795 research outputs found

    Reliability performance analysis of half-duplex and full-duplex schemes with self-energy recycling

    Get PDF
    Abstract. Radio frequency energy harvesting (EH) has emerged as a promising option for improving the energy efficiency of current and future networks. Self-energy recycling (sER), as a variant of EH, has also appeared as a suitable alternative that allows to reuse part of the transmitted energy via an energy loop. In this work we study the benefits of using sER in terms of reliability improvements and compare the performance of full-duplex (FD) and half-duplex (HD) schemes when using multi-antenna techniques at the base station side. We also assume a model for the hardware energy consumption, making the analysis more realistic since most works only consider the energy spent on transmission. In addition to spectral efficiency enhancements, results show that FD performs better than HD in terms of reliability. We maximize the outage probability of the worst link in the network using a dynamic FD scheme where a small base station (SBS) determines the optimal number of antennas for transmission and reception. This scheme proves to be more efficient than classical HD and FD modes. Results show that the use of sER at the SBS introduces changes on the distribution of antennas for maximum fairness when compared to the setup without sER. Moreover, we determine the minimum number of active radio frequency chains required at the SBS in order to achieve a given reliability target

    Research Issues, Challenges, and Opportunities of Wireless Power Transfer-Aided Full-Duplex Relay Systems

    Get PDF
    We present a comprehensive review for wireless power transfer (WPT)-aided full-duplex (FD) relay systems. Two critical challenges in implementing WPT-aided FD relay systems are presented, that is, pseudo FD realization and high power consumption. Existing time-splitting or power-splitting structure based-WPT-aided FD relay systems can only realize FD operation in one of the time slots or only forward part of the received signal to the destination, belonging to pseudo FD realization. Besides, self-interference is treated as noise and self-interference cancellation (SIC) operation incurs high power consumption at the FD relay node. To this end, a promising solution is outlined to address the two challenges, which realizes consecutive FD realization at all times and forwards all the desired signal to the destination for decoding. Also, active SIC, that is, analog/digital cancellation, is not required by the proposed solution, which effectively reduces the circuit complexity and releases high power consumption at the FD relay node. Specific classifications and performance metrics of WPT-aided FD relay systems are summarized. Some future research is also envisaged for WPT-aided FD systems

    An Adaptive Self-Interference Cancelation/Utilization and ICA-Assisted Semi-Blind Full-Duplex Relay System for LLHR IoT

    Get PDF
    In this article, we propose a semi-blind full-duplex (FD) amplify-and-forward (AF) relay system with adaptive self-interference (SI) processing assisted by independent component analysis (ICA) for low-latency and high-reliability (LLHR) Internet of Things (IoT). The SI at FD relay is not necessarily canceled as much as possible like the conventional approaches, but is canceled or utilized based on a signal-to-residual-SI ratio (SRSIR) threshold at relay. According to the selected SI processing mode at relay, an ICA-based adaptive semi-blind scheme is proposed for signal separation and detection at destination. The proposed FD relay system not only features reduced signal processing cost of SI cancelation but also achieves a much higher degree of freedom in signal detection. The resulting bit error rate (BER) performance is robust against a wide range of SRSIR, much better than that of conventional FD systems, and close to the ideal case with perfect channel state information (CSI) and perfect SI cancelation. The proposed system also requires negligible spectral overhead as only a nonredundant precoding is needed for ambiguity elimination in ICA. In addition, the proposed system enables full resource utilization with consecutive data transmission at all time and same frequency, leading to much higher throughput and energy efficiency than the time-splitting and power-splitting-based self-energy recycling approaches that utilize only partial resources. Furthermore, an intensive analysis is provided, where the SRSIR thresholds for the adaptive SI processing mode selection and the BER expressions with ICA incurred ambiguities are derived

    Energy efficiency in energy harvesting cooperative networks with self-energy recycling

    Get PDF
    Cooperative communication has been identified as an important component in the 5G system. This paper considers a decode-and-forward (DF) relaying wireless cooperative network, in which the self-energy recycling relay is powered by radio-frequency (RF) signal from the source and its transmitted power from the loop-back channel. The harvested energy is used to support the relay transmissions. Based on a self-energy recycling relaying protocol, we study the optimization of energy efficiency in wireless cooperative networks. Although the formulated optimization problem is not convex, it can be re-constructed to a parametric problem in the convex form by using the non-linear fractional programming, to which closed form solutions can be found by using the Lagrange multiplier method. The simulation results are presented to verify the effectiveness of this solution proposed in this paper

    Beamforming optimisation in energy harvesting cooperative full-duplex networks with self-energy recycling protocol

    Get PDF
    This study considers the problem of beamforming optimisation in an amplify-and-forward relaying cooperative network, in which the relay node harvests the energy from the radio-frequency signal. Based on the self-energy recycling relay protocol, the authors study the beamforming optimisation problem. The formulated problem aims to maximise the achievable rate subject to the available transmitted power at the relay node. The authors develop a semidefinite programming (SDP) relaxation method to solve the proposed problem. They also use SDP and the full search to solve the beamforming optimisation based on a time-switching relaying protocol as a benchmark. The simulation results are presented to verify that the self-energy recycling protocol achieves a significant rate gain compared with the timeswitching relaying protocol and the power-splitting relaying protocol
    • …
    corecore