1,228 research outputs found

    A Novel Approach for Enhancing Routing in Wireless Sensor Networks using ACO Algorithm

    Get PDF
    Wireless Sensors Network (WSN) is an emergent technology that aims to offer innovative capacities. In the last decade, the use of these networks increased in various fields like military, science, and health due to their fast and inexpressive deployment and installation. However, the limited sensor battery lifetime poses many technical challenges and affects essential services like routing. This issue is a hot topic of search, many researchers have proposed various routing protocols aimed at reducing the energy consumption in WSNs. The focus of this work is to investigate the effectiveness of integrating ACO algorithm with routing protocols in WSNs. Moreover, it presents a novel approach inspired by ant colony optimization (ACO) to be deployed as a new routing protocol that addresses key challenges in wireless sensor networks. The proposed protocol can significantly minimize nodes energy consumption, enhance the network lifetime, reduce latency, and expect performance in various scenarios

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research

    Research Challenges of Improved Cluster Chain Power-Efficient Routing Using Natural Computing Methods for Wireless Sensor Network

    Get PDF
    Wireless Sensor Networks (WSNs) primarily operate on batteries, making energy conservation crucial, especially in routing processes. Efficient routing in WSNs is challenging due to the network's distinct attributes. Among various routing protocols, CCPAR is noteworthy as it utilizes a chain between cluster heads to relay data to the base station. This research delves into nature-inspired techniques for energy-efficient routing in WSNs. It introduces the Moth-Dolphin Optimization Algorithm, capitalizing on the communication between moths to enhance routing performance. This innovative method combines the navigational skills of moths and the communicative attributes of dolphins. When benchmarked against other optimization methods, the Moth-Dolphin algorithm offers favorable results. The study then applies this algorithm to improve CCPAR routing, aiming for reduced energy consumption. The modified routing's effectiveness is evaluated against other top-tier algorithms, considering factors like energy consumption, throughput, network longevity, and delay

    Survey on Various Aspects of Clustering in Wireless Sensor Networks Employing Classical, Optimization, and Machine Learning Techniques

    Get PDF
    A wide range of academic scholars, engineers, scientific and technology communities are interested in energy utilization of Wireless Sensor Networks (WSNs). Their extensive research is going on in areas like scalability, coverage, energy efficiency, data communication, connection, load balancing, security, reliability and network lifespan. Individual researchers are searching for affordable methods to enhance the solutions to existing problems that show unique techniques, protocols, concepts, and algorithms in the wanted domain. Review studies typically offer complete, simple access or a solution to these problems. Taking into account this motivating factor and the effect of clustering on the decline of energy, this article focuses on clustering techniques using various wireless sensor networks aspects. The important contribution of this paper is to give a succinct overview of clustering

    Opportunities of IoT in Fog Computing for High Fault Tolerance and Sustainable Energy Optimization

    Get PDF
    Today, the importance of enhanced quality of service and energy optimization has promoted research into sensor applications such as pervasive health monitoring, distributed computing, etc. In general, the resulting sensor data are stored on the cloud server for future processing. For this purpose, recently, the use of fog computing from a real-world perspective has emerged, utilizing end-user nodes and neighboring edge devices to perform computation and communication. This paper aims to develop a quality-of-service-based energy optimization (QoS-EO) scheme for the wireless sensor environments deployed in fog computing. The fog nodes deployed in specific geographical areas cover the sensor activity performed in those areas. The logical situation of the entire system is informed by the fog nodes, as portrayed. The implemented techniques enable services in a fog-collaborated WSN environment. Thus, the proposed scheme performs quality-of-service placement and optimizes the network energy. The results show a maximum turnaround time of 8 ms, a minimum turnaround time of 1 ms, and an average turnaround time of 3 ms. The costs that were calculated indicate that as the number of iterations increases, the path cost value decreases, demonstrating the efficacy of the proposed technique. The CPU execution delay was reduced to a minimum of 0.06 s. In comparison, the proposed QoS-EO scheme has a lower network usage of 611,643.3 and a lower execution cost of 83,142.2. Thus, the results show the best cost estimation, reliability, and performance of data transfer in a short time, showing a high level of network availability, throughput, and performance guarantee

    A Hybrid Metaheuristic Algorithm for Stop Point Selection in Wireless Rechargeable Sensor Network

    Get PDF
    A wireless rechargeable sensor network (WRSN) enables charging of rechargeable sensor nodes (RSN) wirelessly through a mobile charging vehicle (MCV). Most existing works choose the MCV’s stop point (SP) at random, the cluster’s center, or the cluster head position, all without exploring the demand from RSNs. It results in a long charging delay, a low charging throughput, frequent MCV trips, and more dead nodes. To overcome these issues, this paper proposes a hybrid metaheuristic algorithm for stop point selection (HMA-SPS) that combines the techniques of the dragonfly algorithm (DA), firefly algorithm (FA), and gray wolf optimization (GWO) algorithms. Using FA and GWO techniques, DA predicts an ideal SP using the run-time metrics of RSNs, such as energy, delay, distance, and trust factors. The simulated results demonstrate faster convergence with low delay and highlight that more RSNs can be recharged with fewer MCV visits, further enhancing energy utilization, throughput, network lifetime, and trust factor
    • …
    corecore