3,449 research outputs found

    08421 Abstracts Collection -- Uncertainty Management in Information Systems

    Get PDF
    From October 12 to 17, 2008 the Dagstuhl Seminar 08421 \u27`Uncertainty Management in Information Systems \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. The abstracts of the plenary and session talks given during the seminar as well as those of the shown demos are put together in this paper

    Querying Probabilistic Ontologies with SPARQL

    Full text link
    In recent years a lot of efforts was put into the field of Semantic Web research to specify knowledge as precisely as possible. However, optimizing for precision alone is not sufficient. The handling of uncertain or incomplete information is getting more and more important and it promises to significantly improve the quality of query answering in Semantic Web applications. My plan is to develop a framework that extends the rich semantics offered by ontologies with probabilistic information, stores this in a probabilistic database and provides query answering with the help of query rewriting. In this proposal I describe how these three aspects can be combined. Especially, I am focusing on how uncertainty is incorporated into the ABox and how it is handled by the database and the rewriter during query answering

    SmartInt: Using Mined Attribute Dependencies to Integrate Fragmented Web Databases

    Full text link
    Many web databases can be seen as providing partial and overlapping information about entities in the world. To answer queries effectively, we need to integrate the information about the individual entities that are fragmented over multiple sources. At first blush this is just the inverse of traditional database normalization problem - rather than go from a universal relation to normalized tables, we want to reconstruct the universal relation given the tables (sources). The standard way of reconstructing the entities will involve joining the tables. Unfortunately, because of the autonomous and decentralized way in which the sources are populated, they often do not have Primary Key - Foreign Key relations. While tables may share attributes, naive joins over these shared attributes can result in reconstruction of many spurious entities thus seriously compromising precision. Our system, \smartint\ is aimed at addressing the problem of data integration in such scenarios. Given a query, our system uses the Approximate Functional Dependencies (AFDs) to piece together a tree of relevant tables to answer it. The result tuples produced by our system are able to strike a favorable balance between precision and recall

    Adaptation of language model of Information Retrieval for empty answers Problem in databases

    Get PDF
    International audienceInformation over the web is increasingly retrieved from relational databases in which the query language is based on exact matching, data fulfil completely the query or not. The results returned to the user contain only tuples that satisfy the conditions of the query. Thereby, the user can be confronted to the problem of empty answers in the case of too selective query. To overcome this problem, several approaches have been proposed in the literature in particularly those based on query conditions relaxation. Others works suggest the use of fuzzy sets theory to introduce a flexible queries. Another line of research proposes the adaptation of information retrieval (IR) approaches to get an approximate matching in databases. We discuss in this paper, an adaptation of language model of IR to deal with empty answers. The main idea behind our approach is that instead of returning an empty response to the user, a ranked list of tuples that have the most similar values to those specified in user's query is returned

    Structurally Tractable Uncertain Data

    Full text link
    Many data management applications must deal with data which is uncertain, incomplete, or noisy. However, on existing uncertain data representations, we cannot tractably perform the important query evaluation tasks of determining query possibility, certainty, or probability: these problems are hard on arbitrary uncertain input instances. We thus ask whether we could restrict the structure of uncertain data so as to guarantee the tractability of exact query evaluation. We present our tractability results for tree and tree-like uncertain data, and a vision for probabilistic rule reasoning. We also study uncertainty about order, proposing a suitable representation, and study uncertain data conditioned by additional observations.Comment: 11 pages, 1 figure, 1 table. To appear in SIGMOD/PODS PhD Symposium 201

    Query Reformulation: Data Integration Approach to Multi Domain Query Answering System

    Get PDF
    Data integration gives the user with a unified view of all heterogeneous data sources. The basic service provided by data integration is query processing. Whatever query posed to the system is being given to global schema which has to reformulate to sub queries that are to be posed to the local sources. Reformulation is being accomplished by mapping between global and local sources by Global-as-View (GAV), Local-as-view (LAV) and Global-local-as-view (GLAV) approach. When a query involves multiple domains, it is difficult to extract information in case of general service engines

    Treatment of imprecision in data repositories with the aid of KNOLAP

    Get PDF
    Traditional data repositories introduced for the needs of business processing, typically focus on the storage and querying of crisp domains of data. As a result, current commercial data repositories have no facilities for either storing or querying imprecise/ approximate data. No significant attempt has been made for a generic and applicationindependent representation of value imprecision mainly as a property of axes of analysis and also as part of dynamic environment, where potential users may wish to define their “own” axes of analysis for querying either precise or imprecise facts. In such cases, measured values and facts are characterised by descriptive values drawn from a number of dimensions, whereas values of a dimension are organised as hierarchical levels. A solution named H-IFS is presented that allows the representation of flexible hierarchies as part of the dimension structures. An extended multidimensional model named IF-Cube is put forward, which allows the representation of imprecision in facts and dimensions and answering of queries based on imprecise hierarchical preferences. Based on the H-IFS and IF-Cube concepts, a post relational OLAP environment is delivered, the implementation of which is DBMS independent and its performance solely dependent on the underlying DBMS engine

    Impliance: A Next Generation Information Management Appliance

    Full text link
    ably successful in building a large market and adapting to the changes of the last three decades, its impact on the broader market of information management is surprisingly limited. If we were to design an information management system from scratch, based upon today's requirements and hardware capabilities, would it look anything like today's database systems?" In this paper, we introduce Impliance, a next-generation information management system consisting of hardware and software components integrated to form an easy-to-administer appliance that can store, retrieve, and analyze all types of structured, semi-structured, and unstructured information. We first summarize the trends that will shape information management for the foreseeable future. Those trends imply three major requirements for Impliance: (1) to be able to store, manage, and uniformly query all data, not just structured records; (2) to be able to scale out as the volume of this data grows; and (3) to be simple and robust in operation. We then describe four key ideas that are uniquely combined in Impliance to address these requirements, namely the ideas of: (a) integrating software and off-the-shelf hardware into a generic information appliance; (b) automatically discovering, organizing, and managing all data - unstructured as well as structured - in a uniform way; (c) achieving scale-out by exploiting simple, massive parallel processing, and (d) virtualizing compute and storage resources to unify, simplify, and streamline the management of Impliance. Impliance is an ambitious, long-term effort to define simpler, more robust, and more scalable information systems for tomorrow's enterprises.Comment: This article is published under a Creative Commons License Agreement (http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute, display, and perform the work, make derivative works and make commercial use of the work, but, you must attribute the work to the author and CIDR 2007. 3rd Biennial Conference on Innovative Data Systems Research (CIDR) January 710, 2007, Asilomar, California, US
    • …
    corecore