1,358 research outputs found

    Parameterized Verification of Algorithms for Oblivious Robots on a Ring

    Full text link
    We study verification problems for autonomous swarms of mobile robots that self-organize and cooperate to solve global objectives. In particular, we focus in this paper on the model proposed by Suzuki and Yamashita of anonymous robots evolving in a discrete space with a finite number of locations (here, a ring). A large number of algorithms have been proposed working for rings whose size is not a priori fixed and can be hence considered as a parameter. Handmade correctness proofs of these algorithms have been shown to be error-prone, and recent attention had been given to the application of formal methods to automatically prove those. Our work is the first to study the verification problem of such algorithms in the parameter-ized case. We show that safety and reachability problems are undecidable for robots evolving asynchronously. On the positive side, we show that safety properties are decidable in the synchronous case, as well as in the asynchronous case for a particular class of algorithms. Several properties on the protocol can be decided as well. Decision procedures rely on an encoding in Presburger arithmetics formulae that can be verified by an SMT-solver. Feasibility of our approach is demonstrated by the encoding of several case studies

    Deterministic Symmetry Breaking in Ring Networks

    Full text link
    We study a distributed coordination mechanism for uniform agents located on a circle. The agents perform their actions in synchronised rounds. At the beginning of each round an agent chooses the direction of its movement from clockwise, anticlockwise, or idle, and moves at unit speed during this round. Agents are not allowed to overpass, i.e., when an agent collides with another it instantly starts moving with the same speed in the opposite direction (without exchanging any information with the other agent). However, at the end of each round each agent has access to limited information regarding its trajectory of movement during this round. We assume that nn mobile agents are initially located on a circle unit circumference at arbitrary but distinct positions unknown to other agents. The agents are equipped with unique identifiers from a fixed range. The {\em location discovery} task to be performed by each agent is to determine the initial position of every other agent. Our main result states that, if the only available information about movement in a round is limited to %information about distance between the initial and the final position, then there is a superlinear lower bound on time needed to solve the location discovery problem. Interestingly, this result corresponds to a combinatorial symmetry breaking problem, which might be of independent interest. If, on the other hand, an agent has access to the distance to its first collision with another agent in a round, we design an asymptotically efficient and close to optimal solution for the location discovery problem.Comment: Conference version accepted to ICDCS 201

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Decentralized Autonomous Navigation Strategies for Multi-Robot Search and Rescue

    Full text link
    In this report, we try to improve the performance of existing approaches for search operations in multi-robot context. We propose three novel algorithms that are using a triangular grid pattern, i.e., robots certainly go through the vertices of a triangular grid during the search procedure. The main advantage of using a triangular grid pattern is that it is asymptotically optimal in terms of the minimum number of robots required for the complete coverage of an arbitrary bounded area. We use a new topological map which is made and shared by robots during the search operation. We consider an area that is unknown to the robots a priori with an arbitrary shape, containing some obstacles. Unlike many current heuristic algorithms, we give mathematically proofs of convergence of the algorithms. The computer simulation results for the proposed algorithms are presented using a simulator of real robots and environment. We evaluate the performance of the algorithms via experiments with real robots. We compare the performance of our own algorithms with three existing algorithms from other researchers. The results demonstrate the merits of our proposed solution. A further study on formation building with obstacle avoidance for a team of mobile robots is presented in this report. We propose a decentralized formation building with obstacle avoidance algorithm for a group of mobile robots to move in a defined geometric configuration. Furthermore, we consider a more complicated formation problem with a group of anonymous robots; these robots are not aware of their position in the final configuration and need to reach a consensus during the formation process. We propose a randomized algorithm for the anonymous robots that achieves the convergence to a desired configuration with probability 1. We also propose a novel obstacle avoidance rule, used in the formation building algorithm.Comment: arXiv admin note: substantial text overlap with arXiv:1402.5188 by other author

    Probabilistic and Distributed Control of a Large-Scale Swarm of Autonomous Agents

    Get PDF
    We present a novel method for guiding a large-scale swarm of autonomous agents into a desired formation shape in a distributed and scalable manner. Our Probabilistic Swarm Guidance using Inhomogeneous Markov Chains (PSG-IMC) algorithm adopts an Eulerian framework, where the physical space is partitioned into bins and the swarm's density distribution over each bin is controlled. Each agent determines its bin transition probabilities using a time-inhomogeneous Markov chain. These time-varying Markov matrices are constructed by each agent in real-time using the feedback from the current swarm distribution, which is estimated in a distributed manner. The PSG-IMC algorithm minimizes the expected cost of the transitions per time instant, required to achieve and maintain the desired formation shape, even when agents are added to or removed from the swarm. The algorithm scales well with a large number of agents and complex formation shapes, and can also be adapted for area exploration applications. We demonstrate the effectiveness of this proposed swarm guidance algorithm by using results of numerical simulations and hardware experiments with multiple quadrotors.Comment: Submitted to IEEE Transactions on Robotic
    • 

    corecore