67 research outputs found

    Input-Shaped Model Reference Control Using Sliding Mode Design for Sway Suppression of An Industrial Overhead Crane

    Get PDF
    Input-shaped model reference control using sliding mode design is a proven method for controlling systems with parameter variations and disturbance. However, this method has never been reported for an industrial overhead crane, which is operated under nonlinear elements such as acceleration and deceleration limits caused by inverters for driving a crane in speed control mode. The successful implementation of this method will allow the crane to be operated in “hybrid mode”, which results in the fastest response from the feedforward control technique, unity magnitude zero vibration (UMZV) and tracking performance from the feedback control. This paper shows the implementation and experimental result of the input-shaped model reference control using sliding mode design for sway suppression of an industrial overhead crane. The control scheme was implemented on an industrial grade 1-ton overhead crane using a PLC and inverters. The experiments compared the control results of the UMZV and the presented control scheme on the industrial overhead crane in the cases that the system parameters are known and uncertain. When the parameters are uncertain, the presented method, with the feedback elements, provided the advantage of reducing residual vibration, while keeping the benefits of the UMZV performance

    LMI based antiswing adaptive controller for uncertain overhead cranes

    Get PDF
    This paper proposes an adaptive anti-sway controller for uncertain overhead cranes. The state-space model of the 2D overhead crane with the system parameter uncertainties is shown firstly. Next, the adaptive controller which can adapt with the system uncertainties and input disturbances is established. The proposed controller has ability to move the trolley to the destination in short time and with small oscillation of the load despite the effect of the uncertainties and disturbances. Moreover, the controller has simple structure so it is easy to execute. Also, the stability of the closed-loop system is analytically proven. The proposed algorithm is verified by using Matlab/Simulink simulation tool. The simulation results show that the presented controller gives better performances (i.e., fast transient response, position tracking, and low swing angle) than the state feedback controller when there exist system parameter variations as well as input disturbances

    Payload Oscillations Minimization via Open Loop Control.

    Get PDF
    The results of tests of payload oscillations, forced by linear control function which allows to minimize payload sway after acceleration phase and after overhead crane stopping are presented in this paper. The analysis of solution of this problem has been carried out. The algorithm of operation for real drive system which takes into account the possibilities of driving of an overhead crane is also presented. The impact of inaccuracies of measurement of the ropes length on minimizing a displacements of payload during the duty cycle is shown as well. The correctness of the method is confirmed by results both simulation and experimental tests

    Adaptive fuzzy observer based hierarchical sliding mode control for uncertain 2D overhead cranes

    Full text link
    © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group. This paper proposes a new approach to robustly control a 2D under-actuated overhead crane system, where a payload is effectively transported to a destination in real time with small sway angles, given its inherent uncertainties such as actuator nonlinearities and external disturbances. The control law is proposed to be developed by the use of the robust hierarchical sliding mode control (HSMC) structure in which a second-level sliding surface is formulated by two first-level sliding surfaces drawn on both actuated and under-actuated outputs of the crane. The unknown and uncertain parameters of the proposed control scheme are then adaptively estimated by the fuzzy observer (FO), where the adaptation mechanism is derived from the Lyapunov theory. More importantly, stability of the proposed strategy is theoretically proved. Effectiveness of the proposed adaptive FO-based HSMC approach was extensively validated by implementing the algorithm in both synthetic simulations and real-life experiments, where the results obtained by our method are highly promising

    Modelling and control of offshore crane systems

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Cranes are widely used in transportation, construction and manufacturing. Suspended payloads in crane system are caused to swing due to actuator movement, external disturbance such as wind flows, and motion of the crane base in the case of portable cranes. Recently, offshore cranes have become a new trend in stevedoring and in offshore construction as they can help to avoid port congestion and also to exploit ocean engineering applications. For crane operations, it is important to satisfy rigorous requirements in terms of safety, accuracy and efficiency. One of the main challenges in crane operations has been identified as the sway motion control, which is subject to underactuation of crane drive systems and external disturbances. Particularly in offshore cranes, the harsh conditions can produce exogenous disturbances during the load transfer at various scenarios of offshore crane operations in practice. Therefore, it is interesting as to how to design robust controllers to guarantee high performance in the face of disturbances and parameter variations in offshore cranes. The motivation for this thesis is based on recent growing research interest in the derivation of dynamic models and development of control techniques for offshore cranes in the presence of, for example, the rope length variation, sway, ocean waves and strong winds in offshore crane systems. Accordingly, the work for this thesis has been conducted in the two main themes, namely analytical modelling and control design, for which new results represent its contributions. Dynamic models of two types of offshore crane systems, namely the offshore gantry crane and offshore boom crane, are derived in the presence of vessel’s ocean wave-induced motion. The effect of wind disturbances on the payload sway is also considered in the modelling. In the control context, sliding mode control techniques for a generic form of underactuated mechanical Lagrangian systems are presented, including the conventional first-order, second-order and adaptive fuzzy sliding mode controllers. The major component in this part of the thesis is the design of sliding mode control laws based on the developed offshore crane models for trajectory tracking problems, in the presence of persistent disturbances in severe open-sea conditions. Extensive simulation results are presented to demonstrate the efficacy of the models and robustness of the designed controllers

    HIGH ORDER SLIDING MODE CONTROL WITH ANTI-SWAY BASED COMPENSATION ON ARTIFICIAL NEURAL NETWORK BY PSO ALGORITHM FOR OVERHEAD CRANE

    Get PDF
    This paper proposes a second order sliding mode controller combined with signal set calibrator for overhead crane tracking desired position and resisting disturbance. High order sliding mode controller ensures that the overhead crane tracks desired trajectory and resists disturbance. Neural network is trained by particle swarm optimization algorithm (PSO) to compensate anti-sway for load. The results on the computer simulation show that high order sliding mode controller with anti-sway compensation for overhead crane tracks desired trajectory and the swing of load that is smaller than high order sliding mode controller without anti-sway compensation

    Robust Adaptive Control of 3D Overhead Crane System

    Get PDF
    In this chapter an adaptive anti-sway controller for uncertain overhead cranes is proposed. The system model including the system uncertainties and disturbances is introduced firstly. Next, the adaptive controller which can guarantee tracking the desired position of the trolley as well as the anti-sway of the load cable is established. In this chapter, the system is proven to be input-to-state stable (ISS) which is supported by Lyapunov technique. The proposed algorithm is verified by using Matlab/Simulink simulation tool. The simulation results shown that the presented controller gives the good performances (i.e., fast transient response, position tracking, and low swing angle) when there exist system parameters variation as well as input disturbances

    Fuzzy sliding mode control of an offshore container crane

    Full text link
    © 2017 A fuzzy sliding mode control strategy for offshore container cranes is investigated in this study. The offshore operations of loading and unloading containers are performed between a mega container ship, called the mother ship, and a smaller ship, called the mobile harbor (MH), which is equipped with a container crane. The MH is used to transfer the containers, in the open sea, and deliver them to a conventional stevedoring port, thereby minimizing the port congestion and also eliminating the need of expanding outwards. The control objective during the loading and unloading process is to keep the payload in a desired tolerance in harsh conditions of the MH motion. The proposed control strategy combines a fuzzy sliding mode control law and a prediction algorithm based on Kalman filtering for the MH roll angle. Here, the sliding surface is designed to incorporate the desired trolley trajectory while suppressing the sway motion of the payload. To improve the control performance, the discontinuous gain of the sliding control is adjusted with fuzzy logic tuning schemes with respect to the sliding function and its rate of change. Chattering is further reduced by a saturation function. Simulation and experimental results are provided to verify the effectiveness of the proposed control system for offshore container cranes

    An efficient adaptive fuzzy hierarchical sliding mode control strategy for 6 degrees of freedom overhead crane

    Get PDF
    The paper proposes a new approach to efficiently control a three-dimensional overhead crane with 6 degrees of freedom (DoF). Most of the works proposing a control law for a gantry crane assume that it has five output variables, including three positions of the trolley, bridge, and pulley and two swing angles of the hoisting cable. In fact, the elasticity of the hoisting cable, which causes oscillation in the cable direction, is not fully incorporated into the model yet. Therefore, our work considers that six under-actuated outputs exist in a crane system. To design an efficient controller for the 6 DoF crane, it first employs the hierarchical sliding mode control approach, which not only guarantees stability but also minimizes the sway and oscillation of the overhead crane when it transports a payload to a desired location. Moreover, the unknown and uncertain parameters of the system caused by its actuator nonlinearity and external disturbances are adaptively estimated and inferred by utilizing the fuzzy inference rule mechanism, which results in efficient operations of the crane in real time. More importantly, stabilization of the crane controlled by the proposed algorithm is theoretically proved by the use of the Lyapunov function. The proposed control approach was implemented in a synthetic environment for the extensive evaluation, where the obtained results demonstrate its effectiveness. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Control of an Underactuated Double-Pendulum Overhead Crane using Improved Model Reference Command Shaping: Design, Simulation and Experiment

    Get PDF
    This paper presents a new control scheme based on model reference command shaping (MRCS) for an overhead crane, with double-pendulum mechanism effects. The approach has an advantage in achieving an accurate trolley positioning, with low hook and payload oscillations, under various desired trolley positions and parameter uncertainties, without the requirement for measurement or estimation of system parameters. These are challenging in practice. The previously developed MRCS algorithm is improved in order to reduce its design complexity, as well as to ensure that it can be augmented with a feedback controller so that a concurrent controller tuning can be realised. The combined MRCS and feedback controller is used to achieve both, precise trolley positioning, and low hook and payload oscillations. To evaluate the effectiveness and the robustness of the approach, simulations and experiments using a nonlinear model and a laboratory double-pendulum crane are carried out. Under various desired positions and parameter uncertainties that involve varying the cable lengths (payload hoisting) and the payload mass variations, the superiority of the proposed approach is confirmed by achieving higher hook and payload oscillation reductions when compared with a recently proposed feedback controller. In addition, the desired trolley positions are achieved with smoother responses
    corecore