3 research outputs found

    Combined scaled manhattan distance and mean of horner’s rules for keystroke dynamic authentication

    Get PDF
    Account security was determined by how well the security techniques applied by the system were used. There had been many security methods that guaranteed the security of their accounts, one of which was Keystroke Dynamic Authentication. Keystroke Dynamic Authentication was an authentication technique that utilized the typing habits of a person as a security measurement tool for the user account. From several research, the average use in the Keystroke Dynamic Authentication classification is not suitable, because a user's typing speed will change over time, maybe faster or slower depending on certain conditions. So, in this research, we proposed a combination of the Scaled Manhattan Distance method and the Mean of Horner's Rules as a classification method between the user and attacker against the Keystroke Dynamic Authentication. The reason for using Mean of Horner’s Rules can adapt to changes in values over time and based on the results can improve the accuracy of the previous method

    A Comparison of Authentication Methods via Keystroke Dynamics

    Get PDF
    Authentication systems based on keystroke dynamics analyze the typical typing pattern of a user when interacting with an input device, such as the keyboard of a computer. In the literature, three major approaches on keystroke dynamics can be found: distance-based, statistical-based and machine learning-based approaches, which are often used to solve the problem. Nevertheless, in the literature there are several works which results are obtained from different comparison methodologies; this represents a great problem for future researchers who seek to improve or advance with prior works. Furthermore, by using proprietary databases, researchers do not provide a good overview of the overall performance of their methods, but rather an overview in a specific case: That represented by their database. In this investigation, we proposed to evaluate the performance of the most representative classifiers in two of the three most common approaches used in keystroke dynamics using the public Greyc dataset. The experimental results, reveal that machine-learning based approaches outperformed the distance-based techniques. Moreover, the Random Forest classifier, provided encouraging results

    Using Keystroke Dynamics and Location Verification Method for Mobile Banking Authentication.

    Get PDF
    With the rise of security attacks on mobile phones, traditional methods to authentication such as Personal Identification Numbers (PIN) and Passwords are becoming ineffective due to their limitations such as being easily forgettable, discloser, lost or stolen. Keystroke dynamics is a form of behavioral biometric based authentication where an analysis of how users type is monitored and used in authenticating users into a system. The use of location data provides a verification mechanism based on user’s location which can be obtained via their phones Global Positioning System (GPS) facility. This study evaluated existing authentication methods and their performance summarized. To address the limitations of traditional authentication methods this paper proposed an alternative authentication method that uses Keystroke dynamics and location data. To evaluate the proposed authentication method experiments were done through use of a prototype android mobile banking application that captured the typing behavior while logging in and location data from 60 users. The experiment results were lower compared to the previous studies provided in this paper with a False Rejection Rate (FRR) of 5.33% which is the percentage of access attempts by legitimate users that have been rejected by the system and a False Acceptance Rate (FAR) of 3.33% which is the percentage of access attempts by imposters that have been accepted by the system incorrectly, giving an Equal Error Rate (EER) of 4.3%.The outcome of this study demonstrated keystroke dynamics and location verification on PINs as an alternative authentication of mobile banking transactions building on current smartphones features with less implementation costs with no additional hardware compared to other biometric methods. Keywords: smartphones, biometric, mobile banking, keystroke dynamics, location verification, securit
    corecore