24,786 research outputs found

    Answering Why-not Questions on Reverse Top-k Queries

    Get PDF
    Why-not questions, which aim to seek clarifications on the missing tuples for query results, have recently received considerable attention from the database community. In this paper, we systematically explore why-not questions on reverse top-k queries , owing to its importance in multi-criteria decision making. Given an initial reverse top- k query and a missing/why-not weighting vector set W m that is absent from the query result, why-not questions on reverse top- k queries explain why W m does not appear in the query result and provide suggestions on how to refine the initial query with minimum penalty to include W m in the refined query result. We first formalize why-not questions on reverse top- k queries and reveal their semantics, and then propose a unified framework called WQRTQ to answer why-not questions on both monochromatic and bichromatic reverse top- k queries. Our framework offers three solutions, namely, (i) modifying a query point q , (ii) modifying a why-not weighting vector set W m and a parameter k , and (iii) modifying q , W m , and k simultaneously, to cater for different application scenarios. Extensive experimental evaluation using both real and synthetic data sets verifies the effectiveness and efficiency of the presented algorithms. </jats:p

    SQL Query Completion for Data Exploration

    Full text link
    Within the big data tsunami, relational databases and SQL are still there and remain mandatory in most of cases for accessing data. On the one hand, SQL is easy-to-use by non specialists and allows to identify pertinent initial data at the very beginning of the data exploration process. On the other hand, it is not always so easy to formulate SQL queries: nowadays, it is more and more frequent to have several databases available for one application domain, some of them with hundreds of tables and/or attributes. Identifying the pertinent conditions to select the desired data, or even identifying relevant attributes is far from trivial. To make it easier to write SQL queries, we propose the notion of SQL query completion: given a query, it suggests additional conditions to be added to its WHERE clause. This completion is semantic, as it relies on the data from the database, unlike current completion tools that are mostly syntactic. Since the process can be repeated over and over again -- until the data analyst reaches her data of interest --, SQL query completion facilitates the exploration of databases. SQL query completion has been implemented in a SQL editor on top of a database management system. For the evaluation, two questions need to be studied: first, does the completion speed up the writing of SQL queries? Second , is the completion easily adopted by users? A thorough experiment has been conducted on a group of 70 computer science students divided in two groups (one with the completion and the other one without) to answer those questions. The results are positive and very promising

    ANSWERING WHY-NOT QUESTIONS ON REVERSE SKYLINE QUERIES OVER INCOMPLETE DATA

    Get PDF
            Recently, the development of the query-based preferences has received considerable attention from researchers and data users. One of the most popular preference-based queries is the skyline query, which will give a subset of superior records that are not dominated by any other records. As the developed version of skyline queries, a reverse skyline query rise. This query aims to get information about the query points that make a data or record as the part of result of their skyline query.     Furthermore, data-oriented IT development requires scientists to be able to process data in all conditions. In the real world, there exist incomplete multidimensional data, both because of damage, loss, and privacy. In order to increase the usability over a data set, this study will discuss one of the problems in processing reverse skyline queries over incomplete data, namely the "why-not" problem. The considered solution to this "why-not" problem is advice and steps so that a query point that does not initially consider an incomplete data, as a result, can later make the record or incomplete data as part of the results. In this study, there will be further discussion about the dominance relationship between incomplete data along with the solution of the problem. Moreover, some performance evaluations are conducted to measure the level of efficiency and effectiveness

    Towards Why-Not Spatial Keyword Top-k Queries:A Direction-Aware Approach

    Get PDF

    Crowdsourcing Multiple Choice Science Questions

    Full text link
    We present a novel method for obtaining high-quality, domain-targeted multiple choice questions from crowd workers. Generating these questions can be difficult without trading away originality, relevance or diversity in the answer options. Our method addresses these problems by leveraging a large corpus of domain-specific text and a small set of existing questions. It produces model suggestions for document selection and answer distractor choice which aid the human question generation process. With this method we have assembled SciQ, a dataset of 13.7K multiple choice science exam questions (Dataset available at http://allenai.org/data.html). We demonstrate that the method produces in-domain questions by providing an analysis of this new dataset and by showing that humans cannot distinguish the crowdsourced questions from original questions. When using SciQ as additional training data to existing questions, we observe accuracy improvements on real science exams.Comment: accepted for the Workshop on Noisy User-generated Text (W-NUT) 201

    SE-KGE: A Location-Aware Knowledge Graph Embedding Model for Geographic Question Answering and Spatial Semantic Lifting

    Get PDF
    Learning knowledge graph (KG) embeddings is an emerging technique for a variety of downstream tasks such as summarization, link prediction, information retrieval, and question answering. However, most existing KG embedding models neglect space and, therefore, do not perform well when applied to (geo)spatial data and tasks. For those models that consider space, most of them primarily rely on some notions of distance. These models suffer from higher computational complexity during training while still losing information beyond the relative distance between entities. In this work, we propose a location-aware KG embedding model called SE-KGE. It directly encodes spatial information such as point coordinates or bounding boxes of geographic entities into the KG embedding space. The resulting model is capable of handling different types of spatial reasoning. We also construct a geographic knowledge graph as well as a set of geographic query-answer pairs called DBGeo to evaluate the performance of SE-KGE in comparison to multiple baselines. Evaluation results show that SE-KGE outperforms these baselines on the DBGeo dataset for geographic logic query answering task. This demonstrates the effectiveness of our spatially-explicit model and the importance of considering the scale of different geographic entities. Finally, we introduce a novel downstream task called spatial semantic lifting which links an arbitrary location in the study area to entities in the KG via some relations. Evaluation on DBGeo shows that our model outperforms the baseline by a substantial margin.Comment: Accepted to Transactions in GI
    corecore