481 research outputs found

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Framework for integrated oil pipeline monitoring and incident mitigation systems

    Get PDF
    Wireless Sensor Nodes (motes) have witnessed rapid development in the last two decades. Though the design considerations for Wireless Sensor Networks (WSNs) have been widely discussed in the literature, limited investigation has been done for their application in pipeline surveillance. Given the increasing number of pipeline incidents across the globe, there is an urgent need for innovative and effective solutions for deterring the incessant pipeline incidents and attacks. WSN pose as a suitable candidate for such solutions, since they can be used to measure, detect and provide actionable information on pipeline physical characteristics such as temperature, pressure, video, oil and gas motion and environmental parameters. This paper presents specifications of motes for pipeline surveillance based on integrated systems architecture. The proposed architecture utilizes a Multi-Agent System (MAS) for the realization of an Integrated Oil Pipeline Monitoring and Incident Mitigation System (IOPMIMS) that can effectively monitor and provide actionable information for pipelines. The requirements and components of motes, different threats to pipelines and ways of detecting such threats presented in this paper will enable better deployment of pipeline surveillance systems for incident mitigation. It was identified that the shortcomings of the existing wireless sensor nodes as regards their application to pipeline surveillance are not effective for surveillance systems. The resulting specifications provide a framework for designing a cost-effective system, cognizant of the design considerations for wireless sensor motes used in pipeline surveillance

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges

    Full text link
    Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy

    A review of the use of artificial intelligence methods in infrastructure systems

    Get PDF
    The artificial intelligence (AI) revolution offers significant opportunities to capitalise on the growth of digitalisation and has the potential to enable the ‘system of systems’ approach required in increasingly complex infrastructure systems. This paper reviews the extent to which research in economic infrastructure sectors has engaged with fields of AI, to investigate the specific AI methods chosen and the purposes to which they have been applied both within and across sectors. Machine learning is found to dominate the research in this field, with methods such as artificial neural networks, support vector machines, and random forests among the most popular. The automated reasoning technique of fuzzy logic has also seen widespread use, due to its ability to incorporate uncertainties in input variables. Across the infrastructure sectors of energy, water and wastewater, transport, and telecommunications, the main purposes to which AI has been applied are network provision, forecasting, routing, maintenance and security, and network quality management. The data-driven nature of AI offers significant flexibility, and work has been conducted across a range of network sizes and at different temporal and geographic scales. However, there remains a lack of integration of planning and policy concerns, such as stakeholder engagement and quantitative feasibility assessment, and the majority of research focuses on a specific type of infrastructure, with an absence of work beyond individual economic sectors. To enable solutions to be implemented into real-world infrastructure systems, research will need to move away from a siloed perspective and adopt a more interdisciplinary perspective that considers the increasing interconnectedness of these systems
    • …
    corecore