90 research outputs found

    Glove Exoskeleton for Extra-Vehicular Activities: Analysis of Requirements and Prototype Design

    Get PDF
    The objective of the thesis is the development of a prototype of a lightweight hand exoskeleton designed to be embedded in the gloved hand of an astronaut and to overcome the stiffness of the pressurized space suit. The system should be able to provide force and precision to the hand grip. The project involves various elements, in particular the analysis of the characteristics of the hand and of the EVA glove. Moreover solutions related to sensor and actuator should be investigated. Finally the study and the design of an appropriate robotic structure able to fullfit the requirements have to be performed

    ReHand - a portable assistive rehabilitation hand exoskeleton

    Get PDF
    This dissertation presents a synthesis of a novel underactuated exoskeleton (namely ReHand2) thought and designed for a task-oriented rehabilitation and/or for empower the human hand. The first part of this dissertation shows the current context about the robotic rehabilitation with a focus on hand pathologies, which influence the hand capability. The chapter is concluded with the presentation of ReHand2. The second chapter describes the human hand biomechanics. Starting from the definition of human hand anatomy, passing through anthropometric data, to taxonomy on hand grasps and finger constraints, both from static and dynamic point of view. In addition, some information about the hand capability are given. The third chapter analyze the current state of the art in hand exoskeleton for rehabilitation and empower tasks. In particular, the chapter presents exoskeleton technologies, from mechanisms to sensors, passing though transmission and actuators. Finally, the current state of the art in terms of prototype and commercial products is presented. The fourth chapter introduces the concepts of underactuation with the basic explanation and the classical notation used typically in the prosthetic field. In addition, the chapter describe also the most used differential elements in the prosthetic, follow by a statical analysis. Moreover typical transmission tree at inter-finger level as well as the intra- finger underactuation are explained . The fifth chapter presents the prototype called ReHand summarizing the device description and explanation of the working principle. It describes also the kinetostatic analysis for both, inter- and the intra-finger modules. in the last section preliminary results obtained with the exoskeleton are shown and discussed, attention is pointed out on prototype’s problems that have carry out at the second version of the device. The sixth chapter describes the evolution of ReHand, describing the kinematics and dynamics behaviors. In particular, for the mathematical description is introduced the notation used in order to analyze and optimize the geometry of the entire device. The introduced model is also implemented in Matlab Simulink environment. Finally, the chapter presents the new features. The seventh chapter describes the test bench and the methodologies used to evaluate the device statical, and dynamical performances. The chapter presents and discuss the experimental results and compare them with simulated one. Finally in the last chapter the conclusion about the ReHand project are proposed as well as the future development. In particular, the idea to test de device in relevant environments. In addition some preliminary considerations about the thumb and the wrist are introduced, exploiting the possibility to modify the entire layout of the device, for instance changing the actuator location

    ANALYSIS OF SCYE BEARING MOTION AS APPLICABLE TO THE DESIGN OF A MORPHING SPACESUIT

    Get PDF
    This thesis describes research supporting the development of the Morphing Upper Torso spacesuit design, which uses robotic augmentation of a rear-entry pressure suit to adjust torso dimensions. This concept has the potential to provide increased mobility, easier ingress/egress of the suit, and reduced astronaut workload during extravehicular operations. A range of motion study has been conducted in which subjects wore simulated shoulder scye bearings while performing selected tasks, with the intent to measure human motion in relation to scye bearing motion. Results of the study include an investigation of the neutral pose of the scye bearings in Earth gravity, an analysis of the angular range of motion observed for the right scye bearing, and the development of a heuristic model to predict scye bearing position and orientation as a function of known arm pose

    Development of a 4-DoF Active Upper Limb Orthosis

    Get PDF
    In this paper, the designs and manufacturing process of a powered upper limb orthosis are presented. The orthosis is an exoskeleton worn on one arm by the user and fixed to the trunk. The orthosis’ architecture, design, and manufacturing process are presented and discussed. Estimations of the ranges of movement related to daily living activities are presented. The preliminary tests to verify the functionality of the design show encouraging results

    MOSAR: A Soft-Assistive Mobilizer for Upper Limb Active Use and Rehabilitation

    Get PDF
    In this study, a soft assisted mobilizer called MOSAR from (Mobilizador Suave de Asistencia y Rehabilitación) for upper limb rehabilitation was developed for a 11 years old child with right paretic side. The mobilizer provides a new therapeutic approach to augment his upper limb active use and rehabilitation, by means of exerting elbow (flexion-extension), forearm (pronation-supination) and (flexion-extension along with ulnar-radial deviations) at the wrist. Preliminarily, the design concept of the soft mobilizer was developed through Reverse Engineering of his upper limb: first casting model, silicone model, and later computational model were obtained by 3D scan, which was the parameterized reference for MOSAR development. Then, the manufacture of fabric inflatable soft actuators for driving the MOSAR system were carried out. Lastly, a law close loop control for the inflation-deflation process was implemented to validate FISAs performance. The results demonstrated the feasibility and effectiveness of the FISAs for being a functional tool for upper limb rehabilitation protocols by achieving those previous target motions similar to the range of motion (ROM) of a healthy person or being used in other applications

    Advanced extravehicular activity systems requirements definition study

    Get PDF
    A study to define the requirements for advanced extravehicular activities (AEVA) was conducted. The purpose of the study was to develop an understanding of the EVA technology requirements and to map a pathway from existing or developing technologies to an AEVA system capable of supporting long-duration missions on the lunar surface. The parameters of an AEVA system which must sustain the crewmembers and permit productive work for long periods in the lunar environment were examined. A design reference mission (DRM) was formulated and used as a tool to develop and analyze the EVA systems technology aspects. Many operational and infrastructure design issues which have a significant influence on the EVA system are identified
    corecore