1,702 research outputs found

    Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators

    Full text link
    A chimera state is a spatio-temporal pattern in a network of identical coupled oscillators in which synchronous and asynchronous oscillation coexist. This state of broken symmetry, which usually coexists with a stable spatially symmetric state, has intrigued the nonlinear dynamics community since its discovery in the early 2000s. Recent experiments have led to increasing interest in the origin and dynamics of these states. Here we review the history of research on chimera states and highlight major advances in understanding their behaviour.Comment: 26 pages, 3 figure

    Exponential Lag Synchronization of Cohen-Grossberg Neural Networks with Discrete and Distributed Delays on Time Scales

    Full text link
    In this article, we investigate exponential lag synchronization results for the Cohen-Grossberg neural networks (C-GNNs) with discrete and distributed delays on an arbitrary time domain by applying feedback control. We formulate the problem by using the time scales theory so that the results can be applied to any uniform or non-uniform time domains. Also, we provide a comparison of results that shows that obtained results are unified and generalize the existing results. Mainly, we use the unified matrix-measure theory and Halanay inequality to establish these results. In the last section, we provide two simulated examples for different time domains to show the effectiveness and generality of the obtained analytical results.Comment: 20 pages, 18 figure

    Finite-time stabilization for fractional-order inertial neural networks with time varying delays

    Get PDF
    This paper deals with the finite-time stabilization of fractional-order inertial neural network with varying time-delays (FOINNs). Firstly, by correctly selected variable substitution, the system is transformed into a first-order fractional differential equation. Secondly, by building Lyapunov functionalities and using analytical techniques, as well as new control algorithms (which include the delay-dependent and delay-free controller), novel and effective criteria are established to attain the finite-time stabilization of the addressed system. Finally, two examples are used to illustrate the effectiveness and feasibility of the obtained results

    Positive almost periodicity on SICNNs incorporating mixed delays and D operator

    Get PDF
    This article involves a kind of shunting inhibitory cellular neural networks incorporating D operator and mixed delays. First of all, we demonstrate that, under appropriate external input conditions, some positive solutions of the addressed system exist globally. Secondly, with the help of the differential inequality techniques and exploiting Lyapunov functional approach, some criteria are established to evidence the globally exponential stability on the positive almost periodic solutions. Eventually, a numerical case is provided to test and verify the correctness and reliability of the proposed findings

    Periodic Solution for a Complex-valued Network Model with Discrete Delay

    Get PDF
    For a tridiagonal two-layer real six-neuron model, the Hopf bifurcation was investigated by studying the eigenvalue equations of the related linear system in the literature. In the present paper, we extend this two-layer real six-neuron network model into a complex-valued delayed network model. Based on the mathematical analysis method, some sufficient conditions to guarantee the existence of periodic oscillatory solutions are established under the assumption that the activation function can be separated into its real and imaginary parts. Our sufficient conditions obtained by the mathematical analysis method in this paper are simpler than those obtained by the Hopf bifurcation method. Computer simulation is provided to illustrate the correctness of the theoretical results

    Global exponential synchronization of quaternion-valued memristive neural networks with time delays

    Get PDF
    This paper extends the memristive neural networks (MNNs) to quaternion field, a new class of neural networks named quaternion-valued memristive neural networks (QVMNNs) is then established, and the problem of drive-response global synchronization of this type of networks is investigated in this paper. Two cases are taken into consideration: one is with the conventional differential inclusion assumption, the other without. Criteria for the global synchronization of these two cases are achieved respectively by appropriately choosing the Lyapunov functional and applying some inequality techniques. Finally, corresponding simulation examples are presented to demonstrate the correctness of the proposed results derived in this paper

    Exponential synchronization for second-order switched quaternion-valued neural networks with neutral-type and mixed time-varying delays

    Get PDF
    This article focuses on the global exponential synchronization (GES) for second-order state-dependent switched quaternion-valued neural networks (SOSDSQVNNs) with neutral-type and mixed delays. By proposing some new Lyapunov–Krasovskii functionals (LKFs) and adopting some inequalities, several new criteria in the shape of algebraic inequalities are proposed to ensure the GES for the concerned system by using hybrid switched controllers (HSCs). Different from the common reducing order and separation ways, this article presents some new LKFs to straightway discuss the GES of the concerned system based on non-reduction order and nonseparation strategies. Ultimately, an example is provided to validate the effectiveness of the theoretical outcomes

    Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks

    Get PDF
    In the present study, we deal with the stability and the onset of Hopf bifurcation of two type delayed BAM neural networks (integer-order case and fractional-order case). By virtue of the characteristic equation of the integer-order delayed BAM neural networks and regarding time delay as critical parameter, a novel delay-independent condition ensuring the stability and the onset of Hopf bifurcation for the involved integer-order delayed BAM neural networks is built. Taking advantage of Laplace transform, stability theory and Hopf bifurcation knowledge of fractional-order differential equations, a novel delay-independent criterion to maintain the stability and the appearance of Hopf bifurcation for the addressed fractional-order BAM neural networks is established. The investigation indicates the important role of time delay in controlling the stability and Hopf bifurcation of the both type delayed BAM neural networks. By adjusting the value of time delay, we can effectively amplify the stability region and postpone the time of onset of Hopf bifurcation for the fractional-order BAM neural networks. Matlab simulation results are clearly presented to sustain the correctness of analytical results. The derived fruits of this study provide an important theoretical basis in regulating networks
    • …
    corecore