998 research outputs found

    Big data clustering using grid computing and ant-based algorithm

    Get PDF
    Big data has the power to dramatically change the way institutes and organizations use their data. Transforming the massive amounts of data into knowledge will leverage the organizations performance to the maximum.Scientific and business organizations would benefit from utilizing big data. However, there are many challenges in dealing with big data such as storage, transfer, management and manipulation of big data.Many techniques are required to explore the hidden pattern inside the big data which have limitations in terms of hardware and software implementation. This paper presents a framework for big data clustering which utilizes grid technology and ant-based algorithm

    Mutual synchronization and clustering in randomly coupled chaotic dynamical networks

    Get PDF
    We introduce and study systems of randomly coupled maps (RCM) where the relevant parameter is the degree of connectivity in the system. Global (almost-) synchronized states are found (equivalent to the synchronization observed in globally coupled maps) until a certain critical threshold for the connectivity is reached. We further show that not only the average connectivity, but also the architecture of the couplings is responsible for the cluster structure observed. We analyse the different phases of the system and use various correlation measures in order to detect ordered non-synchronized states. Finally, it is shown that the system displays a dynamical hierarchical clustering which allows the definition of emerging graphs.Comment: 13 pages, to appear in Phys. Rev.

    An improved multiple classifier combination scheme for pattern classification

    Get PDF
    Combining multiple classifiers are considered as a new direction in the pattern recognition to improve classification performance. The main problem of multiple classifier combination is that there is no standard guideline for constructing an accurate and diverse classifier ensemble. This is due to the difficulty in identifying the number of homogeneous classifiers and how to combine the classifier outputs. The most commonly used ensemble method is the random strategy while the majority voting technique is used as the combiner. However, the random strategy cannot determine the number of classifiers and the majority voting technique does not consider the strength of each classifier, thus resulting in low classification accuracy. In this study, an improved multiple classifier combination scheme is proposed. The ant system (AS) algorithm is used to partition feature set in developing feature subsets which represent the number of classifiers. A compactness measure is introduced as a parameter in constructing an accurate and diverse classifier ensemble. A weighted voting technique is used to combine the classifier outputs by considering the strength of the classifiers prior to voting. Experiments were performed using four base classifiers, which are Nearest Mean Classifier (NMC), Naive Bayes Classifier (NBC), k-Nearest Neighbour (k-NN) and Linear Discriminant Analysis (LDA) on benchmark datasets, to test the credibility of the proposed multiple classifier combination scheme. The average classification accuracy of the homogeneous NMC, NBC, k-NN and LDA ensembles are 97.91%, 98.06%, 98.09% and 98.12% respectively. The accuracies are higher than those obtained through the use of other approaches in developing multiple classifier combination. The proposed multiple classifier combination scheme will help to develop other multiple classifier combination for pattern recognition and classification

    Ensemble Clustering for Biological Datasets

    Get PDF

    Ensemble clustering via heuristic optimisation

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel UniversityTraditional clustering algorithms have different criteria and biases, and there is no single algorithm that can be the best solution for a wide range of data sets. This problem often presents a significant obstacle to analysts in revealing meaningful information buried among the huge amount of data. Ensemble Clustering has been proposed as a way to avoid the biases and improve the accuracy of clustering. The difficulty in developing Ensemble Clustering methods is to combine external information (provided by input clusterings) with internal information (i.e. characteristics of given data) effectively to improve the accuracy of clustering. The work presented in this thesis focuses on enhancing the clustering accuracy of Ensemble Clustering by employing heuristic optimisation techniques to achieve a robust combination of relevant information during the consensus clustering stage. Two novel heuristic optimisation-based Ensemble Clustering methods, Multi-Optimisation Consensus Clustering (MOCC) and K-Ants Consensus Clustering (KACC), are developed and introduced in this thesis. These methods utilise two heuristic optimisation algorithms (Simulated Annealing and Ant Colony Optimisation) for their Ensemble Clustering frameworks, and have been proved to outperform other methods in the area. The extensive experimental results, together with a detailed analysis, will be presented in this thesis

    Ant colony optimization approach for stacking configurations

    Full text link
    In data mining, classifiers are generated to predict the class labels of the instances. An ensemble is a decision making system which applies certain strategies to combine the predictions of different classifiers and generate a collective decision. Previous research has empirically and theoretically demonstrated that an ensemble classifier can be more accurate and stable than its component classifiers in most cases. Stacking is a well-known ensemble which adopts a two-level structure: the base-level classifiers to generate predictions and the meta-level classifier to make collective decisions. A consequential problem is: what learning algorithms should be used to generate the base-level and meta-level classifier in the Stacking configuration? It is not easy to find a suitable configuration for a specific dataset. In some early works, the selection of a meta classifier and its training data are the major concern. Recently, researchers have tried to apply metaheuristic methods to optimize the configuration of the base classifiers and the meta classifier. Ant Colony Optimization (ACO), which is inspired by the foraging behaviors of real ant colonies, is one of the most popular approaches among the metaheuristics. In this work, we propose a novel ACO-Stacking approach that uses ACO to tackle the Stacking configuration problem. This work is the first to apply ACO to the Stacking configuration problem. Different implementations of the ACO-Stacking approach are developed. The first version identifies the appropriate learning algorithms in generating the base-level classifiers while using a specific algorithm to create the meta-level classifier. The second version simultaneously finds the suitable learning algorithms to create the base-level classifiers and the meta-level classifier. Moreover, we study how different kinds on local information of classifiers will affect the classification results. Several pieces of local information collected from the initial phase of ACO-Stacking are considered, such as the precision, f-measure of each classifier and correlative differences of paired classifiers. A series of experiments are performed to compare the ACO-Stacking approach with other ensembles on a number of datasets of different domains and sizes. The experiments show that the new approach can achieve promising results and gain advantages over other ensembles. The correlative differences of the classifiers could be the best local information in this approach. Under the agile ACO-Stacking framework, an application to deal with a direct marketing problem is explored. A real world database from a US-based catalog company, containing more than 100,000 customer marketing records, is used in the experiments. The results indicate that our approach can gain more cumulative response lifts and cumulative profit lifts in the top deciles. In conclusion, it is competitive with some well-known conventional and ensemble data mining methods
    • …
    corecore