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ABSTRACT 

This paper proposes a second order sliding mode controller combined with signal set 
calibrator for overhead crane tracking desired position and resisting disturbance. High order 
sliding mode controller ensures that the overhead crane tracks desired trajectory and resists 
disturbance. Neural network is trained by particle swarm optimization algorithm (PSO) to 
compensate anti-sway for load. The results on the computer simulation show that high order 
sliding mode controller with anti-sway compensation for overhead crane tracks desired 
trajectory and the swing of load that is smaller than high order sliding mode controller without 
anti-sway compensation. 

Keywords: high order sliding mode control, artificial neural network, particle swarm 
optimization algorithm (PSO), anti-sway for overhead crane. 

1. PROBLEM STATEMENT 

Overhead crane is one of the essential equipment that are commonly used in industrial 
factory, harbors for transporting heavy goods and it is also researching object recently. 
Mathematical model of overhead crane is categorized as under-actuated robot. 

The solution to track desired trajectory of trolley and anti-sway of load are particular 
characteristics of overhead crane. The approaches for anti-sway are based on PD techniques 
control [1], partial feedback linearization control [2, 3], nonlinear control [4 - 11], robust - 
adaptive control [12 - 14], fuzzy – neural network controller [15, 16]. The above controllers are 
often used for uncertainly parameters of overhead crane and when executed to combine with two 
loop circuits : the adaptive parameters adjustment loop and control loop. These controllers 
generally have complex structures when in fact implemented to select the right device, it is not 
always easy. 
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Therefore, in this paper, we proposed high order sliding mode controller with optimal 
trajectory to reduce swing angle of load when moving process to desired position. Optimal 
trajectory is generated by Radial Basis Function Neural (RBFNs) Networks that is trained by 
PSO algorithm. Thus, structure control contains a high order sliding mode controller and an anti-
sway compensator by RBFNs. 

 2. OVERHEAD CRANE MODEL 

The model of overhead crane is shown in Figure 1. The trolley is moved by F force. The 
motion of load is always on X Y− plane. 

 
       Figure 1. Overhead crane model. 

Assuming that the trolley and the load can be regarded as point mass, friction force in 
trolley can be neglected . Overhead crane model is expressed as: 
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where: ,  x l and θ  are trolley position, length of suspension rope and swing angle of load, 
respectively. Defining u F=  and state vector 1 2 3 4[ ] [ ]T T TX x x x x x x θ θ= = 

 . The 
equation (1) is written in the form of state space model as the following:  
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So, the model of overhead crane is divided into two subsystems: the positioning subsystem 
and anti-swing subsystem. The purpose of the controller designation is to keep the trolley 
tracking the reference trajectory without sway of load under the condition of disturbance.  

3. SECOND ORDER SLIDING MODE CONTROL 

Defining tracking error vector:  
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where : dx  and dθ are desired trajectory and swing angle of load, respectively. Of course, the 

desired swing angle of load is zero. Assuming that the first and the second time derivative of dx  

are determined and uniformly bounded, the equation (2) is transferred to error model: 
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Defining sliding surface for each subsystem as : 
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Then, the second order sliding surface is defined:  

1 2s s sα β= +                (5) 

where: 1 2, ,c c α  and β  are positive constants. In order to make the close-loop system that has 
sliding surface s  is asymptotic stability, the following condition should be satisfied:  

1 2 1 2sgn( )s k s k s s sα β= − − = +     
This leads to the control signal u  : 
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4.  COMPENSATION BY USING ARTIFICIAL NEURAL NETWORK 

4.1. Neural network structure 

Artificial is used to generate optimal trajectory of the trolley from the initial position to desired 
position in time TE and reduce the sway of load. 

 
Figure 2. Radial Basis Function Neural Networks. 

Figure 2 shows neural network structure that is used in this paper. As shown in Figure 2, 
RBFNs consist of an input, K  neurals in the hidden layer, and an output layer. The input layer 
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to RBFNs is given by values of time from 0 to TE. The output of the k-th neural of the hidden 
layer is expressed by the Gaussian function as: 

2
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where: kc  and kσ  are center and radius, respectively. The output of RBFNs is calculated by: 
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where: kw is weight between the hidden layer and output layer. 

The trajectory of the trolley requires that both velocity and acceleration be equal to zero at 
the start and the end point. So, the following constraint conditions are applied for trajectory of 
trolley: 

(0) ( ) (0) ( ) 0x x TE x x TE= = = =              (9) 

using the cycloidal function to satisfy above condition: 
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The position of the trolley is generated as : 

{ }( ) ( )x t O t= Φ            (11) 

Equation (11) determines that the output of RBFNs is input u  of Cycloidal (10). Moreover, 
natural trajectory of the trolley satisfies following condition: 

(0) 0,    ( )x x TE XE= =           (12) 

Therefore, the following condition is required for output of the RBFNs: 
(0) 0,   ( ) 1O O TE= =           (13) 

In order to satisfy condition (13), the weights kw  and 1kw −  are determined by the following 

equation system: 
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4.2. PSO algorithm 

In this part, the PSO algorithm will be introduced to train RBFNs, 1 2, ,..., Kσ σ σ  1 2, ,..., Kσ σ σ   
and 1 2 2, ,..., Kw w w − are changed . By this way, the trajectory of the trolley is optimal and the sway 
of load is removed.   

To have minimum swing angle, the function 2 2f θ θ= +   (with θ  is swing angle after time 
TE) is defined as objective function that need to optimize. 

The algorithm for trajectory generation based on the PSO is summarized as follows: 
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Step 1: The positions and velocities of all particles are initialized randomly. The position and 
velocity of i th− particle are defined as : 

,1 ,2 ,...i i i i dx x x x =   , ,1 ,2 ,...i i i i dv v v v =    
where: 3 2d K= −  
Step 2: Calculate 1Kw −  and Kw  from (14), then the reference position is obtained from (11). 
Next, the value of f is calculated from the second equation of (10). So, the initial value of f  of  
each particle is determined. 
Step 3: Initial value of ipbest  is initial position of i th−  particle. In swarm, we determine the 

particle that has best position as gbest . 

Step 4: Velocity and position of each partial are updated as following equations:  
( 1) ( ) ( ) ( ) ( ) ( )

1 1 2 2( ) ( )n n n n n n
i i i i iv v a r pbest x a r gbest xχ+  = + − + −     (15) 

( 1) ( ) ( 1)n n n
i i ix x v+ += +            (16) 

where n  is iteration number, 1r  and 2r  are two independent uniform random numbers with 

values from 0 to 1. χ is defined as: 

1 22
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2 4
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      (17) 

Typically, 1 2 2.05a a= = . 

Step 5: Calculate f  value of each particle using the same procedure as that described in Step 2. 

For each particle, if current position is better than pbest , pbest  takes current position. For all 

swarm, gbest  takes the best value in all pbest  value. 

Step 6: If n  is less than maximum iteration number, 1n n= +  and Step 4 6→  are repeated. 
Otherwise, gbest  is optimal position. 

4.3. High level sliding mode control based on anti-sway system 

The structure of over all system is shown in Figure 3. In this system, the desired trajectory 
is gotten from NBFNs then fed to sliding mode controller. With this combination, the operation 
of the over head crane system not only  to track the reference trajectory but also to exclude the 
effect of the disturbance and reduces the oscillation of the load during the movement of the 
trolley. 

 

Figure 3. Sliding mode control combined compensation anti-sway based on artificial neural network by 
PSO algorithm system structure. 
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5. NUMERICAL SIMULATIONS 
 
In this part, a simulation based on Matlab/SIMULINK is executed to verify the 

effectiveness of the proposed algorithm. The parameters of overhead crane are as follows: 
5 M kg= , 2.5 m kg= , 1 l m=  and 29.81 /g m s= . The disturbance is occurred suddenly at 1 

second: 1 2( ) ( ) 1( 1) 1( 1.1)d t d t t t= = − − − . 

The parameters of sliding mode controller are selected as : 1 2c = , 2 0.2c = , 4α = , 4β = , 

1 3.8k = , 2 3.5k = . 
The parameters for PSO algorithm are: 5TE = , 2XE = , maximum iteration number is 50, 

swarm has 20 particles and hidden layer has 10 neurals ( 10K = ). 
 

 
Figure 4. Trajectory of trolley when system is controlled by sliding mode controller without 

disturbance. 
 

From Figure 4, Figure 5, Figure 6 and Figure 7, it can be seen that  ability of resisting 
disturbance of high order sliding mode controller is very good. But, the quality of swing angle is 
not good . Although the trolley reaches desired position, but the oscillation of the load is still 
large. 

To fix this problem, RBFNs is used for generating optimal trajectory to reduce sway of 
load. As shown in the Figure 8 and Figure 9, the trolley reaches desired position and swing angle 
is very small in the moving process. 

 



 
 
High order sliding mode control with anti- sway based compensation on artificial neural network… 

353 

 
 Figure 5. Swing angle of load when system is controlled by sliding mode controller without disturbance.  

 
Figure 6. Trajectory of trolley when system is controlled by sliding mode controller with  the disturbance 

at time 1 [s]. 
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Figure 7. Swing angle of load when system is controlled by sliding mode controller with  the disturbance 

at time 1 [s]. 

 
Figure 8. Trajectory of trolley when system is controlled by sliding mode controller combined with 

compensation anti-sway based on artificial neural network by PSO algorithm with  the disturbance at time 
1 [s]. 
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Figure 9. Swing angle of load when system is controlled by sliding mode controller combined                          
with compensation anti-sway based on artificial neural network by PSO algorithm with  the disturbance             

at time 1 [s]. 

 

6. CONCLUSIONS 

In this paper, a new control structure that combines high order sliding mode controller with 
optimal trajectory set generator is proposed. This scheme ensures that the overhead crane tracks 
desired trajectory with smaller swing angle of load even under the disturbance condition. 
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