7,236 research outputs found

    A Survey on Array Storage, Query Languages, and Systems

    Full text link
    Since scientific investigation is one of the most important providers of massive amounts of ordered data, there is a renewed interest in array data processing in the context of Big Data. To the best of our knowledge, a unified resource that summarizes and analyzes array processing research over its long existence is currently missing. In this survey, we provide a guide for past, present, and future research in array processing. The survey is organized along three main topics. Array storage discusses all the aspects related to array partitioning into chunks. The identification of a reduced set of array operators to form the foundation for an array query language is analyzed across multiple such proposals. Lastly, we survey real systems for array processing. The result is a thorough survey on array data storage and processing that should be consulted by anyone interested in this research topic, independent of experience level. The survey is not complete though. We greatly appreciate pointers towards any work we might have forgotten to mention.Comment: 44 page

    Datalog± Ontology Consolidation

    Get PDF
    Knowledge bases in the form of ontologies are receiving increasing attention as they allow to clearly represent both the available knowledge, which includes the knowledge in itself and the constraints imposed to it by the domain or the users. In particular, Datalog ± ontologies are attractive because of their property of decidability and the possibility of dealing with the massive amounts of data in real world environments; however, as it is the case with many other ontological languages, their application in collaborative environments often lead to inconsistency related issues. In this paper we introduce the notion of incoherence regarding Datalog± ontologies, in terms of satisfiability of sets of constraints, and show how under specific conditions incoherence leads to inconsistent Datalog ± ontologies. The main contribution of this work is a novel approach to restore both consistency and coherence in Datalog± ontologies. The proposed approach is based on kernel contraction and restoration is performed by the application of incision functions that select formulas to delete. Nevertheless, instead of working over minimal incoherent/inconsistent sets encountered in the ontologies, our operators produce incisions over non-minimal structures called clusters. We present a construction for consolidation operators, along with the properties expected to be satisfied by them. Finally, we establish the relation between the construction and the properties by means of a representation theorem. Although this proposal is presented for Datalog± ontologies consolidation, these operators can be applied to other types of ontological languages, such as Description Logics, making them apt to be used in collaborative environments like the Semantic Web.Fil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin

    Querying several conflicting databases

    Get PDF
    This paper addresses the problem of querying several databases considered as a whole. Assuming that the different databases share a common data description language, the problem that arises is to consistently answer queries even if the database contents are contradictory. The main contribution of this paper is the specification of a query-evaluator for answering closed and open general queries addressed to several databases and for providing explanations about the results. For doing so, we first specify a query-evaluator, in logic, which assumes that the databases are propositional ones and do not contain disjunctions. Then we extend it to first-order databases defined by an extensional part (sets of positive or negative facts) and an intentional part (sets of first order clauses). We also show that the query-evaluator corresponds to a majority merging of the databases

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    DBI-DeLP: a framework for defeasible argumentation over databases

    Get PDF
    Nowadays Argumentation Systems in general, and DeLP in particular, build arguments based on the context of a single and xed logical program. This leads to a practical limitation regarding the volume of data in which the argumentation is supported, because integration of constantly updated external data only can be made by the "hard-coding" of facts (i.e., the explicit codi cation of facts in the program), which is inne cient for massive data. This paper introduces Database Integration for Defeasible Logic Programming (DBI-DeLP), a framework that integrates Defeasible Argumentation with Databases that may be updated by other external applications, allowing the execution of argumentation processes based on masive external sources of data.Presentado en el XII Workshop Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    DBI-DeLP: a framework for defeasible argumentation over databases

    Get PDF
    Nowadays Argumentation Systems in general, and DeLP in particular, build arguments based on the context of a single and xed logical program. This leads to a practical limitation regarding the volume of data in which the argumentation is supported, because integration of constantly updated external data only can be made by the "hard-coding" of facts (i.e., the explicit codi cation of facts in the program), which is inne cient for massive data. This paper introduces Database Integration for Defeasible Logic Programming (DBI-DeLP), a framework that integrates Defeasible Argumentation with Databases that may be updated by other external applications, allowing the execution of argumentation processes based on masive external sources of data.Presentado en el XII Workshop Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    The Fourth International VLDB Workshop on Management of Uncertain Data

    Get PDF

    UPI: A Primary Index for Uncertain Databases

    Get PDF
    Uncertain data management has received growing attention from industry and academia. Many efforts have been made to optimize uncertain databases, including the development of special index data structures. However, none of these efforts have explored primary (clustered) indexes for uncertain databases, despite the fact that clustering has the potential to offer substantial speedups for non-selective analytic queries on large uncertain databases. In this paper, we propose a new index called a UPI (Uncertain Primary Index) that clusters heap files according to uncertain attributes with both discrete and continuous uncertainty distributions. Because uncertain attributes may have several possible values, a UPI on an uncertain attribute duplicates tuple data once for each possible value. To prevent the size of the UPI from becoming unmanageable, its size is kept small by placing low-probability tuples in a special Cutoff Index that is consulted only when queries for low-probability values are run. We also propose several other optimizations, including techniques to improve secondary index performance and techniques to reduce maintenance costs and fragmentation by buffering changes to the table and writing updates in sequential batches. Finally, we develop cost models for UPIs to estimate query performance in various settings to help automatically select tuning parameters of a UPI. We have implemented a prototype UPI and experimented on two real datasets. Our results show that UPIs can significantly (up to two orders of magnitude) improve the performance of uncertain queries both over clustered and unclustered attributes. We also show that our buffering techniques mitigate table fragmentation and keep the maintenance cost as low as or even lower than using an unclustered heap file.National Science Foundation (U.S.) (Grant IIS-0448124)National Science Foundation (U.S.) (Grant IIS-0905553)National Science Foundation (U.S.) (Grant IIS-0916691
    • …
    corecore