/or performance improvements. This research has predominantly focused on ASICs, while not achieving similar gains when deployed for FPGA-based accelerator systems, due to the inherent architectural differences between the two. In this work, we propose a novel framework, Xel-FPGAs, which leverages statistical or machine learning models to effectively explore the architecture-space of state-of-the-art ASIC-based approximate circuits to cater them for FPGA-based systems given a simple RTL description of the target application. We have also evaluated the scalability of our framework on a multi-stage application using a hierarchical search strategy. The Xel-FPGAs framework is capable of reducing the exploration time by up to 95%, when compared to the default synthesis, place, and route approaches, while identifying an improved set of Pareto-optimal designs for a given application, when compared to the state-of-the-art. The complete framework is open-source and available online at https://github.com/ehw-fit/xel-fpgas.Comment: Accepted for publication at the 42nd International Conference on Computer-Aided Design (ICCAD), November 2023, San Francisco, CA, US

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    A window into learning: case studies of online group communication and collaboration

    Get PDF
    The two case studies presented explore the potential offered by in‐depth qualitative analysis of students’ online discussion to enhance our understanding of how students learn. Both cases are used to illustrate how the monitoring and moderation of online student group communication can open up a ‘window into learning’, providing us with new insights into complex problem‐solving and thinking processes. The cases offer examples of students’ ‘thinking aloud’ while problem‐solving, showing how and why they arrived at particular outcomes and the underlying thought processes involved. It is argued that these insights into students’ learning processes can in turn offer us the opportunity to adapt our own teaching practice in order to achieve a better pedagogical ‘fit’ with the learning needs of our students; for example, through a more precise or more timely intervention. It is also suggested that looking through this ‘window’ enables us to concentrate our assessment more closely on the process of task completion, rather than focusing solely on the end product

    noteEd - A web-based lecture capture system

    No full text
    Electronic capture and playback of lectures has long been the aim of many academic projects. Synote is an application developed under MACFoB (Multimedia Annotation and Community Folksonomy Building) project to synchronise the playback of lecture materials. However, Synote provides no functionality to capture such multimedia. This project involves the creation of a system called noteEd, which will capture a range of multimedia from lectures and make them available to Synote. This report describes the evolution of the noteEd project throughout the design and implementation of the proposed system. The performance of the system was checked in a user acceptance test with the customer, which is discussed after screenshots of our solution. Finally, the project management is presented containing a final project evaluation

    Improving financial information literacy in introduction to financial accounting

    Get PDF
    The motivation for this study came from a desire to improve teaching of the use of accounting information for decision making. The information literacy standards and related performance indicators guided the development of a semester-long case study by accounting faculty and academic business librarians. Their collaboration yielded a series of instruction modules and related student exercises leading up to a group activity involving the evaluation of a company as a potential investment for retirement savings. Students enrolled in two sections of an introductory accounting course volunteered to participate in this study. They provided information about their knowledge before and after all of the activities using a repeated measures research design involving pre-test and post-test questionnaires. The results of the study suggest significant improvements in financial information literacy upon completion of the case study
    • 

    corecore