11 research outputs found

    Abstraction, aggregation and recursion for generating accurate and simple classifiers

    Get PDF
    An important goal of inductive learning is to generate accurate and compact classifiers from data. In a typical inductive learning scenario, instances in a data set are simply represented as ordered tuples of attribute values. In our research, we explore three methodologies to improve the accuracy and compactness of the classifiers: abstraction, aggregation, and recursion;Firstly, abstraction is aimed at the design and analysis of algorithms that generate and deal with taxonomies for the construction of compact and robust classifiers. In many applications of the data-driven knowledge discovery process, taxonomies have been shown to be useful in constructing compact, robust, and comprehensible classifiers. However, in many application domains, human-designed taxonomies are unavailable. We introduce algorithms for automated construction of taxonomies inductively from both structured (such as UCI Repository) and unstructured (such as text and biological sequences) data. We introduce AVT-Learner, an algorithm for automated construction of attribute value taxonomies (AVT) from data, and Word Taxonomy Learner (WTL), an algorithm for automated construction of word taxonomy from text and sequence data. We describe experiments on the UCI data sets and compare the performance of AVT-NBL (an AVT-guided Naive Bayes Learner) with that of the standard Naive Bayes Learner (NBL). Our results show that the AVTs generated by AVT-Learner are compeitive with human-generated AVTs (in cases where such AVTs are available). AVT-NBL using AVTs generated by AVT-Learner achieves classification accuracies that are comparable to or higher than those obtained by NBL; and the resulting classifiers are significantly more compact than those generated by NBL. Similarly, our experimental results of WTL and WTNBL on protein localization sequences and Reuters newswire text categorization data sets show that the proposed algorithms can generate Naive Bayes classifiers that are more compact and often more accurate than those produced by standard Naive Bayes learner for the Multinomial Model;Secondly, we apply aggregation to construct features as a multiset of values for the intrusion detection task. For this task, we propose a bag of system calls representation for system call traces and describe misuse and anomaly detection results on the University of New Mexico (UNM) and MIT Lincoln Lab (MIT LL) system call sequences with the proposed representation. With the feature representation as input, we compare the performance of several machine learning techniques for misuse detection and show experimental results on anomaly detection. The results show that standard machine learning and clustering techniques using the simple bag of system calls representation based on the system call traces generated by the operating system\u27s kernel is effective and often performs better than approaches that use foreign contiguous sequences in detecting intrusive behaviors of compromised processes;Finally, we construct a set of classifiers by recursive application of the Naive Bayes learning algorithms. Naive Bayes (NB) classifier relies on the assumption that the instances in each class can be described by a single generative model. This assumption can be restrictive in many real world classification tasks. We describe recursive Naive Bayes learner (RNBL), which relaxes this assumption by constructing a tree of Naive Bayes classifiers for sequence classification, where each individual NB classifier in the tree is based on an event model (one model for each class at each node in the tree). In our experiments on protein sequences, Reuters newswire documents and UC-Irvine benchmark data sets, we observe that RNBL substantially outperforms NB classifier. Furthermore, our experiments on the protein sequences and the text documents show that RNBL outperforms C4.5 decision tree learner (using tests on sequence composition statistics as the splitting criterion) and yields accuracies that are comparable to those of support vector machines (SVM) using similar information

    Enforcing Security with Behavioral Fingerprinting

    Get PDF
    International audienceAlthough fingerprinting techniques are helpful for security assessment, they have limited support to advanced security related applications. We have developed a new security framework focusing especially on the authentication reinforce- ment and the automatic generation of stateful firewall rules based on behavioral fingerprinting. Such fingerprinting is highly effective in capturing sequential patterns in the behavior of a device. A new machine learning technique is also adapted to monitor high speed networks by evaluating both computational complexity and experimented performances

    Performance Metrics for Network Intrusion Systems

    Get PDF
    Intrusion systems have been the subject of considerable research during the past 33 years, since the original work of Anderson. Much has been published attempting to improve their performance using advanced data processing techniques including neural nets, statistical pattern recognition and genetic algorithms. Whilst some significant improvements have been achieved they are often the result of assumptions that are difficult to justify and comparing performance between different research groups is difficult. The thesis develops a new approach to defining performance focussed on comparing intrusion systems and technologies. A new taxonomy is proposed in which the type of output and the data scale over which an intrusion system operates is used for classification. The inconsistencies and inadequacies of existing definitions of detection are examined and five new intrusion levels are proposed from analogy with other detection-based technologies. These levels are known as detection, recognition, identification, confirmation and prosecution, each representing an increase in the information output from, and functionality of, the intrusion system. These levels are contrasted over four physical data scales, from application/host through to enterprise networks, introducing and developing the concept of a footprint as a pictorial representation of the scope of an intrusion system. An intrusion is now defined as “an activity that leads to the violation of the security policy of a computer system”. Five different intrusion technologies are illustrated using the footprint with current challenges also shown to stimulate further research. Integrity in the presence of mixed trust data streams at the highest intrusion level is identified as particularly challenging. Two metrics new to intrusion systems are defined to quantify performance and further aid comparison. Sensitivity is introduced to define basic detectability of an attack in terms of a single parameter, rather than the usual four currently in use. Selectivity is used to describe the ability of an intrusion system to discriminate between attack types. These metrics are quantified experimentally for network intrusion using the DARPA 1999 dataset and SNORT. Only nine of the 58 attack types present were detected with sensitivities in excess of 12dB indicating that detection performance of the attack types present in this dataset remains a challenge. The measured selectivity was also poor indicting that only three of the attack types could be confidently distinguished. The highest value of selectivity was 3.52, significantly lower than the theoretical limit of 5.83 for the evaluated system. Options for improving selectivity and sensitivity through additional measurements are examined.Stochastic Systems Lt

    Metric Selection and Metric Learning for Matching Tasks

    Get PDF
    A quarter of a century after the world-wide web was born, we have grown accustomed to having easy access to a wealth of data sets and open-source software. The value of these resources is restricted if they are not properly integrated and maintained. A lot of this work boils down to matching; finding existing records about entities and enriching them with information from a new data source. In the realm of code this means integrating new code snippets into a code base while avoiding duplication. In this thesis, we address two different such matching problems. First, we leverage the diverse and mature set of string similarity measures in an iterative semisupervised learning approach to string matching. It is designed to query a user to make a sequence of decisions on specific cases of string matching. We show that we can find almost optimal solutions after only a small amount of such input. The low labelling complexity of our algorithm is due to addressing the cold start problem that is inherent to Active Learning; by ranking queries by variance before the arrival of enough supervision information, and by a self-regulating mechanism that counteracts initial biases. Second, we address the matching of code fragments for deduplication. Programming code is not only a tool, but also a resource that itself demands maintenance. Code duplication is a frequent problem arising especially from modern development practice. There are many reasons to detect and address code duplicates, for example to keep a clean and maintainable codebase. In such more complex data structures, string similarity measures are inadequate. In their stead, we study a modern supervised Metric Learning approach to model code similarity with Neural Networks. We find that in such a model representing the elementary tokens with a pretrained word embedding is the most important ingredient. Our results show both qualitatively (by visualization) that relatedness is modelled well by the embeddings and quantitatively (by ablation) that the encoded information is useful for the downstream matching task. As a non-technical contribution, we unify the common challenges arising in supervised learning approaches to Record Matching, Code Clone Detection and generic Metric Learning tasks. We give a novel account to string similarity measures from a psychological standpoint and point out and document one longstanding naming conflict in string similarity measures. Finally, we point out the overlap of latest research in Code Clone Detection with the field of Natural Language Processing

    Aspects of Record Linkage

    Get PDF
    This thesis is an exploration of the subject of historical record linkage. The general goal of historical record linkage is to discover relations between historical entities in a database, for any specific definition of relation, entity and database. Although this task originates from historical research, multiple disciplines are involved. Increasing volumes of data necessitate the use of automated or semi-automated linkage procedures, which is in the domain of computer science. Linkage methodologies depend heavily on the nature of the data itself, often requiring analysis based on onomastics (i.e., the study of person names) or general linguistics. To understand the dynamics of natural language one could be tempted to look at the source of language, i.e., humans, either on the individual cognitive level or as group behaviour. This further increases the multidisciplinarity of the subject by including cognitive psychology. Every discipline addresses a subset of problem aspects, all of which can contribute either to practical solutions for linkage problems or to further insights into the subject matter.Algorithms and the Foundations of Software technolog

    Advances in knowledge discovery and data mining Part II

    Get PDF
    19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II</p

    Реферування освітніх текстів через кластеризацію і ранжування речень

    Get PDF
    Пропонується метод реферування текстів освітньої сфери діяльності на основі схеми змістових аспектів відповідного класу документів шляхом попередньої кластеризації речень.Предлагается метод реферирования текстов образовательной сферы деятельности на основе схемы содержательных аспектов соответствующего класса документов путем предварительной кластеризации предложенийA method of text summarization of educational sphere of activity on the basis of substantive aspects of the scheme relevant class of documents by pre-clustering proposals

    Social aspects of collaboration in online software communities

    Get PDF
    corecore