

Cover Page

The handle http://hdl.handle.net/1887/29716 holds various files of this Leiden University
dissertation.

Author: Schraagen, Marijn Paul
Title: Aspects of record linkage
Issue Date: 2014-11-11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leiden University Scholary Publications

https://core.ac.uk/display/388668561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/29716
https://openaccess.leidenuniv.nl/handle/1887/1�

Aspects of Record Linkage

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties

te verdedigen op dinsdag 11 november 2014

klokke 13:45

door

Marijn Paul Schraagen

geboren te Hilversum

in 1983

Promotores
prof. dr. J.N. Kok
prof. dr. C.A. Mandemakers
Copromotor
dr. ir. G. Bloothooft
Additional members promotion committee
prof. dr. T.H.W. Bäck
prof. dr. N.O. Schiller
dr. P. Christen
dr. H.J. Hoogeboom

This work is part of the research programme LINKS, which is financed by the Nether-
lands Organisation for Scientific Research (NWO).

The work in the thesis has been carried out under the auspices of the research school
IPA (Institute for Programming research and Algorithmics).

The front cover of the thesis shows (top to bottom) a scan of an original marriage certificate, an

excerpt of the digitized data, an overview of the method described in Chapter 4, a fragment of the

cluster for the name Elisabeth resulting from the analysis in Chapter 6 (left) and a family recon-

struction example resulting from the method described in Chapter 7 (right). The back cover shows

part of the C++ code used to calculate name core sequences as described in Chapter 5.

© 2014 - Marijn Schraagen

Typeset using LATEX

Printed by Ridderprint BV

ii

Contents

Title Page . i
Table of Contents . iii

1 Introduction 1
1.1 Development of record linkage . 2
1.2 Introductory examples . 7

1.2.1 Weighted edit distance . 8
1.2.2 Name frequency . 14

1.3 Linkage strategy . 15
1.4 Overview of chapters . 19

2 Preliminaries 21
2.1 Data . 21
2.2 Similarity measures . 26

2.2.1 Phonetic similarity . 30
2.3 Blocking . 32
2.4 Evaluation . 34

3 Link prediction using graph density 35
3.1 Introduction . 35
3.2 Approach . 37

3.2.1 Basic record linkage . 39
3.2.2 Graph construction . 39
3.2.3 Record mapping and prediction 41

3.3 Stemming-based linkage . 43
3.4 Experiment . 46
3.5 Conclusions and future research . 47

iii

iv Contents

4 Indexing edit distance 49
4.1 Introduction . 49
4.2 Related work . 50
4.3 Approach . 51

4.3.1 Algorithm . 52
4.3.2 Similarity matches . 55

4.4 Model parameters . 56
4.4.1 Subvectors per record . 56
4.4.2 Characters per node . 56
4.4.3 Pruning . 57

4.5 Vector assignment . 58
4.6 Experiment . 59

4.6.1 Example . 60
4.6.2 Results for Levenshtein distance 65

4.7 Comparison to existing methods . 66
4.7.1 Comparison to blocking methods 67

4.8 Extension to Jaro distance . 68
4.8.1 Results for Jaro distance . 69

4.9 Discussion and further research . 69

5 A data-driven name variant model 72
5.1 Introduction . 72
5.2 Core representations . 73
5.3 Related work . 73
5.4 LCS computation . 75
5.5 Classification . 77

5.5.1 Syllabification . 78
5.5.2 Training . 78

5.6 Record linkage . 81
5.6.1 Bootstrapping . 84

5.7 Evaluation . 84
5.7.1 Methods description . 88

5.8 Conclusion and future work . 91

6 Internal variant mining 93
6.1 Introduction . 93
6.2 Approach . 94
6.3 Name pair reduction . 97

6.3.1 Dictionary look-up . 97

Contents v

6.3.2 Composite names . 98
6.3.3 Syntactic rules . 99

6.4 Evaluation . 101
6.5 Discussion . 105

7 Graph consistency 107
7.1 Introduction . 107
7.2 Related work . 108
7.3 Benchmark . 109
7.4 Method . 109
7.5 Additional domain-based linkage . 114
7.6 Benchmark results . 115

7.6.1 Implementation analysis . 116
7.6.2 Analysis of matching errors 117

7.7 Discussion and future work . 118

8 Link validation using Gedcom databases 121
8.1 Introduction . 121
8.2 Related work . 122
8.3 Data formats . 124
8.4 Parsing . 125
8.5 Matching . 128
8.6 Results and verification . 130

8.6.1 Internal verification . 132
8.6.2 Toponym mapping . 133
8.6.3 Interpretation of support figures 133

8.7 Application . 134
8.8 Conclusion and future work . 137

9 Cognitive processing of proper names 139
9.1 Introduction . 139

9.1.1 Motivation . 140
9.2 Related work . 143
9.3 Lexical decision . 143
9.4 Application . 144
9.5 Experimental details . 146
9.6 Experimental results . 149
9.7 Discussion . 154
9.8 Conclusion . 156

vi Contents

Bibliography 158

A List of stimuli used in the Lexical Decision experiment 171

B IPA Dissertation Series 177

C Samenvatting in het Nederlands 188

D English summary 192

E Curriculum Vitae 198

Chapter 1

Introduction

This thesis is an exploration of the subject of historical record linkage. The general
goal of historical record linkage is to discover relations between historical entities in
a database, for any specific definition of relation, entity and database. Although this
task originates from historical research, multiple disciplines are involved. Increasing
volumes of data necessitate the use of automated or semi-automated linkage procedures,
which is in the domain of computer science. Linkage methodologies depend heavily
on the nature of the data itself, often requiring analysis based on onomastics (i.e., the
study of person names) or general linguistics. To understand the dynamics of natural
language one could be tempted to look at the source of language, i.e., humans, either on
the individual cognitive level or as group behaviour. This further increases the multidis-
ciplinarity of the subject by including cognitive psychology and sociology.

The thesis aims to incorporate the disciplines of history, computer science, lin-
guistics, onomastics, cognitive science and sociology in the study of historical record
linkage. Every discipline addresses a subset of problem aspects, all of which can con-
tribute either to practical solutions for linkage problems or, more importantly, to a deeper
understanding of the subject matter.

The current chapter contains a general introduction to record linkage. Section 1.1
describes the development of record linkage as a field of study. Two introductory re-
search topics are addressed in Section 1.2 as examples on using data to improve linkage

1

2 Chapter 1: Introduction

results. In Section 1.3 general linkage strategy is discussed in the context of the research
project that has resulted in the current thesis. An overview of all chapters following the
current introduction is provided in Section 1.4.

This thesis is based on the following publications:
[113] Marijn Schraagen. Complete coverage for approximate string matching in record
linkage using bit vectors. In 23rd IEEE International Conference on Tools with Artificial
Intelligence, pages 740–747. IEEE, 2011.
[114] Marijn Schraagen and Hendrik Jan Hoogenboom. Predicting record linkage po-
tential in a family reconstruction graph. In Proceedings of the 23rd Benelux Conference
on Artificial Intelligence, pages 199–206, 2011.
[116] Marijn Schraagen and Walter Kosters. Data-driven name reduction for record link-
age. In Second International Conference on Innovative Computing Technology, pages
311–316. IEEE, 2012.
[115] Marijn Schraagen and Dionysius Huijsmans. Comparison between historical pop-
ulation archives and decentralized databases. In 7th Workshop on Language Technology
for Cultural Heritage, Social Sciences, and Humanities, pages 20–28. ACL, 2013.
[15] Gerrit Bloothooft and Marijn Schraagen. Learning name variants from true person
resolution. In Proceedings of the International Workhop on Population Reconstruction.
International Institute of Social History, 2014.
[117] Marijn Schraagen and Walter Kosters. Record linkage using graph consistency. In
10th International Conference on Machine Learning and Data Mining, 2014.
[118] Marijn Schraagen and Niels O. Schiller. Lexical decision for proper names. In
preparation, 2014.

1.1 Development of record linkage

The task of combining different sources of information about the same individual or
entity is part of basic human cognition, which is likely to be developed during early hu-
man history. The use of written databases to trace individual people can be found in the
ancient Egyptian and Roman empires, which employed such databases for the purposes
of, e.g., taxation and voter registration. However, this might not be considered record
linkage as such, which can be defined as the task of systematically locating all valid

Chapter 1: Introduction 3

links (i.e., two records referring to the same entity) in a database. An early example
of such a systematic approach is the Dictionnaire Généalogique [127] which was pub-
lished in 1871, containing a complete genealogical reconstruction of most individuals
in the colonist population of the Canadian province of Quebec from the colonization in
1608 until the time of publication. The reconstruction, which contains over 4,000 pages,
was based on census records and compiled manually by a single genealogist. The use of
automatic or semi-automatic methods for record linkage starts in the second half of the
20th century, with the development of linkage algorithms.

One of the first mathematical models of automatic record linkage has been formu-
lated by Fellegi and Sunter in 1969 [40]. This model considers any record pair (a, b)
as either a match, a non-match or a possible match. A decision function computes the
probability of each class given a comparison vector for a and b. Possible values in this
vector are for example “name is the same” or “agreement on city but not on street”,
however any comparison function may be used here. The decision function is in turn
based on the probability of the vector values given the actual matching status (match or
non-match) of a and b. The vectors for a given set of record pairs can be ordered by
their probabilities and two cut points can be defined in this ordering to assign a vector to
one of the three classes. The cut points are determined by margins of error for the match
and non-match classes, which is again based on the actual matching probabilities. In the
paper a mathematical proof is provided to show that the resulting decision function is
optimal for the margins of error and the comparison functions under consideration.

Fellegi and Sunter recognize that a method is needed to calculate the actual match-
ing probabilities for comparison vectors. They propose to use either existing knowledge
about the quality of the dataset in relation to the comparison functions, or to estimate
quality parameters (e.g., the probability of any name being mistyped) by looking at gen-
eral field agreement statistics in the dataset (e.g., the proportion of equal values for the
surname field of two population samples, or the proportion of equal name prefixes of
a certain length). A third possibility is to estimate probabilities directly from a sample
of (manually) verified matches, however this “procedure seems to have some difficulties
associated with it” [40, Section 3.3], presumably because of the difficulties in obtaining
a sufficiently large uniform random sample.

However, given that an optimal decision function can be derived, the record linkage

4 Chapter 1: Introduction

problem may appear to be solved. Unfortunately, this is not the case. The Fellegi–Sunter
method provides an optimal decision for a given record pair and a given comparison
function. The fact that record linkage is a problem, however, stems from the fact that the
set of candidate record pairs is unknown and the design of an informative comparison
function is non-trivial, i.e., the core elements used by the Fellegi–Sunter method are not
available. Once these elements are discovered, a variety of record linkage methods can
be applied succesfully. This includes methods with no implicit or explicit regard for
statistical validity or optimality (e.g., methods for which the probability of a match, a
possible match and a non-match for a record pair do not sum to one, or methods that use
computationally efficient linkage rules with near-optimal results over computationally
intensive optimal rules). Therefore, the Fellegi–Sunter method seems to be a solution
to the wrong problem, i.e., computing the optimal decision function for a given set of
candidate matches and a given comparison function, while the actual problem exists of
finding a method for efficient construction of a suitable candidate set and the (manual
or automatic) design of an informative comparison function. However, the paper can
be considered the starting point of a considerable amount of research interest from the
computer science community into the subject of record linkage.

The statistical approach of Fellegi and Sunter has developed into a more general
framework for record linkage within computer science. This framework consists of the
selection of candidate matches, computation of similarity vectors and classification of
the vectors in terms of record matches. The classification step can be based on match
probabilities, as in the approach of Fellegi and Sunter, but also machine learning ap-
proaches such as decision trees [32, 38], logistic regression [33] or Support Vector Ma-
chines [26] can be used. Alternatively manual rules can be applied, as a stand-alone
approach or complementary to machine learning based classification. This approach
is common in domain-specific settings such as census matching [47] and commercial
record linkage applications [132]. A manual classifier can be very simple, e.g., a single
threshold value on the comparison function. In this type of approach the three elements
of linkage are not necessarily stricty separated. Consider for example a linkage approach
in which two records are classified as a match when the value of the family name field
is exactly equal. In this case a single computation step, i.e., locating equal family name
values, performs the tasks of candidate selection, comparison and classification simul-

Chapter 1: Introduction 5

taneously. However, in most approaches separate methods are used for record selection,
comparison and classification.

Following the Fellegi–Sunter model further research has been conducted on devel-
opment and application of statistical record linkage [35, 5], including recent approaches
[143]. However, although this statistical framework is generally recognized as a valid
model for record linkage, mathematical modeling has received relatively little attention
compared to the subtasks of record selection and comparison. Error correction, string
similarity and approximate matching have been developed extensively, ranging from
signal processing [80] and program code parsing [53, 87] to natural language document
comparison [67]. Apart from developing accurate similarity measures, also computa-
tional complexity and implementation efficiency of string similarity have been subject
of research [88, 140].

Several approaches to string similarity have focussed specifically on person names
[95], which often includes phonetic matching [144]. Apart from regular spelling vari-
ation, differences between languages and writing systems influencing the spelling of
person names have been investigated [101].

Record selection has been developed from using simple database segmentation to
elaborate clustering techniques [29]. Some approaches have imposed a hierarchy or
ontology on a database in order to select or compare relevant records [3, 85]. These
approaches make use of the structure of the data, which is part of a recently increased
interest in network-based approaches [81, 10].

In social sciences and humanities record linkage on historical sources has been
subject of research for several decades. An early example can be found in [135]. A
common approach in historical record linkage involves the use of domain-specific rules
and thresholds which are manually refined according to the linkage result [18, 47]. How-
ever, also probabilistic linkage [122] and machine learning oriented approaches [62, 98]
have been applied.

An example issue specific to historical record linkage is the level of literacy in the
population. Figure 1.1 shows that in the Netherlands this level was relatively low in
the first decades of the 19th century. Therefore, the municipal officials regularly needed
to guess the spelling of person names, which could easily result in variation. In some
cases the problem did not arise, e.g., the registration of a marriage required the bride

6 Chapter 1: Introduction

90-100%

80-90%

70-80%

<70%

(a) 1820-1830 (b) 1840-1850

(c) 1870-1880 (d) 1890-1900

Figure 1.1: Literacy in the Netherlands in the 19th century by province, measured for
bridegrooms at the time of marriage. The figure is adapted from [16].

Chapter 1: Introduction 7

and groom to present their birth certificates to the official, who copied the names of the
marriage couple and the parents onto the marriage certificate. However, for occasions
other than marriage the names have been recorded without consulting any previous doc-
uments.

A recurring topic in all record linkage approaches is the use of comparison func-
tions on textual data (e.g., person names). Notable syntactic similarity measures include
Hamming Distance, Levenshtein edit distance, Jaro similarity and Jaro–Winkler similar-
ity. Similarity measures are discussed in detail in Chapter 2. Different aspects of record
linkage include standardization of data (e.g., [30]) and selection of possible links using
blocking [8] or clustering [86, 110]. Recent overviews of the area are presented in, e.g.,
[48], [137] and [28].

1.2 Introductory examples

Development of record linkage methodologies can take essentially two different ap-
proaches, as is the general case in artifical intelligence research.

The classical approach is knowledge driven, using a pre-specified set of rules for
match candidate selection and record comparison. These rules can either be elicited from
domain experts, or generated using an educated guess from the record linkage developer,
or it could be based on or influenced by technical constraints on computation and storage
capacity. An example could be to split the dataset into a number of alphabetical blocks
of records and compare only records within a block using string edit distance. Besides
general rules which are applied to all records, specific rules which are only applicable to
a selection of records can be used as well. A domain expert could for example list pairs
of person names that are regularly confused (e.g., Pete and Peter) and a record linkage
method can select candidate matches containing name pairs from this list.

Alternative approaches can be characterized as data driven. In these approaches
the data is not only used in the application of a record linkage method, but also as
a source of information for adaptation of the method. Supervised machine learning
approaches belong to this category, e.g., training an artificial neural network on a set of
verified matches using features similar to the record comparison vectors of Fellegi and
Sunter. The research on which this thesis is based has been conducted mainly from a

8 Chapter 1: Introduction

data driven point of view. As an illustration of this type of approach this section will
describe two research examples of using data to adapt record linkage methods. The
approaches presented in this section are intended as general examples to introduce the
research direction of the thesis. The examples are therefore independent of the specific
topics discussed in the following chapters.

1.2.1 Weighted edit distance

The notion of similarity is at the core of any record linkage method: high similarity
between two records (up to equality) indicates a link, and low similarity indicates a non-
link. Two records can be considered similar if a few elements of the record differ while
all other elements are equal. This can be measured by counting the number of differ-
ent elements between the records. This concept can be applied to strings, considering
characters as elemental units. The difference in characters between two strings can be
operationalized as the minimal number of characters that need to be changed (inserted,
deleted, or substituted) to transform one string into the other. This is called edit dis-
tance, which is one of the most widely used similarity metrics in record linkage and
related areas. A formal definition of this similarity measure is provided in Section 2.2.

Note that the derivation of edit distance as presented above contains several as-
sumptions, each of which can reasonably be called into question. First, records are
similar if most elements are equal. Agreement on a single element (e.g., home address)
might be sufficient to assert similarity even if other elements (e.g., name, occupation)
differ for some reason, for example name change at marriage, career change, change
of religion, identity fraud, or full translation of names into a different language (which
could result in major differences if the languages are unrelated, e.g., English and Chi-
nese). Second, element agreement can be measured by counting the number of different
elements. Alternatively, the number of equal elements could be counted, which might be
more informative for longer strings. Third, characters are the elemental units of strings.
From a linguistic perspective other units are more appropriate, such as phonemes, mor-
phemes, syllables or even characters corresponding to phoneme classes (such as plo-
sives, fricatives, diphthongs, etc.). Fourth, character difference is measured using edit
operations. This is a generative or procedural approach, as opposed to more descrip-
tive or feature-based approaches using, e.g., bags of characters (with counts) or sets of

Chapter 1: Introduction 9

characters (without counts). Fifth, an edit operation is either an insertion/deletion or
a substitution. Additional operations include transposition, repetition, suffixation, etc.
that might describe string similarity more adequately than the basic edit operations.

However, despite theoretical flaws, edit distance remains useful in practise. Most
variation between matching entities is in fact described by a small number of basic edit
operations. This was already observed by Damerau in 1963 [34] and the observation is
still valid at present, see, e.g., the benchmark results in Chapter 5 for our dataset or [124,
25] for contemporary datasets. This does not mean that edit operations on characters
are conceptually valid as the source of string variation, however the actual source of
variation is manifested as minor edit operations and it can be captured as such. Note that
many string similarity surveys use relatively complex variation to assess the robustness
and flexibility of algorithms, which could be referred to as stress testing. This can be
informative, but it is hardly indicative for the behaviour of real data. One should keep in
mind that the majority of matches in almost any domain are exact matches, followed by
a large set of matches with minor differences and finally a number of matches with large
differences. Therefore, string edit distance remains a valuable tool in record linkage.

Nevertheless, edit distance can be improved in a number of aspects. One such
aspect that involves the use of data is the uniform edit cost, which does not take into
account that some edit operations (abbreviated as edit) appear to be less severe than
others. For example, phonetically similar edits like s → z as in Elisabeth → Elizabeth
or edits involving affixes such as delete a as in Anna → Ann appear to preserve the
involved names to a large extend, while other edits like n → m as in Ann → Amn
change the name considerably and might be part of a series of edits that leads to an
incorrect name variant, e.g., Ann → Amn → Amy. This intuition can be incorporated
into edit distance by assigning a weight to individual edit operations in such a way that
name-preserving edits are weighted less than name-changing edits. The weights can be
assigned automatically based on a set of verified name variants.

Learning edit distance weights from data for natural language strings has been in-
vestigated by Ristad and Yianilos [105] and subsequent approaches (e.g., [11, 92]). In
bio-informatics a similar approach is used in the creation of the BLOSUM matrices for
amino acid substitution [57]. In the current introductory example this concept is applied
to nominal record linkage.

10 Chapter 1: Introduction

Marriage couple
Ewout Kaptein
Geertrui Dekker

Parents groom
Jacob Kaptein
Dirksje van den Broek

Parents bride
Arij Dekker
Kniertje Verschoor

Marriage couple
Jacob Kaptein
Lijntje Smits

Parents groom
Ewoud Kaptein
Geertrui Dekker

Parents bride
Souverein Smits
Lijntje Delgens

Certificate 09915109 Certificate 09914931

Date: September 18, 1868

Municipality: Mijnsheerenland Municipality: Mijnsheerenland

Date: August 29, 1895

Figure 1.2: Example marriage record match.

Approach

To learn weights for specific edit operations training data is used consisting of known
examples of name variants. Operations occurring frequently in known examples are as-
signed a lower weight. If known examples are not available, a conservative algorithm
can be used to compute candidate variants instead. Weights computed from conser-
vative candidates can be used to design algorithms with increased coverage, a process
known as bootstrapping. In the current example Levenshtein edit distance is computed
on strings consisting of four names, with a distance threshold of 3 to generate candi-
date matches. The name strings are derived from the Genlias database, which is de-
scribed in detail in Chapter 2. In Figure 1.2 two marriage records from the database
are shown. The marriage couple from the 1868 record is represented in the string
ewout|kaptein|geertrui|dekker, and the parents of the groom in the 1895 record
are represented by the string ewoud|kaptein|geertrui|dekker. The Levenshtein
edit distance between these two strings is 1, therefore the two records are considered a
candidate match that can be used in the computation of the weight for the edit operation
sub-t-d. An assumption of this method is that some edits have an above average probabil-
ity of being involved in creating true variant pairs, while those edits occur at chance level
for non-variant pairs. In this example non-variant pairs have been generated by selecting
pairs of record strings at random from the set of Genlias marriage certificates. Figure 1.3
shows the ratio of edit operations between candidate matches and random string pairs,
for window size 1 (single edits) and window size two (either two consecutive edits or

Chapter 1: Introduction 11

10
-1

10
0

10
1

10
2

10
3

10
4

 1 50 100 150 200 250 300 350 400 450 500

 1 500 1000 1500 2000 2500 3000

ra
ti
o
 m

a
tc

h
e
s
 v

s
.
ra

n
d
o
m

rank

window size 1

window size 2

Figure 1.3: Frequency distribution of edit operations.

a consecutive combination of a single edit and a fixed character). A significant amount
of edits has a ratio above 1, which means that the edit occurs more often in a candidate
match than in a random string pair. The amount is higher for edits with window size
two (top axis), which indicates that syntactic name variation is indeed pattern-based.
Edit operations with a high ratio include for example sub-s-z, del-e, del-n for window
size 1 and ins-c + sub-g-h, k + sub-s-x, f + ins-f for window size 2. These are indeed
linguistically plausible transformations, such as the g → ch and ks → kx transitions or
consonant repetition for the window size 2 examples. The analysis of edit operations
can be applied to similarity computation in several different ways. The weight of an op-
eration can be determined by, e.g., frequency, log-frequency, ratio or rank. For each type
of ordering a cut-off value can be used or values can be rounded. Edit operations can
be lexically clustered or generalized, using linguistic models or general-purpose classi-
fication algorithms. However, for the purposes of the current example a simple model
is implemented. For window size 1 and 2 a selection of the most frequent edit opera-
tions is performed (250 operations for each window size). The operations are assigned
weights of 0.7 for the first 100 operations and 0.9 for the remaining 150 operations. All
other operations are assigned a weight of 1.0. Weights are stacked in case of embedding,

12 Chapter 1: Introduction

e.g., an operation which is weighted 0.7 for window size 1 and 0.7 for window size 2 is
assigned a combined weight of 0.4 (the operation is downweighted 1− 0.7 = 0.3 twice).
The weights are applied as a post-processing step, i.e., first the traditional Levenshtein
edit distance is calculated and the resulting edit operations are weighted. Consider as an
example the strings Arend and Arent, which have a traditional edit distance of 1. Both
the edit operations sub-d-t (window size 1) and n+sub-d-t (window size 2) are within
the 100 most frequent operations for the respective window sizes, therefore the weighted
edit distance amounts to 1 − 0.3 − 0.3 = 0.4.

Results

The weighted Levenshtein distance is applied to the set of Genlias marriage certifi-
cates. The linkage task is defined as matching of marriage couples (bridegroom and
bride) to parent couples (father and mother of either the bridegroom or the bride), as
illustrated in Figure 1.2. Candidates are selected using a four-character blocking key
composed of the initial characters of the four names mentioned on a certificate (first
name and family name for both bridegroom and bride, or father and mother, respec-
tively). To increase the number of potentially correct matches a character mapping is
applied consisting of Z → S , F → T,C → K,Y → I. A match is assumed if the
traditional Levenshtein edit distance for a candidate pair is 3 or less. However, for dis-
tance 4 and 5 also the weighted Levenshtein distance is computed and again matches
are assumed using a distance threshold of 3. Note that, using the current weight assign-
ment, a distance of 6 might also be reduced to 3 or less. Consider the example strings
assien|ancum|janna|bartels and asje|ancum|johanna|bertels. The weight
reduction applied to this pair is 6 · 0.3 for window size 1 (consisting of del-s, sub-i-j and
del-n in assien, ins-o and ins-h in janna, sub-a-e in bartels). Additionally a reduction of
4·0.3+1·0.1 is applied for window size 2 (0.3 for s+del-s, e+del-n in assien and j+ins-o,
ins-o+ins-h in janna, 0.1 for b+sub-a-e in bartels). The total distance for this example
is therefore reduced from 6 to 2.9. A succesful reduction from an edit distance of 6
is however rather exceptional and these cases have not been considered in the current
research example.

This implementation of weighted edit distance can be evaluated in a straigthforward
way using a benchmark of known record links. However, for the current application area

Chapter 1: Introduction 13

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 20 40 60 80 100 120

p
ro

p
o
rt

io
n
 o

f
m

a
tc

h
e
s

match distance (years)

lv ≤ 3
lv = 4, wlv ≤ 3
lv = 4, wlv > 3
lv = 5, wlv ≤ 3
lv = 5, wlv > 3

lv > 5

Figure 1.4: Distribution of time difference between matching records for various values
of traditional edit distance lv and weighted edit distance wlv.

(i.e., Dutch historical civil archives) suitable benchmarks are not available. Therefore an
alternative evaluation is performed which provides a general indication of the quality of
this distance measure. In Figure 1.4 the distribution of time intervals is shown for differ-
ent types of matches. Time intervals are defined as the difference in years between the
dates of two matching certificates, in this case the time difference between the marriage
of a parent couple and the marriage of one of their children. For matches with traditional
edit distance ≤ 3 (which are likely to be correct), the difference between the marriage of
the parents and the marriage of the children is generally between 20 and 50 years. The
distribution of intervals for matches with an edit distance > 5 (most of which should be
assumed incorrect) represents a random sampling process of certificate dates. The figure
shows a clear difference in the distribution of intervals between matches that have been
accepted by the weighted distance measure and matches that have been rejected, even
though the traditional Levenshtein distance (lv) is equal. Time intervals for accepted
matches are distributed similar to assumed correct matches (lv ≤ 3), while time intervals
for rejected matches are similar to assumed incorrect matches (lv > 5). These results
therefore suggest that the weight assignment based on example edit operations can be

14 Chapter 1: Introduction

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

c
u
m

u
la

ti
v
e
 p

ro
p
o
rt

io
n
 o

f
m

a
tc

h
e
s

name frequency

accepted by wlv
rejected by wlv

Figure 1.5: Cumulative distribution of name frequency by match type.

used to increase linkage accuracy.

1.2.2 Name frequency

The second example of data driven record linkage makes use of the frequencies of per-
son names in a data set. Agreement on specific (low-frequent) names in a candidate
match is generally considered by domain experts to be strong supporting evidence for
a match, while agreement on common names could be coincidental. From a theoreti-
cal point of view this heuristic is not entirely justified, because the name of a person is
conditionally dependent on several factors. Because the joint probability of two names
is often significantly larger than the product of probabilities of the individual names,
agreement on low-frequent names might be coincidental as well. However, application
of the heuristic can still be considered if proven to be useful in practice. The results
of the weighting procedure from Section 1.2.1 have been used as data for an experi-
mental evaluation of the frequency heuristic. The name frequency distribution of the
set of matches on which weighting has been applied (i.e., matches with a traditional
edit distance of 4 or 5) has been examined to quantify the correlation between name
frequency and distance adjustment. A match between record strings can be divided into

Chapter 1: Introduction 15

constituent matches for single names contained in the record string, many of which are
an exact match. For these exact matching names the lowest frequency is counted in
the distribution. Consider again Figure 1.2 as an example. The match is based on four
names, in this case Ewout, Kaptein, Geertrui, Dekker and Ewoud, Kaptein, Geertrui,
Dekker. Three of these names are an exact string match, i.e., Kaptein, Geertrui, Dekker.
For the exact matches the frequency of the name is computed from the data set, for this
example (Kaptein, 1962), (Geertrui, 27827), (Dekker, 39954). The lowest value 1962 is
counted for this match. To test the relation between frequency and match accuracy, sep-
arate distributions are computed for matches which are accepted by the weighted edit
distance from Section 1.2.1 and matches which are rejected. Figure 1.5 shows the cu-
mulative distribution for both match types. A clear correlation between name frequency
and match type is visible, e.g., a frequency of 1000 or less accounts for 40% of all ac-
cepted matches while the same frequency accounts for only 10% of rejected matches.
Therefore, this experimental setting shows that name frequency can be applied succes-
fully as supporting evidence for a match, given that the results of weighted edit distance
are considered accurate.

1.3 Linkage strategy

At the start of this chapter record linkage is described as “to discover relations be-
tween historical entities in a database, for any specific definition of relation, entity and
database”. The definition of these concepts is determined by the general linkage strat-
egy on which approaches to particular linkage problems are based. The general strategy
used in the current study is discussed in this section.

Record linkage can be considered an intermediate analysis procedure which can
contribute to the overall goal of increasing knowledge of and insight into a particular
domain, ranging from the general dynamics of a system to detailed information about
individual elements. A direct way to obtain domain insight is therefore to define rela-
tions and entities used in record linkage as the relations and entities of interest in the
domain. In historical databases the entities of interest are generally individual people
and their characteristics, and the relations of interest could be the co-occurence or de-
velopment of characteristics (e.g., the occupation of a person in relation to the level of

16 Chapter 1: Introduction

education, or migration patterns across generations) or simply the family lineage of a
person.

In order to perform record linkage using individual people as entities, all references
to a single person must be extracted from the source data. Any references that co-occur
in the source data should be separated into different records, otherwise the extraction
results in some kind of group records or relation records rather than individual person
records. Relational information can be preserved (for example a reference to the in-
dividual records of the parents of a person) to interpret linkage results or to perform
simultaneous linkage on multiple records if necessary. For linkage of individuals the ex-
tracted person references can be used as basic unit: if two references are found to denote
the same individual, the references are linked and the personal information associated to
both references can be combined as joint knowledge about this particular person.

This approach can be implemented in a straightforward way if the person records
provide sufficient information to perform the actual reference linkage. However, this is
not the case for the Genlias database which is used throughout this thesis. This database
(described in detail in Chapter 2) contains civil certificates, which are records of events
rather than records of individual people. Because this is the only source of information,
the event itself is an important and often essential factor in a linkage decision. Person
references can be extracted from the event records, but in the extraction the essential
event information will be lost and linkage is no longer possible. Therefore, the event
should be considered the primary entity for record linkage on the Genlias database.

Several aspects contribute to the central position of the event (birth, marriage and
death being the most important in the Genlias database) in the linkage process. The type
of event and the role of the participants can restrict the possibilities for linkage. Birth
for example occurs only once in the life of a person, therefore references extracted from
the subject of birth certificates cannot be linked to each other, even though the personal
information associated to the references might suggest that a link can be established. To
prevent this type of false linkage, the person reference should be annotated with event
information such as “this reference is extracted from the birth certificate of the individ-
ual”. Additionally, some kind of certificate identifier should be included to prevent an
identity match between two people references from the same certificate. Alternatively,
the event itself can be used for linkage directly, by selecting for example death certifi-

Chapter 1: Introduction 17

cates as target for linkage of birth certificates.

Also considering the temporal dimension restrictions can apply. As an example
consider a person reference to the mother on a birth certificate. Another reference might
be found to a deceased person on a death certificate which predates the birth. In this
case the references cannot be linked, because a birth event requires the mother to be
alive at least until the birth. However, a reference to the father might be linked to a
prior reference to a deceased person, although the time difference should not exceed nine
months (in the case of biological fatherhood). In case of a reference to one of the parents
of a deceased person a much larger window of links is possible because parents do not
need to be alive at the date of death of a person. When linking certificates, the event
and relation information is preserved by default which simplifies this kind of domain
consistency checks. If person references are extracted, a level of event annotation is
required which basically amounts to preserving the certificate format.

The most prominent feature of event records which benefits the linkage process
is the presence of multiple people at the same event. Record linkage is generally much
more reliable when a combination of people, e.g., a child and a parent or a marriage cou-
ple, is used for linkage. This approach is common in historical record linkage, see, e.g.,
[19] in which the researchers state that “the most fundamental rule is that we never try
to link individuals, but rather pairs of individuals; that is: couples [. . .] It can be demon-
strated easily that individual linkage is liable to result in uncertain, false, or missed links,
whereas the result of the linkage of couples is very reliable.” On the one hand this strat-
egy prevents duplicate links for people with common names, because a combination of
names for two or more people is generally more selective than the name of a single per-
son. On the other hand this strategy increases the possibilities for non-exact matching,
because variation in the name of one person in a combination can be compensated by
equality in the name of the other person or persons, both in the selection of candidate
matches and in the classification of a possible match. Therefore, matching should al-
ways be based on the largest combination of people possible given the data. For civil
certificates this can be, e.g., a child with two parents at birth matched to a bride or groom
with two parents at marriage, or a marriage couple to a combination of a deceased person
with a partner on a death certificate.

Note that there are presumably many cases for which one or more personal charac-

18 Chapter 1: Introduction

teristics of a single individual (such as names, dates, toponyms) are sufficient to uniquely
identify this person, which permits record linkage on single references. However, for
historical data it is fundamentally unknown which sets of characteristics are actually
unique and which are not. This can be estimated, however the margin of error for
single individuals could easily result in incorrect links. Consider for example the full
name Barack Hussein Obama which is influenced by the languages Swahili, Arabic and
Dholuo. In the United States this name is very uncommon with the notable exception
of the 44th president. However, the father of the president is also called Barack Hus-
sein Obama, and because of the family relation it is not unlikely that the father will be
mentioned in American source documents. Also in the Genlias dataset a person name
that is very uncommon is not always guaranteed to be unique. For the combined names
of multiple people from a certificate this problem is much smaller, because the circum-
stances for combining multiple names are much more restricted than the choice of a
single name.

Linkage using certificates as basic entity is a straightforward process, because link-
age is based on combinations of people which are listed together in certificate records.
In contrast, linkage on multiple people using person references requires that the set of
references on which a match is based is combined first based on source annotations, i.e.,
essentially recreating the certificate. This additional step introduces extra overhead and
redundancy in the database without gain for the linkage process.

Note that the distinction between person-based linkage and event-based linkage
is not entirely strict: a link between events is always based on the individuals which
participated in the events and their personal characteristics, i.e., a link between events
is essentially a link between persons. Moreover, the end result of linkage can be easily
converted between person-based and event-based representations. However, as a basic
principle the research presented in this thesis considers linkage on certificates, and not
on person records.

Given this basic principle, linkage can be performed on a pair-wise basis or us-
ing collective entity resolution methods. Both approaches are included in this thesis
(e.g., Chapter 5 and Chapter 7, respectively). Throughout the thesis person names are
considered the most inmportant source of information for linkage, both because of the
specificity of a person name (especially in combination with other names, as mentioned

Chapter 1: Introduction 19

above) and because of the availability of names in virtually all linkage scenarios. Other
sources of information, such as date or place of birth, are typically only available for
the main person reference in a certificate, e.g., the child in a birth certificate, and not for
other participants, such as the parents. This information can nevertheless be useful for
linkage in certain situations, which is illustrated in Chapter 7 and Chapter 8.

The discussion in the following chapters presents several aspects of record linkage
which are thought to be important in addressing the linkage problem. Research into these
aspects is intended to provide insights into theory and applications of record linkage to
the interested reader, as it has most certainly done for the author of this thesis.

1.4 Overview of chapters

Chapter 2 contains a description of the dataset used throughout the thesis, as well as a
discussion of recurring concepts. In Chapter 3 a method is described to estimate the
amount of potential links in an already partially linked dataset. This method does not
produce any links, however it can be used as an indication of the accuracy of links
obtained with other methods. The prediction is based on the abstract structure of the
(partial) link graph which is shown to be sufficient for predicting links on a general
level without any information regarding the content of the nodes. The usage of graph
structures is investigated further in Chapter 7.

As a first approach to actual record linkage an indexing method has been developed
which is described in Chapter 4. This method allows to find all edit distance-based links
in a dataset for a given distance threshold in a computationally efficient way. Edit dis-
tance based linkage produces accurate links with high coverage, which justifies scientific
research on this topic. However, from a conceptual point of view edit distance does not
provide much insight into the nature of the record linkage problem. Differences between
records or strings in general are not arbitrary, the identity1 of a string (or a person name)
seems to be affected by certain differences only. An attempt to construct a model of

1Identity is a rather complex notion involving the semantics or meaning of a string, interpreted here as the
capacity of a string to refer to a concept or entity on linguistic or onomastic (i.e., non-idiosyncratic) grounds.
Informally the identity is the essence of a string for which things like inflections, conjugations or spelling
variants are not taken into account.

20 Chapter 1: Introduction

the identity of a name is described in Chapter 5. A more quantitative approach of name
variant modeling is described in Chapter 6. This approach takes advantage of the size of
the dataset to produce a large set of name variants that are contained in the data. Several
issues regarding the validity of name pairs and evaluation of the approach are discussed.

Linkage using multiple records simultaneously is investigated in Chapter 7. Simi-
larity measures for record pairs are combined with domain-based consistency constraints
on sets of linked records, i.e., families consisting of two parents and multiple children
linked through marriage, birth and death certificates. In Chapter 8 a method is described
to compare data and links as found in the dataset described in Chapter 2 to external data
sources, in order to increase the amount of available information for linkage, expand
the possibilities for link verification and explore potential applications of the developed
algorithms.

Finally, Chapter 9 takes a completely different approach to the subject. Human
cognitive behaviour in a record linkage related task is investigated, instead of attempting
to solve the problem with a machine directly. Studying the human cognitive process
might provide new insights for developing algorithms. The main goal of the chapter
however is to look at cognition as such, in order to gain a broad view of the record
linkage problem.

All of these aspects, i.e., the availability of potential links, edit distance between
records, name variation, information contained in relations between several records,
comparison to differently structured databases and cognitive processing, can provide in-
sight into the record linkage problem or contribute to efficiency and accuracy of record
linkage approaches. The recurring application of matching historical civil certificates
shows how the different aspects address various issues involved in record linkage. In
future work many other issues can be addressed, in particular related to evaluation of
linkage methods. This thesis may serve to provide a contribution to the ongoing scien-
tific discussion.

Chapter 2

Preliminaries

This thesis is part of the research project Linking System for Historical Family Recon-
struction, abbreviated as LINKS. The data set used in the LINKS project is described in
this chapter. Additionally, several recurring concepts are defined.

2.1 Data

The main data used in the LINKS project consists of historical Dutch civil certificates.
Civil registration in the Netherlands (Dutch: Burgerlijke stand) started in the southern
provinces of Brabant and Limburg in 1796. The northern provinces followed in 1811,
and the registration has been in use since. Civil certificates are issued for the events of
birth, marriage and death. Additional information related to these events can also be
recorded in a certificate, such as divorce or acknowledgment of paternity.

In the 19th century certificates were printed templates on which information about
people involved in the event was written by hand (see Figure 2.1). In the 1990’s Dutch
regional archives started to transcribe the complete collection of written certificates into
digital text format. This initiative, which was called Genlias, also provided an on-line
query interface for the general public. As of 2014 the digitization project is still ongoing,
however a large part of the collection has already been processed. In most of the research
in the LINKS project certificates digitized until december 2011 are used. This dataset

21

22 Chapter 2: Preliminaries

Figure 2.1: Fragment of an original marriage certificate dated May 5, 1875. Source:
City Archive Breda, http://www.stadsarchief.breda.nl.

consists of 4,170,416 birth certificates (approximately 30% of the estimated total amount
of archived birth certificates), 3,039,125 marriage certificates (90%) and 7,657,298 death
certificates (65%). The 15 million certificates that are not included in the december
2011 dataset complicate the development and evaluation of record linkage approaches,
because it is difficult to differentiate between algorithm design flaws and missing data
issues (see also Chapter 3). However, this issue is less problematic than the percentages
might suggest. Certificates are digitized by regional archives in chronological order.
Therefore, the dataset consists of completely digitized subsets of the archive for selected
municipalities in a certain period of time. Related events are likely to take place in
the same or neighboring municipalities within a limited period of time, especially in
the 19th century. Consequently, the linkage potential of the Genlias december 2011
dataset is high. Currently the data is maintained by a new organization called WieWasWie
(English: who was who) and available on the website http://www.wiewaswie.nl.
Civil registration is subject to privacy laws1 that restrict the availability of more recent
certificates. As a result of specific rules for different types of certificates the Genlias
2011 dataset contains birth certificates up to 1905, marriage certificates up to 1932 and
death certificates up to 1952.

A civil certificate contains information about the participants and the event itself.
In Table 2.1 an overview of fields is provided for the three different certificate types.

1Burgerlijk Wetboek (Dutch civil code) Book 1, article 17 and Archiefwet 1995 (archive law), article 14.

http://www.stadsarchief.breda.nl
http://www.wiewaswie.nl

Chapter 2: Preliminaries 23

General
certificate id

certificate type (numeric)
archive id

certificate type (text)
date

sequence no.
province

municipality
access no.

inventory no.
Birth Marriage Death
child bridegroom deceased

last name last name last name
prefix prefix prefix
patronym patronym patronym
first names first names first names
sex age sex

date of birth date of birth birth date
place of birth place of birth birth place
foundling bride age
father last name date of death

last name · · · place of death
prefix father bridegroom father
patronym last name last name
first names prefix prefix

mother patronym patronym
last name first names first names
prefix mother bridegroom mother
patronym · · · · · ·

first names father bride partner
remarks · · · · · ·

mother bride partner relation
· · · remarks

remarks

Table 2.1: Certificate fields overview.

24 Chapter 2: Preliminaries

Birth certificate
certificate id 04838850 sex
type (no.) 1 date of birth 02-11-1846
archive 24 place of birth
type (text) birth foundling
date 03-11-1846 father
sequence no. 2 last name Vermeulen
province Zuid-Holland prefix
municipality Hodenpijl patronym
access no. first names Jan
inventory no. mother
child last name Rijn

last name Vermeulen prefix van
prefix patronym
patronym first names Aaltje
first names Melis remarks

Death certificate
certificate id 02405809 date of death 30-06-1831
type (no.) 3 place of death Schokland
archive 22 father
type (text) death last name Bruins
date 01-07-1831 prefix
sequence no. 7 patronym Gerrits
province Flevoland first names Albert
municipality Schokland mother
access no. 102 last name Sijmens
inventory no. 70 prefix
deceased patronym

last name Bruins first names Dirkje
prefix partner
patronym last name Gillot
first names Antje prefix
sex female patronym
birth date first names Paulus
birth place relation spouse
age 27 remarks wife of the constable

Figure 2.2: Example civil certificates.

Chapter 2: Preliminaries 25

Marriage certificate
certificate id 01950704 birth date
type (no.) 2 birth place Stompwijk
archive 24 father bridegroom
type (text) marriage last name Vermeulen
date 17-01-1846 prefix
sequence no. 1 patronym
province Zuid-Holland first names Arent
municipality Hodenpijl mother bridegroom
access no. last name Eijk
inventory no. prefix van
bridegroom patronym

last name Vermeulen first names Jannetje
prefix father bride
patronym last name Rijn
first names Jan prefix van
age 27 patronym
birth date first names Jacob
birth place Abtsregt mother bride

bride last name Santen
last name Rijn prefix van
prefix van patronym
patronym first names Anna
first names Aaltje remarks bride widow of
age 32 Melis van Haasteren

Figure 2.2: Example civil certificates (continued).

The remarks field contains both original remarks (e.g., “Father bride moved to Germany
and has not been heard from since”) or structural information for which no separate
field was assigned (e.g., occupation of the participants, former partners, twin children).
In the digitization procedure some information is left out by design, such as names
of witnesses. The certificate id is a database record identifier which is not part of the
original certificate. An example of each type of certificate is provided in Figure 2.2.
Note that a number of fields is left blank in the examples. In some cases this is expected,
e.g., an empty prefix field for a person without a prefixed last name. In other cases this is

26 Chapter 2: Preliminaries

a data issue, e.g., often the birth date of a person is not recorded in the original certificate.
Empty fields can also be used to prevent redundancy, e.g., an empty birth place field in
a birth certificate is assumed to be equal to the certificate municipality. This assumption
could have been made either in the original certificate or during the digitization process.

2.2 Similarity measures

This section introduces three common syntactic string similarity measures which can be
used in record linkage approaches: Hamming distance, Levenshtein edit distance and
Jaro-Winkler similarity. In the provided definitions the prefix of string a with length i is
denoted by ai (a0 is the empty prefix). The ith character of string a is denoted by a[i].

Hamming distance [53] counts the number of string positions for which the char-
acters are different, i.e., the number of character substitutions. It can be formalized re-
cursively using Equation (2.1). A procedural specification is provided in Algorithm 2.1.
The original definition, which only applies to strings of equal length, can be extended
by adding the length difference to the substitution count for the shared length.

hm(p, q) = hm(p|p|, q|q|).

hm(pi, q j) = hm(pi−1, q j−1) +

 0 if p[i] = q[j]
1 otherwise

identity
substitution

hm(p0, q0) = 0.
extension : hm(pi, q0) = i, hm(p0, q j) = j.

(2.1)

Algorithm 2.1 Hamming Distance hm(string p, string q)
result← 0, m← length(p), n← length(q)
for i = m, j = n down to abs(m − n) do

if pi , q j then
result++

extension:
result← result + abs(m − n)
return result

Chapter 2: Preliminaries 27

Examples of Hamming distance are presented in Figure 2.4a. The measure can be
computed efficiently (linear in the length of the input, see Algorithm 2.1) but it is not
very informative in case of shifted substrings, as in the second example in Figure 2.4a.
The practical use of Hamming distance for natural language string comparison is limited,
however it serves as a clear example of a string similarity measure. More complex
measures such as Levenshtein edit distance can be viewed as successors of Hamming
distance, using extensions of the same basic concept.

Levenshtein edit distance (also called Levenshtein distance or edit distance) counts
the minimal number of edit operations (insertion, deletion and substitution) necessary to
transform a string into another. This measure is originally designed for signal processing
(see [80]) but the same principle can be applied to natural language [87] and several other
areas, e.g., DNA string comparison [74, Chapter 3]. It can be formalized in a recursive
way using Equation (2.2). An example is presented in Figure 2.4b.

lv(p, q) = lv(p|p|, q|q|).

lv(pi, q j) = min

lv(pi−1, q j−1) +

 0 if p[i] = q[j]
1 otherwise

lv(pi−1, q j) + 1
lv(pi, q j−1) + 1

identity
substitution
deletion
insertion

lv(pi, q0) = i, lv(p0, q j) = j, lv(p0, q0) = 0.

(2.2)

Levenshtein distance can be computed in quadratic time and space (in the length
of the input) using dynamic programming [131]. The main idea behind the dynamic
programming algorithm is to construct a matrix for strings p and q which holds the
distances between every possible combination of a prefix of p with a prefix of q. The
distance for a given prefix pair can be computed by considering the distances of the three
previous prefix pairs, i.e., the pairs where one or both of the prefixes are one character
shorter. The distance to a previous pair together with the edit cost associated to the
transition from the previous to the current pair represents a path in the matrix. The
distance for the current pair is defined as the path with the minimum cost. The distance
matrix for the example in Figure 2.4b is provided in Figure 2.3, with the minimum cost
path underlined. The matrix is initialized using the distances from every prefix to the
empty prefix, which are trivial. The final edit distance can be found in the bottom right

28 Chapter 2: Preliminaries

L e v e n s h t e i n
0 1 2 3 4 5 6 7 8 9 10 11

L 1 0 1 2 3 4 5 6 7 8 9 10
e 2 1 0 1 2 3 4 5 6 6 7 8
v 3 2 1 0 1 2 3 4 5 6 7 8
i 4 3 2 1 1 2 3 4 5 6 6 7
n 5 4 3 2 2 1 2 3 4 5 6 6
s 6 5 4 3 3 2 1 2 3 4 5 6
t 7 6 5 4 4 3 2 2 2 3 4 5
e 8 7 6 5 4 4 3 3 3 2 3 4
i 9 8 7 6 5 5 4 4 4 3 2 3
h 10 9 8 7 6 6 5 4 5 4 3 3
n 11 10 9 8 7 6 6 5 5 5 4 3

Figure 2.3: Levenshtein distance matrix example.

of the matrix, where both prefixes equal the corresponding original string.

The use of the insertion and deletion operations allows for the recognition of shifted
substrings. Variation in strings can generally be accounted for by a small number of edit
operations (see, e.g., [34]), therefore Levenshtein edit distance can be applied succes-
fully to record linkage problems. The performance of Levenshtein edit distance remains
competitive compared to many other similarity measures (see, e.g., [25, 97]), although
other studies show a relatively worse performance [95]. For person names the distri-
bution of errors also includes full word insertions or major variation in spelling [42].
Large differences are however problematic for a wide range of similarity measures, so
in comparison Levenshtein edit distance is a reasonable choice. Moreover, this metric
can be used during preprocessing for more sophisticated linkage methods. However,
edit distance is not always capable of accurately describing string similarity. The metric
is independent of string length, which is undesirable for both very short and relatively
long strings. Additionally, transpositions are not accounted for.

Jaro similarity counts the number of matched characters relative to the length of
the string, as well as the number of transposed characters. The Winkler modification
adjusts the score upwards in case of shared prefixes [64, 136]. The formalization of both
measures is provided in Equation (2.3). In this equation the match count m is defined

Chapter 2: Preliminaries 29

as the number of matching characters within a window of size δ. After a character
from string q is used for matching the character is no longer available for subsequent
matching. The transposition count t is defined as the minimum number of characters
from the match sequence for string q that need to be swapped in order to obtain an
ascending sequence of character indices. The notation mx,i = 1 is intended as a character
match obtained by the definition of m. Note that this is a greedy definition: in some cases
a different character alignment can be chosen which lowers the transposition count and
therefore increases the value of the Jaro similarity metric. An example is the similarity
between strings aab and abab, for which the greedy match is aab, abab (m = 3, t = 1)
but the optimal match is aab, abab (m = 3, t = 0). However, optimal alignment is
computationally more expensive than greedy alignment, which is generally used. An
example of the Jaro-Winkler similarity between two strings is provided in Figure 2.4c.

δ =
⌊

max(|p|,|q|)
2

⌋
− 1

m = |M1,1,q|

δs
i = max(1, i − δ)
δe

q,i = min(|q|, i + δ)
q j/ε = concat(q[1], . . . , q[j − 1], ε, q[j + 1], . . . , q[|q|])

Mi, j,q =

∅ if i > |p| end of p
{〈i, j〉} ∪ Mi+1,δs

i ,q j/ε if i ≤ |p| and p[i] = q[j] match
Mi, j+1,q if p[i] , q[j] and j + 1 ≤ δe

q,i next in q
Mi+1,δs

i ,q if p[i] , q[j] and j + 1 > δe
q,i next in p

t =
∣∣∣{(〈i, j〉, 〈i′, j′〉) | 〈i, j〉, 〈i′, j′〉 ∈ M1,1,q, i < i′, j > j′}

∣∣∣
dJaro = w1

m
|s1 |

+ w2
m
|s2 |

+ w3
m−t
m

pf = max{i | pi = qi, 0 ≤ i ≤ 4, i ≤ |p|, i ≤ |q|}
dJW = dJaro + wjw · pf (1 − dJaro)

for w1 = w2 = w3 = 1
3 ,wjw = 0.1:

dJaro = 1
3

(
m
|s1 |

+ m
|s2 |

+ m−t
m

)
dJW = dJaro + 0.1pf (1 − dJaro)

(2.3)

30 Chapter 2: Preliminaries

H a m m i n g
H e m m i n g
0 1 0 0 0 0 0
total 1

H a m m i n g
H a m i n g h
0 0 0 1 1 1 1
total 4

(a) Hamming distance.

L e v e n s h t e i n

L e v i n s t e i h n

(b) Levenshtein distance.

Z e p h r y n i s

Z e p h y r i n u s

pf pf pf pf tt tt

dJaro = 1
3

(
9
9 + 9

10 + 9−2
9

)
= 0.89

dJW = 0.89 + 0.1 · 4 · (1 − 0.89) = 0.93

(c) Jaro–Winkler similarity.

Figure 2.4: Syntactic string similarity metrics.

2.2.1 Phonetic similarity

The similarity measures discussed so far are based on orthographic differences between
strings. Alternatively word identity in general and person name variation in particular
can be modeled using a phonetic representation, i.e., strings are similar if they sound
alike. From a linguistic point of view this is a valid model, given that written language
is derived from speech. However, automatic conversion from text to sound is a non-
trivial problem, therefore the phonetic representation of strings is not always accurate
and subsequently the comparison between strings might be flawed. However, existing
phonetic encoding approaches are generally capable of capturing a substantial amount

Chapter 2: Preliminaries 31

type characters code
oral resonants a, e, i, o, u, y 1
labials, labio-dentals b, f, p, v 2
gutturals, sibilants c, g, k, q, s, x, z 3
dental mute t, d 4
palatal fricative l 5
labio-nasal m 6
lingua-nasal n 7
dental fricative r 8

Table 2.2: Soundex character classes. Type descriptions are adopted from [107], which
is not always in accordance to contemporary articulatory phonetics.

of name variation. In the remainder of this section a number of algorithms will be
discussed.

An early approach to phonetic indexing is the Soundex algorithm [107]. In this
method alphabet characters are divided into eight classes, according to phonological
type (see Table 2.2). The Soundex code of a string consists of the first character of the
string followed by the numeric codes of the remaining characters in order of occurrence.
Adjacent characters of the same class are represented by a single class code, only the
first vowel is represented in the encoding, the characters h, j, w are ignored and the
final code is truncated to a maximum of three digits. Consider for example the family
names Smith and Smythe, which both receive the encoding S614. Note that most current
implementations of Soundex slightly differ from the original specification, as vowels are
usually ignored altogether and a few modifications have been made to the division into
character classes [28, Chapter 4].

The Soundex algorithm is intended as an indexing system, in which similar strings
are grouped together. An alternative approach can be found in the area of grapheme-to-
phoneme (G2P) conversion, which has the objective to produce an accurate phonetic
representation of a string for use in speech recognition or synthesis (see, e.g., [13]
for an overview). Phonetic transcriptions may be used in similarity computations, ei-
ther to fully abstract from spelling differences (e.g., Catherine–Katherine or Hendriks–
Hendrickx) or to derive a phonetic edit distance (e.g., Maartje–Marietje which has a
character edit distance of 3 but a phonetic distance of 1, given a phonetic structure of

32 Chapter 2: Preliminaries

M-aa-r-t-j-e and M-a-r-ie-t-j-e in which aa and a are pronounced the same). However,
accurate phonetic conversion has proven to be a difficult problem for regular vocabulary.
For person names (or proper nouns in general) additional problems occur, for example
the lack of standardized spelling [78]. Besides this, even if the conversion is correct a
phonetic transcription is not necessarily useful for similarity computation, because name
variants are often also phonetically different. In some cases additional differences might
even be introduced, for example Annigje–Annegien in which g is pronounced differently
because of the different position in the syllable (respectively x and G in the International
Phonetic Alphabet [61]). Therefore index based methods such as Soundex, which are in-
tentionally approximate, are generally preferred over exact phonetic conversion methods
for name variant detection.

The set of rules for Soundex is very general, which results in incorrectly grouped
non-variants as well as differently encoded name which are actual variants. A number
of other approaches have been proposed with a larger ruleset (see [28, Chapter 4]),
such as NYSIIS which applies various character transformations, or Double Metaphone
which can generate multiple encodings for a string in order to increase the number of
equally coded variants. A rule-based encoding for Dutch has been developed [14] which
is specifically intended for record linkage pre-processing. This algorithm is discussed
further in Chapter 6.

2.3 Blocking

Once a similarity measure between two records is defined, for example in terms of the
string similarity metrics discussed above, a pairwise comparison of all records can be
used to find all record pairs within some threshold of the record similariy measure. This
approach is quadratic in the number of records, because every record has to be compared
to every other record. If the similarity measure is symmetric the number of compar-
isons can be reduced by a factor two, but the remaining number of comparisons is still
quadratic which results in prohibitively large running times if such methods are applied
on large datasets. A common technique to limit the number of record comparisons is
blocking, in which the dataset is divided into a number of subsets before application of
the quadratic method on each subset. The partitioning is generally some kind of group-

Chapter 2: Preliminaries 33

Marriage couple
Ewout Kaptein
Geertrui Dekker

Parents groom
Jacob Kaptein
Dirksje van den Broek

Parents bride
Arij Dekker
Kniertje Verschoor

Marriage couple
Jacob Kaptein
Lijntje Smits

Parents groom
Ewoud Kaptein
Geertrui Dekker

Parents bride
Souverein Smits
Lijntje Delgens

Certificate 09915109 Certificate 09914931

Date: September 18, 1868

Municipality: Mijnsheerenland Municipality: Mijnsheerenland

Date: August 29, 1895

Figure 2.5: Example marriage record match.

ing operation, e.g., based on age, geographical location, research topic, or lexicographic
ordening. In historical record linkage lexical blocking is common, for example using
a sequence composed of the first character of each person name in a record. To illus-
trate this technique, consider linkage of marriage certificates. A married couple can be
mentioned several times in the dataset: once as the bride and bridegroom, and subse-
quently as parents on the marriage certificates of their children. An example of a match
between marriage certificates is shown in Figure 2.5 (this example was shown before as
Figure 1.2). A couple consists of four person names: the first name and family name
of both man and woman. Using blocking on initial letters the marriage couple on the
1868 record is assigned the sequence EKGD. The same sequence is assigned to the par-
ents of the bridegroom on the 1895 certificate (although the corresponding names are
not fully equal). Therefore if only records with the same sequence are compared this
match will be discovered. This type of blocking will reduce the number of comparisons
considerably. Blocking might however exclude valid comparisons, in this case if a name
variant does not share the same initial (e.g., Elizabeth and Liesbeth in Dutch or William
and Bill in English). A carefully designed blocking procedure can be used to minimize
the amount of excluded matches, however the best way to prevent excluded matches is
not to use blocking at all — which requires flexible and efficient matching algorithms
instead (see Chapter 4).

34 Chapter 2: Preliminaries

True Positive (TP) correct match
True Negative (TN) no match found, match does not exist
False Positive (FP) incorrect match
False Negative (FN) no match found, match does exist
Precision TP

TP+FP

Recall TP
TP+FN

F-measure 2 · Precision·Recall
Precision+Recall

Table 2.3: Evaluation measures.

2.4 Evaluation

The accuracy of a record linkage method can be measured by comparing the matches
produced by the method to the actual links in the data. This comparison is generally
performed by measuring precision and recall. Precision is defined as the proportion of
correct matches, which are called true positives, relative to all matches (including in-
correct matches, called false positives). Recall is defined as the ratio between correct
matches and undiscovered matches, which are called false negatives. Precision can be
increased by imposing strict linkage criteria, e.g., accept exact string matches only. This
generally reduces the number of incorrect matches, however the number of undiscovered
matches will increase as well, which negatively impacts the recall score. Conversely, re-
call can be increased by using permissive linkage criteria, which reduces the number
of undiscovered matches while increasing the amount of incorrect matches resulting in
lower precision. A combination of both measures is therefore most informative. The
F-measure is defined as the harmonic mean between precision and recall, although al-
ternative definitions can be used as well. In Table 2.3 an overview of these measures
is provided. For this type of evaluation a sufficiently large subset of the actual links in
the data must be known in advance. For many applications this is not the case, both for
historical and contemporary data. This issue is discussed further in Section 3.1.

Chapter 3

Link prediction using graph
density

In this chapter the relation between linkage potential and graph density is investigated.
The chapter is based on the paper Predicting record linkage potential in a family recon-
struction graph [114].

3.1 Introduction

Record linkage methods can be evaluated by comparing the links produced by the method
to a set of known links (see Section 2.4). In many record linkage settings however, in-
cluding the use of the Genlias database as discussed in this thesis, a sufficiently large
sample of known links from the data set itself or from a comparable benchmark is not
available. In that case the number of matches produced by a linkage method can be
compared to the expected number of links per record or in the data in general. In the
case of Genlias the data consists of birth, marriage and death certificates. Links can be
expected for any combination of certificate types, for example a link between a birth
certificate of a person and a marriage certificate where this person is mentioned as bride
or groom or a link between a marriage certificate where two people are mentioned as

35

36 Chapter 3: Link prediction using graph density

bride and groom and another marriage certificate where these people are mentioned as
parents, but also more distant connections such as a link between the death certificates
of two cousins, or a link between two death certificates from the same village. If the
number of produced matches is less than expected, then recall is considered to be low
(sometimes referred to as underlinking). If the number of matches is higher than ex-
pected, then precision is considered to be low (sometimes called overlinking). This is
obviously only a rough estimate of method accuracy, because only the amount of links
is measured without considering whether or not these links are actually correct. Addi-
tionally, the expected amount of links in the data could differ from the actual amount of
links. For some types of records the expected amount of links is clear, e.g., for each per-
son exactly one birth certificate and exactly one death certificate are expected1, which
leads to exactly one expected link between birth certificates and death certificates for
each person. For other record types the amount of links is less clear, for example links
between birth certificates of siblings in a family. For individual families the number of
children is (at least initially) unknown and also at a more general level the distribution
of family size in historical populations is unclear, therefore the amount of expected links
becomes difficult to estimate.

Another aspect which limits the use of expected link numbers in linkage evaluation
is data coverage. If an expected match for a given record is not found by a linkage
method, then either the matching procedure is inaccurate or the target record is not
present in the dataset. This complicates the evaluation of linkage methods considerably,
because it is generally unknown which records are missing. The current chapter provides
a method to predict whether a target record is missing or not using methods from graph
theory. Under the assumption that predicting the existence of a link is less difficult than
predicting the link itself, link existence prediction is a useful preprocessing step for any
record linkage method. Link prediction can be used for evaluation purposes, but also to
direct the matching effort of the linkage process itself towards prospective records.

Given a partially linked data set, the probability of finding additional links for

1This assumption is not entirely justified. Stillborn children are generally only mentioned in death certifi-
cates, and no birth certificate is issued (although in some cases a birth certificate does exist). Besides this,
if the place of death of a person is different from the place of residence, often in both municipalities a sepa-
rate death certificate is archived. Therefore, even for a seemingly straightforward linkage task the amount of
records might be unreliable for predicting the amount of expected links.

Chapter 3: Link prediction using graph density 37

records in the data set can be estimated using structural properties (i.e., graph topol-
ogy) of a graph constructed from the links. Existing link prediction techniques (see,
e.g., [23, 45] for an overview) can be divided into two groups: graph structure (or graph
topology) methods and node attribute classifiers. A survey of several graph structure
methods to predict a link between two nodes, such as graph distance, common neigh-
bors or random walk hit rate, is provided in [81]. An example approach using both
topology and node attribute classifiers can be found in [91]. The method described in
this chapter is also a combination of both approaches. For nodes that are present in the
main weakly connected component of the link graph, structural properties are used. For
nodes that are not yet connected, similar nodes are located using node attributes and the
structural properties of the similar nodes are used to predict linkage potential for the
original node. This extra step is necessary because record linkage graphs can contain
many nodes in isolation or in very small connected components. The topology of online
social networks is different in this respect: almost all nodes in the network are usually
connected [79]. A new linkage method using semantic stemming is introduced to reduce
the prediction bias of the link graph.

This chapter describes linkage potential prediction using an example application
of record linkage to marriage records from the Genlias data set as a proof of concept.
The problem statement is given in Section 3.2. The approach consists of three steps:
record linkage using edit distance (Section 3.2.1), constructing a directed graph from
the links found in record linkage (Section 3.2.2), and predicting the likelihood of finding
additional links for records in the data set using the constructed graph (Section 3.2.3).
A set of additional links is provided by a new record linkage method which is described
in Section 3.3. The performance of the prediction method for both the original and
the additional links is evaluated in Section 3.4. Conclusions and further research are
discussed in Section 3.5.

3.2 Approach

The problem can be stated as follows: given a partially linked data set and a record r
for which the number of links that has already been found is smaller than the number
of links expected in the domain, what is the likelihood that an undiscovered correct

38 Chapter 3: Link prediction using graph density

link is present somewhere in the data? This problem is approached by examining the
link density around record r itself (in case one or more links for r have already been
found), or around records similar to r (in case this record is not part of the link graph,
i.e., no links have been found). The definitions of link density around a record and
similarity of records are provided in Section 3.2.3. Note that similarity of records for
link prediction is different from similarity of records for record linkage. To predict the
existence of a link for record r, it is sufficient to examine records that are similar to r
on a general level. In the example presented in this chapter to illustrate the approach
the attributes of municipality and year of entry are used, which in this domain indicate a
general similarity in the social situation of the individuals. For other domains different
attributes may be used, e.g., scientific area and publication year for a graph of scientific
papers. In contrast to the prediction of link potential, a much more restrictive notion of
similarity is needed to predict actual links. Predicting the existence of a link without
knowing exactly where to find this link is useful to guide the record linkage process. A
major difficulty in record linkage on non-artificial data sets is the measurement of recall.
To evaluate recall, labeled link examples are needed. These examples can be obtained
manually, as in, e.g., [125, 129]. However, manual linking takes a large amount of time
and is subject to linkage bias (e.g., using incomplete domain knowledge or accepting
the first reasonable candidate match without considering alternatives). Evaluation on
the full data set therefore remains difficult: if a record r is not linked, either the linkage
method is too restrictive or the data set does not contain any record that links to r. A link
existence prediction score can be used to support or challenge the links obtained using
a similarity measure. A low score can confirm that no link can be found, or if a link is
indeed found, that this link might be incorrect. A higher score can increase confidence
in a link that is obtained using a more permissive similarity threshold.

The experiment consists of several steps. First, a simple record linkage procedure
is used to find links between records. Second, these links are used to build a graph.
A property of nodes (representing certificate records) is the number of inbound and
outbound edges (representing links between certificate records). This property is known
as degree. The final step of the method consists of mapping records to this graph to
predict their linkage potential using the degree properties of the mapping region.

Chapter 3: Link prediction using graph density 39

3.2.1 Basic record linkage

Using Levenshtein edit distance, links between records can be found by computing the
distance between every combination of records and selecting the combinations that do
not exceed a predefined distance threshold. Using the initial characters of the names in
a record (see Section 1.2) as blocking scheme, record linkage can be performed in a few
minutes for maximum Levenshtein distance 2 on the full set of marriage records (see
Figure 2.5 for the example of a marriage record link discussed in Chapters 1 and 2).
This creates around 3.1 million links for a total of 2.6 million records. Note that for
each original record, containing two parent couples, two links can be found (one for
each parent couple to their own marriage record). This type of blocking is fast, at the
expense of being incomplete: if two records have different initial letters a comparison is
not performed even though a link might exist. Levenshtein distance 2 is very restrictive,
which also limits the number of links. Moreover, the dataset is incomplete as well. A
link to a record from the 18th century cannot be found, because the data set contains only
records from the 19th and 20th century (with a few exceptions). Other records might link
to archives in Germany or Belgium, which are not part of the data set. Some records have
been lost or have become unreadable during the past 200 years, other records are present
in archives but have not been digitized yet. However, the amount of links that have been
found is large enough to perform link prediction.

3.2.2 Graph construction

From the 3.1 million links, 100,000 links are reserved for testing. From the other links a
directed graph is constructed. Nodes in the graph represent records, and edges represent
links. The direction of a link represents the generation order, i.e., an outgoing link for
a node is defined as a link from a node where two people are mentioned as parents to
a second node where this couple is mentioned as bride and bridegroom, while for the
second node this link is considered an incoming link. A node can have zero, one or
two outgoing links, based on zero, one or two parent couples from the record. A node
can have more incoming links, because a record containing a marriage couple can be
linked to the marriage certificate of all the children of this couple. Still, the graph is very
sparse and contains many unconnected components. The average number of outgoing

40 Chapter 3: Link prediction using graph density

and incoming links is 1.6 and 2.8, respectively. There are 33,807 isolated subgraphs
of 2 or more nodes. Most of these subgraphs are small (less than 5 nodes), with one
exception of a subgraph with 2.1 million nodes2. The data set contains 450,000 records
(out of 2.6 million marriage records in total) without any links using the linkage method
as described above. This distribution is different from many other networks used in link
prediction, such as social networks or academic collaboration networks, which usually
are much more connected. Therefore, a procedure is designed to map unconnected
nodes to the main connected component using record characteristics. The connectivity
measures of the mapped region can be used to predict the existence of a link.

Note that, as stated in Section 3.1, the existence of a link is predicted rather than the
link itself. A link between two civil certificates is subject to many restrictions compared
to, e.g., a link in an online social network. The number of links for a given certificate is
limited by each person having only two parents and a small number of children. Links
can appear over a time span of several decades and are not subject of free choice. There-
fore, the influence of network properties like preferential attachment or triadic closure
is limited. This means that network structure alone is not sufficient for predicting actual
links. To do that, the record itself (names, dates, locations) has to be used. However,
predicting whether some link is likely to exist for a given record is a task that can be
performed using only network structure.

The link graph is different from the family reconstruction graph that can be obtained
using the links. In the link graph every node consists of three couples, the marriage cou-
ple and both parent couples (i.e., a node represents a complete marriage certificate). The
edges of the graph represent multiple occurrences of an individual couple. In a family
reconstruction a single person is represented by exactly one node, and edges in the graph
represent family relations. A family reconstruction graph can be considered a more log-
ical model for this kind of data, however the link graph is a better representation of the
linkage process. A mapping to a family reconstruction is relatively easy to perform.

2Note that this subgraph indicates that a large part of the Dutch population in the 19th century is connected
through marriage within 3–4 generations.

Chapter 3: Link prediction using graph density 41

3.2.3 Record mapping and prediction

To assign a link prediction for a record that has only been partially linked or has not been
linked at all, this record is placed in the link graph in order to measure the link density
of the graph around the position of placement. If the record is partially linked then it
is already present in the link graph and the record can be used as the center of the link
density measurement. This method is called direct mapping. If the record has not been
linked at all then the record is placed in the graph based on general similarity between
the original record and other records that are present in the link graph, which is called
indirect mapping. The municipality and year of entry are used as general characteris-
tics of the record. In the graph all other records with these general characteristics are
located. For the link graph used in the experiments, each combination of municipality
and year is represented by approximately 18 records on average. The prediction is based
on the degree properties of these records. The selected attributes for a given domain
should be balanced in terms of specificity: the properties should be sufficiently general
to provide similar records for as many unlinked records as possible, while at the same
time the properties should sufficiently specific to validate the assumption that similarity
of records indicates a similar linkage potential.

If the algorithm encounters a record for which the general characteristics are not
found in the graph, no prediction score is assigned.

Algorithm 3.1 DirectMapping(id)

1: score← |SuccessorSet(id)|
2: scorereverse ← 0
3: for all link ∈ PredecessorSet(id) do
4: scorereverse += |SuccessorSet(link)|
5: score +=

scorereverse
|PredecessorSet(id)|

6: if score = 0 then
7: return IndirectMapping(id)
8: else
9: return score

To increase the amount of information used for prediction the algorithm takes the

42 Chapter 3: Link prediction using graph density

Algorithm 3.2 IndirectMapping(id)

1: scoretotal ← 0
2: for all r ∈ FindRecords(id.municipality, id.year) do
3: for all link ∈ SuccessorSet(r) do
4: scoretotal += |PredecessorSet(link)|
5: score← scoretotal

|FindRecords(id.municipality, id.year)|
6: if score = 0 then
7: return not found
8: else
9: return score

degree of same generation nodes into account. A same generation node is defined as a
node sharing a common predecessor node or a common successor node. The link density
score is composed of the degree of same generation nodes. This score is intended as an
abstract indicator of record connectivity, rather than a prediction of the number of links
as such. The scoring method can be defined in a number of ways. The direct and indi-
rect mapping methods have been implemented differently, which permits a comparison
of prediction performance (see Section 3.5). Algorithms 3.1 and 3.2 provide an out-
line of direct and indirect mapping, respectively. Figure 3.1 shows an example of both
degree counts. Direct mapping uses successor nodes for same generation node compu-
tation, while indirect mapping uses predecessor nodes. Apart from the direction of the
graph search, two other differences exist between the algorithms. In direct mapping,
the score is computed by taking the average degree of same generation nodes (Algo-
rithm 3.1 line 5). In indirect mapping, the sum of the degree of same generation nodes
is computed, averaged over the number of similar nodes (Algorithm 3.2 line 5). Besides
this, for direct mapping the degree from the starting node is counted twice (as same gen-
eration node and separately before the start of the loop) while for indirect mapping the
starting node is counted once (only as same generation node). Due to these differences,
the resulting scores of the two algorithms cannot be compared directly and should be
interpreted relative to the other scores for each algorithm.

Chapter 3: Link prediction using graph density 43

7

8 9

3 65

1

4

2

Figure 3.1: The prediction score for node 5 using direct mapping is computed by counting the
successor link 5 → 2 and the three paths 5 ← 8 → 3, 5 ← 8 → 5 and 5 ← 9 → 5 weighted
by the number of predecessor links (two in this case) for a total of 2.5 (same generation nodes are
shown in blue). Using indirect mapping the score for node 5 is computed by counting the paths
5 → 2 ← 5, 5 → 2 ← 6 and 5 → 2 ← 7 to obtain a score of 3 (same generation nodes shown in
green). Note that this example shows only the inner loop of the indirect mapping algorithm. This
computation is performed for all records sharing the municipality and year of the mapped record.

3.3 Stemming-based linkage

In the previous section a link graph is constructed using the results of a linking method
based on Levenshtein edit distance. A number of links has been left out of the graph
for testing. However, testing on this set could suffer from a bias caused by the linking
method. The link graph might be able to predict additional links based on Levenshtein
distance, but this does not imply that links based on other methods can be predicted. This
type of links is however the most interesting to predict, because these additional links
are not yet discovered. Therefore, testing on a set of links created with a different linking
method has been performed to improve the analysis of the value of the predictions.

An alternative linking method is based on stemming. For every name the stem
is extracted, and records with the same combination of name stems are assumed to be
linked. The name stem is a representation of the meaning (i.e., semantic origin) of the
name, which results in a different type of similarity computation as compared to edit
distance: two names with a large edit distance but with the same meaning are linked,
while two names with a small edit distance but a different meaning are rejected. As
an example, consider the marriage of Pieter Redeker and Albertje Boswijk in 1835.

44 Chapter 3: Link prediction using graph density

This certificate is linked to a certificate from 1863 containing the parent couple Pieter
Redeker and Albertje Bos. The edit distance between Boswijk and Bos is 4 (deletion of
wijk), which is in general not acceptable for a match. However, the stem of both names
is the same (Bos, English: forest). Therefore, the stemming algorithm suggests a link.
Additional information from the data set (municipality, time period, birth certificates)
confirms the link. In the current experiment stemming is used for family names only.

Stemming procedure Morphological analysis using manually or automatically de-
rived rules can be used for highly accuracte stemming of natural language texts in vari-
ous languages such as English or Dutch [100, 17, 111]. For highly inflectional languages
such as Polish or Russian grammatical declension patterns can be used to perform stem-
ming [97, 101]. However, rule-based approaches have limitations for person names [95].
Names are not subject to standardized spelling conventions, which increases the amount
of variation. Many names occur with very low frequencies which makes it difficult to
obtain a training corpus with a sufficient level of coverage. The majority of names differ
from their stem, unlike standard text. An alternative to morphology-based stemming
that is less sensitive to these difficulties is lexicon-based stemming, which does not re-
quire any training data. The lexicon can be used for look-up after application of suffix
stripping rules [121]. However, in the current approach suffix stripping is not used.
Alternatively, the stem of a name is defined as a lexicon item that forms a prefix of a
name.

Family names are good candidates for lexicon-based stemming. The basis of a
family name in most European languages is generally an element from one out of four
categories [83]: patronyms derived from first names (Jansen, English: Johnson), loca-
tion names (Bos), profession (Molenaar, English: Miller) or personal characteristic (De
Jong, English: Young). The Genlias data set contains many first names and town names,
which can serve as a lexicon for the first two categories. Professions, personal charac-
teristics and locations other than town names are extracted from Opentaal3, which is a
general purpose word list for Dutch. Opentaal is a distributed computing project for au-
tomatically harvesting Dutch words on web pages. The resulting word list is manually
checked and approved by the Dutch language authority (Taalunie).

3http://www.opentaal.org (in Dutch)

http://www.opentaal.org

Chapter 3: Link prediction using graph density 45

Candidate selection In some cases, there is more than one candidate for a name stem.
Within a category, the candidate with the highest frequency is selected as the stem.
Between categories, the longest candidate stem is selected. Frequency information for
first names is extracted from the Genlias data set. For town names, the longest candidate
stem is always selected. The Opentaal word list includes frequency information, which
is obtained from the harvested web pages.

Frequent candidates are preferred because they generally represent the base lemma
of a word. According to the stemming assumption, most links can be found using the
base lemma because this lemma can be reached from a large number of variants. How-
ever, the frequency approach does not work in case a short common word (either a
function word or a content word) is a prefix of the base lemma. Therefore, a stop list
is introduced to exclude items above a predefined frequency threshold. As an exam-
ple consider the name Mandema, for which the general purpose word list contains the
candidate stems ma, man, mand, mande. The candidate with the highest frequency is
man (English: idem), however this word is contained in the stop list, as is ma (English:
idem). From the two remaining candidates mand (English: basket) is selected over the
very archaic mande (English: community) based on frequency.

Spelling normalization In contrast to inflectional morphology, local spelling variation
in names is relatively systematic. The difference between modern and archaic spelling
is an important source of spelling variation [73], which can be described by a limited
number of rewriting rules. In case the variation occurs in a suffix of the name, the
stemming procedure is able to find a link based on the stem alone. However, if the
variation occurs in the stem, rewriting can increase coverage of the linking method.
Therefore in the current experiment rewriting rules from [21] are used for preprocessing
of all family names. The rules are phonetically in nature, e.g., uuy→ ui or eick→ ek.

Linguistic and statistical properties The lexicon-based stemming method could be
improved further by taking linguistic and statistical properties into account. Candidates
can be selected according to grammatical category (parts-of-speech) which increases the
semantic validity of the stem. The word list can be limited to 19th century vocabulary in
order to increase the number of matches. The frequency of a stem in the Genlias data can

46 Chapter 3: Link prediction using graph density

ba ba baba ba ba
Stem

No link

Levenshtein

removed

Levenshtein

Levenshtein matches Stem matches
Not matched

Figure 3.2: Records divided by link type, corresponding to the scores in Table 3.1.

be used instead of the frequency on the harvested web pages from Opentaal. However,
for the present purposes it is not necessary to develop an optimal stemming procedure.
The goal of the current experiments is to evaluate the use of a link graph in predicting
additional links. The stemming method as described here provides a sufficient number
of correct links to be able to evaluate the prediction algorithm.

3.4 Experiment

The prediction method is evaluated using six subsets of records, which are shown in Fig-
ure 3.2. Each record r contains two parent couples, a and b. The couples are unordered,
i.e., both couple a and b can represent either the parents of the bride or the parents of the
groom. If parent couple a is used in a Levenshtein link for record r, direct mapping is
used, otherwise indirect mapping is used. Parent couple b can be used in a Levenshtein
link, a stem link or no link at all. Levenshtein links for both parent couples have been
used for the link graph, except for links in the evaluation set (100,000 links in total)
which have been removed from the graph. Stem links have not been used for the link
graph. Therefore, in the evaluation set the three types of links using couple b are not
available for the prediction method. The linkage potential score for record r is there-
fore based on Levenshtein links using couple a (direct mapping) or Levenshtein links
using couples a′ found in similar records (indirect mapping). If couple a is not used in a
Levenshtein link for r and no similar records are found, no prediction score is assigned
(indicated by not found in Table 3.1).

Chapter 3: Link prediction using graph density 47

method direct mapping indirect mapping
found not found

Levenshtein matches 2.4 (36.8%) 6.3 (63.1%) n/a (0.1%)
Stem matches 2.7 (46.1%) 5.9 (51.7%) n/a (2.2%)
Not matched 1.7 (47.7%) 5.0 (42.6%) n/a (9.7%)

Table 3.1: Average link density scores and subset proportions per method.

3.5 Conclusions and future research

For the two sets with fully linked records (the first and third case in Figure 3.2, corre-
sponding to the first two rows in the direct mapping column in Table 3.1), the parent
entry from the record that participates in the link (referred to as couple b in Section 3.5)
is by construction not part of the link graph. Therefore, the direct mapping score for
these records is based on links from the other two couples in the record (parent couple
a and the marriage couple) and links from same generation nodes. This provides evi-
dence for the hypothesis that a high density of links in a specific region of the link graph
increases the likelihood that an additional link can be found. The results for the Stem
matches set indicate that a prediction based on links using one method can be transferred
to another method (note that the Levenshtein matches set and the Stem matches set are
disjoint by construction). This result is useful because it leads to a direct application in
the evaluation and adaptation of new linkage methods.

The results for indirect mapping show that records with the same general charac-
teristics (in this case date and location) are similar in terms of link density as well. This
allows for link prediction, but it can also serve as an interesting starting point for link-
age modelling in general. The scores for indirect mapping are higher than the scores
for indirect mapping for all three data sets. This was expected, because the algorithm
for indirect mapping computes the sum of degrees of same generation nodes while the
algorithm for direct mapping computes the average degree. Apart from the difference in
magnitude, the differences that have been introduced between direct and indirect map-
ping do not show a large influence on the prediction results.

Finally, the proportion of records that are not found in the link graph (see Table 3.1)
provides an additional predictor for link density. For the unmatched records, this pro-

48 Chapter 3: Link prediction using graph density

portion is higher than for the matched records. Therefore, the absence of a record r in
the link graph is a strong indication that the data does not contain undiscovered links to
r. For records that are dated close to the time period bounds of the data set, for example,
the absence in the graph can be anticipated. However, other sparse or absent regions of
the graph which are harder to anticipate can be discovered as well using the link predic-
tion method, which assigns lower scores or a not found label to nodes in these regions.
Besides this, the anticipated absent regions are discovered without any prior knowledge
of the domain or the statistics of the data set.

In future research the stemming method needs to be refined. Additionally, the
distribution of prediction scores can be considered to improve the value of the prediction
method for actual record linkage methods.

Chapter 4

Indexing edit distance

In this chapter an algorithm is described for efficient computation of edit distance in a
large search space given a distance threshold. The chapter is based on the paper Com-
plete coverage for approximate string matching in record linkage using bit vectors [113].

4.1 Introduction

In Section 2.3 the concept of blocking is described, which is used to limit the number of
pair-wise record comparisons when performing record linkage on large datasets. Block-
ing has the disadvantage that pairs of similar records from different blocks are not found.
This issue, referred as the coverage problem, is addressed by the method described in
this chapter which computes all pairs of records within a threshold of Levenshtein edit
distance. Complete coverage is provided without using standardization of data or se-
lection of possible links. The main idea behind the method is to use a tree-based index
on single characters contained in a record. The index is small and fast to compute by
using a fixed-size binary representation of records. The method can be extended to other
similarity measures, such as Jaro distance. Using this method, blocking is no longer
necessary for practical levels of the distance threshold.

This chapter is structured as follows: in Section 4.2, an overview of related work is
provided. Section Section 4.3 describes the tree construction and traversal algorithms.

49

50 Chapter 4: Indexing edit distance

A proof is provided that this algorithm finds all pairs of records within a given threshold
on Levenshtein distance. Sections 4.4 and 4.5 discuss various optimizations to limit the
number of tree traversal steps without loss of coverage. Section 4.6 provides results
from an experiment on the Genlias dataset. A comparison to other complete coverage
methods is provided in Section 4.7. Additionally, this section contains a discussion of
combining blocking and tree indexing which combines the efficiency of both methods
at the loss of complete coverage. In a third set of experiments, described in Section 4.8,
tree indexing is applied to Jaro distance. Section 4.9 concludes.

4.2 Related work

The method described in this chapter applies a tree structure to organize the data. Tree
indexing is a well-known technique for efficient database querying. The B-tree [9] is a
data structure that partitions the values of database keys in a tree structure permitting
logarithmic search. Full-text indexing can be achieved efficiently with a trie [41] where
strings are represented by a path in a tree with consecutive characters as path nodes.
Tries can be compressed or combined with other data structures to save storage space or
to increase retrieval performance (see, e.g., [56]).

Tree indexing for approximate string matching has been studied in the context of
matching relatively small patterns against relatively long texts, such as DNA sequence
matching or document retrieval (see, e.g., [88] for an overview). The approximate
matching utility Agrep divides the pattern into k + 1 parts for a maximum error of k,
such that at least one of the parts must match in an exact way. Then, the bitap algorithm
(also called shift-or) is used to find occurences of the exact matching subpattern in the
text [140]. A combination of filtering and hashing is Locality Sensitive Hashing [46],
where a record (or point) is hashed multiple times using different dimension reductions.
The different hash functions are chosen such that at least one of the functions is likely to
provide the same hash key for two similar records.

A similar pattern division filtering technique, but allowing for small errors in the
partitions, is the basis of the q-gram tree approach by [90] which is similar to earlier
approaches using suffix automata [66] and suffix trees [89]. A standard dynamic pro-
gramming algorithm is used to check for partition errors. A key element in this approach

Chapter 4: Indexing edit distance 51

is sampling. The pattern is divided into q-grams such that in every sequence of n pattern
q-grams, there is a maximum of m q-grams with a large error compared to the text, and
all other parts have no or only small errors. The text is also divided into q-grams, and
for every n text q-grams a selection of m + 1 q-grams is used to check against the pattern
q-grams. The number of samples ensures that at least 1 text q-gram can be found with a
small error to a pattern q-gram, which can save a large number of comparisons.

Indices using suffix trees can be quite large (up to 65 times the size of the indexed
text), but space efficiency of the tree structure can be improved [76] to lower memory
requirements.

Sampling is not useful in record linkage, because there has to be at least one sample
from every record, which means that there is no reduction in the number of record com-
parisons. Filtering, in contrast, can be used in record linkage. A comparison of filtering
with the new indexing method presented in this work is provided in Section 4.7.

4.3 Approach

The record linkage problem can be stated as follows: given two sets of records A1, A2, a
similarity measure1 s and a similarity threshold t, find the set B ⊆ A1 × A2 of pairs (p, q)
for which s(p, q) ≥ t.

The set B can be found efficiently using an index that is flexible enough to incor-
porate the similarity measure. An index on textual data can become large and relatively
inefficient during lookup due to the size of the alphabet. This problem can be resolved
in part by a transformation of the original data, which will be discussed in Sections 4.3.1
and 4.4. The sets of source records A1 and target records A2 can be equal, for example
in a customer database where multiple entries for the same customer should be merged.
The source and target sets can also originate from different sources, if for example pa-
tients from a hospital should be linked to patients from another hospital. However, the
general record linkage problem is the same in both situations.

1The range of s is generally [0,1] for real similarity measures and N+ for distance measures such as
Levenshtein distance (which can be used as similarity measures by reversing the threshold condition). How-
ever, any range may be used in the general formulation of the record linkage problem.

52 Chapter 4: Indexing edit distance

4.3.1 Algorithm

In the current indexing approach records are represented as a set of characters. A bi-
nary vector (or bit vector) is constructed for each target record, where vector positions
represent the presence of characters. Note that the order and frequency of characters is
discarded, which allows for a more compact representation. As an example of vector
construction consider an alphabet {a, b, c} and a record cacca, for which mapping char-
acters to vector positions in alphabetical order would result in the vector [1, 0, 1]. Using
a bit vector, the alphabet size is reduced to 2, which permits an efficient implementation.
A binary tree index is constructed on the vectors, where the presence of characters is
queried in the nodes. The leaf nodes contain the actual records. The maximum number
of nodes is bounded by 2d+1 for tree depth d, however the size of the tree is also linearly
bounded by the number of records which quickly becomes less than the exponential
bound for larger values of d (for example a tree of depth 32 for 4 million records with
full branching at the top, which maximizes the number of nodes, runs out of records to
create additional branches around depth 22 which leaves 10 levels of non-branching for
an approximate total of 222 · 2 + 10 · 222 = 48 million nodes, while the exponential max-
imum equals 232 · 2 = 8.5 billion nodes). The actual number of nodes is much smaller
because of shared paths between records, which occur frequently because of the skewed
distribution of values in many datasets (including historical civil certificate data).

In Figure 4.1 a small vector tree is presented containing a number of strings from
the alphabet {a, b, c} (a more extensive example is discussed in Section 4.6.1). In this
example the depth of the tree (defined by the length of the vector) is equal to the size of
the alphabet, however in general any n to n mapping procedure can be used. The eight
records in the example are located in three branches of the tree. Two other branches
are terminated because no corresponding records exist, indicated by square nodes in
Figure 4.1. If all records with a maximum distance of 1 need to be located for the
query record cabca, which is assigned the bit vector [1, 1, 1], then only the 101 and 111
branches are checked in order to find the matching record cacca. The 100 branch can
be discarded because the bit difference between this branch and the query vector 111
is larger than the distance threshold. Terminated branches (110 and 0) are discarded
by default. The construction of the tree is outlined in Algorithm 4.1. Initially, the tree
consists of a single root node. A bit vector for the first target record is constructed as

Chapter 4: Indexing edit distance 53

0 1

0 1

0 1 0 1

a

b

c c

100
aa
aaa

101

ac
cacca

111
bac
cbaa
acb

caa
∅

∅

Figure 4.1: Example vector tree.

described. The algorithm checks whether an edge exists from the root node to another
node n labeled with the value of the first bit. If this is the case, the algorithm proceeds
with the second bit from node n. Otherwise, a new node is added to the tree and the
algorithm proceeds from that node with the second bit. This process is repeated for all

Algorithm 4.1 Tree construction on target records.
for all target records t do

[b0, b1 . . . , bn]← bitvector(t)
current node c← 0
for i = 0 to n do

if EdgeExists(c, bi, c′) then
c← c′

else
AddEdge(c, bi, cnew)
c← cnew

if LastBit(bi) then
AddRecord(c, t)

54 Chapter 4: Indexing edit distance

Algorithm 4.2 TreeTraversal(node n, bit vector V , vector position p, error count e1, e2)
candidate set C ← ∅
if p = last position in V then

return records in node n
b← Vp

incorrect node nerr ←TreePath(n, 1 − b)
e′1 ← e1 + b
e′2 ← e2 + (1 − b)
if e′1 ≤ errormax and e′2 ≤ errormax then

C ← C ∪ TreeTraversal(nerr,V, p + 1, e′1, e
′
2)

correct node ncorr ←TreePath(n, b)
C ← C ∪ TreeTraversal(ncorr,V, p + 1, e1, e2)
return C

bits, and the record is added to the final node. The bit vectors for the other target records
are processed using the same procedure.

After construction of the index the tree can be used to compute record matches.
For every source record, the tree is traversed using the recursive algorithm outlined in
Algorithm 4.2. A bit vector is constructed for the source record and the tree is traversed,
starting at the root node, by following the edges corresponding to the bit values of the
vector. If this path exists, the records in the leaf node are added to the set of candidate
matches. This procedure is implemented by the second recursive call to TreeTraversal
in Algorithm 4.2: the search continues from the next node using bit p+1. To incorporate
approximate matches, the algorithm allows for a limited number of incorrect branch
traversals. This is implemented by the first recursive call to TreeTraversal. The error
count for deletion (bit b changes from 1 to 0) or insertion (b changes from 0 to 1) is
increased, and if both error counts are still below the threshold (implemented by the
constant errormax) the search continues following the incorrect branch. The recursive
procedure collects all candidates from leaf nodes of the various branches. The original
string representation of target records is compared to the original string representation of
the source record using the string similarity measure s to determine all actual matching
records within the error threshold.

Chapter 4: Indexing edit distance 55

4.3.2 Similarity matches

The Levenshtein string edit distance, or Levenshtein distance, between string p and
string q is defined as the minimal number of operations needed to transform p into
q. These operations can be insertion, deletion and substitution of characters (see Sec-
tion 2.2 for a formal definition). For example, the string abc can be transformed into
abdc by insertion of the character d, therefore the Levenshtein distance between the two
strings is 1. The difference in bit vectors for two records is related to the Levenshtein
distance, as stated in the following theorem:

Theorem. Let p and q be strings, P and Q binary vectors corresponding to these
strings as constructed by the above method, and e1, e2 the number of vector positions
with value 1 in P and value 0 in Q, or value 0 in P and value 1 in Q, respectively. Then,
max(e1, e2) is a lower bound for the Levenshtein distance between p and q.

Proof. First, we consider e1. For each vector position with value 1 in P and value
0 in Q, by definition of the vector construction the character associated to that position
is present in p but not in q. Therefore, either a deletion or a substitution of the character
has occurred. Similarly, for e2 either an insertion or a substitution has occurred. A
substitution can be counted twice, both in e1 and in e2. The minimum Levenshtein
distance between p and q is equal to the sum of the deletions counted in e1, the insertions
counted in e2, and the substitutions counted in both. This number is at least max(e1, e2),
if all operations from e1 are substitutions which are also counted in e2 or vice versa. �

An incorrect 0 edge or 1 edge corresponds to an increment in e1 or e2, respectively.
Therefore, an algorithm that permits at most n incorrect edge traversal steps of either
type for a given source record finds all target records for which the Levenshtein distance
is at most n. The tree traversal algorithm applied on the full set of source records finds
all pairs of records within the distance threshold.

Note that the upper bound for the Levenshtein distance might be higher than the
lower bound computed by the algorithm. Therefore, the actual Levenshtein distance
needs to be computed for the candidate pairs found using the tree traversal algorithm.

56 Chapter 4: Indexing edit distance

4.4 Model parameters

Various parameters influence the memory and time requirements of the algorithm. The
proof in Section 4.3.2 remains valid using different parameter settings.

4.4.1 Subvectors per record

A bit vector used as a bag of characters is position and frequency independent. In prac-
tise, this means that many highly dissimilar records will be represented using the same
or similar bit vectors. This increases the processing time for comparing candidate target
records, which becomes problematic for higher distance thresholds. However, this dis-
advantage can be limited by introducing some position dependence into the bit vector.
Records used for linkage are likely to contain several fields, such as first name, last name,
address, etc. A separate bit vector can be assigned to each of these fields, generating a
number of subvectors for a record. The subvectors are concatenated to obtain a single
vector which is used to build and traverse the search tree. This modification causes a
direct comparison between corresponding fields without interference from other fields,
which reduces the search space significantly.

4.4.2 Characters per node

In Section 4.3.1 a bit vector is constructed using a distinct vector position for every
character in the alphabet. Using the lower case Latin alphabet with a few additional
characters (such as spaces or hyphens), the vector would be around 30 positions long.
If multiple vectors per record are used, as described above, the number of vector po-
sitions is multiplied by the number of vectors per record, which leads to a larger tree.
To counter this effect, multiple characters can be assigned to the same vector position.
This in turn causes more vector overlap for distinct strings, but with proper tuning the
disadvantage of overlapping vectors is small compared to the efficiency gain of smaller
vectors. Section 4.5 discusses a learning approach to determine an efficient character
assigment.

Chapter 4: Indexing edit distance 57

4.4.3 Pruning

The search tree can be pruned while preserving complete coverage. Every node in the
tree can be considered the root of a subtree, with an associated set of leaf nodes. The
leaf nodes contain the actual records, often represented by separate fields as above. If
records contain a first name, for example, then for every node in the tree a list can be
compiled containing all first names in the associated leaf nodes. When a source record
is traversing the tree, the first name in this record can be compared to the list of first
names associated to each node. If the similarity measure rejects all names in the list, the
subtree can be pruned without loss of coverage.

Obviously, comparing all records from a subtree to the current source record for
pruning means that the linkage problem is moved from the subtree to the current node.
However, the distribution properties of a single field can allow for an efficient compar-
ison as opposed to comparison of full records. For person names in particular (which
are present in many application domains), a relatively small number of names accounts
for a large portion of the data. String distances between pairs of popular names and all
other names in the data set are fast to precompute, and the results can be stored in the
nodes of the search tree. Now, a constant time lookup can determine whether a source
record containing a popular name has any possibility to match a target record in a given
subtree. This saves a substantial amount of tree traversal as well as a reduction in edit
distance computations.

Not all nodes are equally useful for pruning. Nodes high in the tree usually contain
all popular names, therefore no pruning can be performed. Nodes down the tree contain
only a few names, but there is not much to be pruned in these nodes because most of
the tree traversal has already been performed. The name lookup action is constant, but
with billions of tree traversal steps the performance of the algorithm is notably affected.
Therefore, the most efficient way of pruning is to attempt the procedure only at a selec-
tion of nodes in the middle levels of the tree. The selection of nodes and the amount of
popular names can be optimized for a given data set by measuring pruning performance
on a sample of the data.

58 Chapter 4: Indexing edit distance

position frequency based simulated annealing
0 {x,q,z,y,comma,p,space,other} {e,g}

1 {g,c,f,v,w} {a,l,q,h,j,x,comma}
2 {b,u,l,j,h} {r,p,v}

3 {k,d,n,m} {n,space}
4 {s,t,o,r} {i,u,w}

5 {i} {d,f,c,m,z}

6 {a} {t,s,y}

7 {e} {o,b,k,other}

Table 4.1: Distribution of characters over bit vector positions.

4.5 Vector assignment

The assignment of characters to vector positions is crucial for the performance of the
algorithm, because it controls the distribution of records over the paths in the tree. The
interplay between character distribution, tree size and tree traversal efficiency is com-
plex, therefore finding the optimal assignment is non-trivial. A Simulated Annealing
(SA) algorithm [72] is used to determine an efficient assignment from training data.
The tree is constructed using 100,000 records, and matching is performed for 1,000 test
records. As parameters a vector of 4 · 8 bits and a Levenshtein threshold of 3 are used
(cf. Section 4.6). Candidate assignments are computed by changing the assigned posi-
tion of a single character to an adjacent position, or by switching positions between two
adjacent characters. The bit vectors and the tree are adjusted to the candidate assign-
ment and the number of visited nodes is computed for the training data. The candidate
assignment with the lowest number of visited nodes is selected as starting point for the
next iteration. The tree adjustment and traversal are computationally intensive (both op-
erations are linear in the number of records), however the SA optimization only needs to
be performed once prior to the application of the algorithm to the full dataset. In the cur-
rent experiments the SA algorithm has been terminated after several hours of running,
however virtually all score improvement was achieved within the first hour.

The resulting assignment (see Table 4.1) is tested on the full dataset, and compared
against a random assignment and a manual assignment. In the manual assignment the
distribution of characters over vector positions is approximately even according to char-

Chapter 4: Indexing edit distance 59

acter frequency. Figure 4.2 shows the proportion of records for different amounts of
visited nodes. For the SA assignment, a higher proportion of records is checked using
relatively small amounts of visited nodes as compared to the other assignments. The
mean number of visited nodes for the SA assignment shows a 6% improvement over
the manual assignment. This result is obtained on the Genlias dataset, however simi-
lar improvements are expected for other datasets under the assumption that the type of
character distribution in Genlias is common for natural language data.

 0

 0.5

 1

 1.5

 2

 2.5

 8000 10000 12000 14000 16000 18000 20000

%
 o

f
re

c
o
rd

s

visited nodes

freq

rnd

sa

random (rnd)
balanced frequency (freq)
simulated annealing (sa)

Figure 4.2: Efficiency of character assignments. The mean of each assignment is indi-
cated with a vertical line.

4.6 Experiment

To test the efficiency of the method, marriage certificates from the Dutch Genlias his-
torical civil database are used to perform a record linkage task. A marriage certificate

60 Chapter 4: Indexing edit distance

contains three couples: the bride and groom, the parents of the bride and the parents
of the groom. The linkage task used in the experiment is to link a certificate where a
couple is listed as parents to a certificate where this couple is listed as bride and groom.
Figure 4.3 gives an overview of the linkage process: marriage certificates (5.1 million
couples) are transformed into bit vectors; all vectors are combined into a vector tree; sin-
gle records traverse the tree to find candidate links and using the similarity measure real
links are established. The model uses 4 subvectors per record (total vector length: 32).
For each type of name (male first name, female first name, family name) the 100 most
frequent names are used for pruning. The search is pruned at tree depths 16, 20 and 24.
All experiments are performed on a 3.16 GHz dual core CPU with 6GB memory using
32-bit Linux. All programs are written in C++, and compiled with the -O2 optimization
flag.

parents

bride groom

parents

bride and groom

011001110
s(p,q)

certificate 1

certificate 2

certificate 3 certificate 4

Figure 4.3: Overview of the record linkage procedure.

4.6.1 Example

To clarify the procedure, the steps of the algorithm are outlined for a single record. The
vector for this record is 11010000110101001111101011111100. The full tree on the
Genlias dataset contains 17.3 million nodes, a sample is shown in Figure 4.4 to illustrate
various situations in tree traversal. The nodes contain the deletion and insertion counts
e1 and e2, respectively. Edges are labeled + for correct traversals and – for incorrect
traversals of the tree for the example vector. The maximum distance for this example is
2.

• Branching. The first vector position is 1. Starting from the root node, the right
edge (labeled 1+) is correct. The algorithm will however also try the incorrect
branch, assuming deletion of the character corresponding to the first vector posi-
tion. The deletion error count e1 is increased for this branch of the search.

Chapter 4: Indexing edit distance 61

• Error count threshold. In node 001, the correct edge is 1 (indicated by 1+). The
algorithm is not allowed to branch to edge 0 (deletion), because this would exceed
the threshold for error count e1.

• Branch termination. In the node labeled . . . 001, the correct edge is 1. However,
this branch does not exist in the tree, indicating that no records exist with the
vector prefix associated to the current path. Therefore, this path is not examined

e1 = 1
e2 = 0

0
e1 = 0
e2 = 0

1

e2 = 0

000
e1 = 2

e1 = 1
e2 = 0

01

e1 = 2
e2 = 1

001

e1 = 2
e2 = 1

0011

e1 = 2
e2 = 2

...001

stop
e1 > 2

0−

stop
e1 > 2

0−

stop
no records

1+

e2 = 0

00
e1 = 2

...11100
e1 = 2
e2 = 2
end of vector
record added

...111

e2=1
pruning:

no match

e1=2

jansen

1−

1+

1+

0+

1+

0−

0−

Figure 4.4: Example tree traversal.

62 Chapter 4: Indexing edit distance

further and the algorithm performs backtracking to the last point of choice (in this
case node 0011).

• Pruning. Assume that the source record contains the popular name Jansen (Eng-
lish: Johnson). The node labeled . . . 111 is a pruning node, which contains a list
of all popular names that could possibly match a name in one or more records in
any leaf node below the current node. The name Jansen is not on the list for this
node, therefore pruning is performed on this branch.

• Leaf node termination. The last situation depicted in Figure 4.4 occurs in the
node labeled . . . 11100. This is a leaf node that contains a record which is added
to the candidate set. Again, backtracking is performed to find the remaining can-
didates.

Using the standard dynamic programming algorithm Section 2.2, Levenshtein edit dis-
tance is computed between the source record and all records in the candidate set to
determine actual matches.

In Figure 4.5 an example tree is provided for a set of 10 names. This example uses
the character distribution from Table 4.1. The full tree used in the experiment described
in this section consists of 32 levels, divided into four layers of 8 bits for each part of a
record (i.e., the first name of the bridegroom, the last name of the bridegroom, the first
name of the bride and the last name of the bride). The current example shows one layer
of 8 bits. The bit vectors for the names in the example are provided in Table 4.2.

In Figure 4.5 various aspects of the behaviour of the algorithm are illustrated. The
bit vector assignment does not consider character frequency or order, therefore Aaltje
and Altje are assigned the same vector. This means that these two names are consid-
ered as candidates for comparison regardless of the threshold used. In this case the
comparison is justified, given that the Levenshtein distance between the two names is 1
and the names are actual onomastical variants. In general this aspect of the algorithm
captures the heuristic that many name variants are cases of character duplication or char-
acter shift, such as Gretien–Gertien2. Only for uncommon cases such as anagrams (e.g.,

2Character shift is not very common for onomastical name variants, however this phenomenon is frequent
if typing errors are taken into account.

Chapter 4: Indexing edit distance 63

name bit vector
Aafje 11000100
Aafien 11011100
Aalie 11001000
Aaltgijn 11011010
Aaltijn 01011010
Aaltje 11000010
Altje 11000010
Andrea 11110100
Lisa 01001010
Liza 01001100

Table 4.2: Bit vectors for an example name set.

Arnold–Roland) the resulting behaviour is undesired, in which case the names are con-
sidered for comparison and subsequently rejected in the actual distance computation.

The paths in the tree for the name Lisa, represented with the bit vector 01001010,
can be traced for various values of the distance threshold. Starting at root node 0 the
algorithm checks if the name contains e or g, i.e., the first bit of the bit vector is exam-
ined. The value is 0, but for a threshold of 1 the algorithm continues in both nodes on
the second level, i.e., nodes 1 and 2. In the branch to node 2 the insertion count e2 is
increased, corresponding to an insertion of either e or g or both. After processing of the
second bit the search proceeds to nodes 4 and 6 without increasing the error counts of
the branches. Branching to nodes 3 and 5 is also permitted (which would increase the
deletion count e1 in these nodes), but in the example graph both nodes are empty and
are not considered further. On the next level nodes 7 and 9 can be reached without an
increase in error counts, however node 10 is not available for a threshold of 1 because
this path would increase the insertion count e2 to 2 (corresponding to an insertion of r,
p or v). This means that the subtree below node 10 can be skipped for this threshold, re-
moving in the case the name Andrea for consideration as variant of Lisa. For a threshold
of 2 this subtree would be skipped in the next step, as also the traversal from node 10 to
node 16 would increase the insertion count (corresponding to an insertion of n). This is
the desired behaviour: a name which is very dissimilar (the edit distance between Lisa
and Andrea is 5) is no longer considered after just 3 tree traversal steps.

64 Chapter 4: Indexing edit distance

0:
eg

1:
al

q
h

jx

3
4:

rp
v

7
:

n

11
:

iu
w

17
18

:
d

fc
m

z

27
:

ts
y

3
9

40
:

o
b

k

5
7

L
is

a
58

2
8:

ts
y

4
1:

ob
k

5
9

L
iz

a
6
0

42

12
:

iu
w

19
20

:
d

fc
m

z

29
:

ts
y

43
4
4:

o
b

k

61 A
al

ti
jn

6230

8

2:
a
lq

h
jx

5
6:

rp
v

9
:

n

13
:

iu
w

2
1:

d
fc

m
z

31
:

ts
y

45
46

:
ob

k

63 A
al

tj
e

A
lt

je

64

32
:

ts
y

47
:

ob
k

65 A
af

je
66

48

22
:

d
fc

m
z

33
:

ts
y

49
:

o
b

k

6
7

A
a
li

e
68

5
0

34

14
:

iu
w

23
2
4
:

d
fc

m
z

35
:

ts
y

51
52

:
ob

k

69 A
al

tg
ij

n
7
0

3
6:

ts
y

5
3
:

ob
k

7
1

A
a
fi

en
72

5
4

10
:

n

15
1
6:

iu
w

25
:

d
fc

m
z

37
38

:
ts

y

55
:

o
b

k

73 A
n

d
re

a
74

56

26

0

0
1

0

0

0
1

0

0
1

0
1

1 0

0
1

1

1

0
1

0

1
1

0
11

1

1

0
1

0

0

0

0

0
1

0
1

1 0

0
1

1

1

0

0

0
1

1

1

1

0
1

0

0
1

0
1

1

0

0
1

11

0
1

0

0
1

0

0
1

11

Figure 4.5: Tree index for an example name set.

Chapter 4: Indexing edit distance 65

Consider node 18, in which both error counts are 0 for the name Lisa as this node
is on the path to leaf node 57 which contains this name. Given a threshold of 1, the
algorithm can continue to node 28 which increases the insertion count e2 to 1 and sub-
sequently node 41 can be reached which increases the deletion count e1 to 1. Finally,
the algorithm proceeds to node 59 without increasing the error counts and Liza is found
as a candidate for comparison with Lisa. This situation shows that similar names with
different characters (as opposed to similar names with equal characters, as in node 63)
are discovered by the algorithm.

However, the grouping of characters can lead to the comparison of dissimilar names
as well. In this example the name Aaltijn (node 61) can be reached when searching for
the name Lisa with only a single increase in the error count in node 7, while the edit
distance is 5. One reason for the overlap in bit vectors is that the two names share three
characters (l,i,a) but two of the three remaining differences are grouped in the same
nodes, which means that the algorithm cannot differentiate these characters during tree
traversal (s and t are grouped in nodes 27/28 and j is grouped with the shared characters
a and l in node 1). Only the difference in the character n leads to different branches in
node 7.

The same tree traversal procedure can be used for names which are not part of the
tree. If for example the name Aaltjen is encoutered, an exact search would fail in node
23, but with a threshold of 1 nodes 61, 63 and 69 can be reached which results in the
discovery of the only variant Aaltje for this threshold.

In Sections 4.6.2 and 4.7 the results of the algorithm on the Genlias dataset are dis-
cussed. These results indicate that the amount of unnecessary comparisons is relatively
small, which means that the algorithm can efficiently be applied in this case.

4.6.2 Results for Levenshtein distance

The algorithm processes 1648 records per second on average for a maximum Leven-
shtein distance of 2 (see Table 4.3), which is less than 1 hour for 5 million records. This
is suitable for real-time systems (cf. [129, 31]). Blocking methods are based on heuris-
tics, therefore the coverage of a blocking method depends on the quality of the heuristic
and the distribution of variation in the data. The current indexing method, in contrast,
provides full coverage for the Levenshtein distance on any dataset.

66 Chapter 4: Indexing edit distance

Note that Table 4.3 reports on the number of matches according to a threshold on
the Levenshtein edit distance, which is most likely different from the number of actual
links between records. The Genlias dataset does not provide any verified links, therefore
a complete verification of the matching results is hard to perform. However, the aim of
this chapter is not to assess the quality of the Levenshtein edit distance, but to provide a
practical algorithm for complete coverage without the disadvantages of blocking.

4.7 Comparison to existing methods

Various methods in information retrieval are designed for complete coverage, using tech-
niques such as filtering and sampling (see Section 4.2). Unlike sampling, filtering can be
useful in record linkage as well. If, for example, a record consists of four fields and the
maximum allowed Levenshtein distance is three, then at least one of the fields will match
without error for all matching pairs. Using filtering, fast exact matching can be used to
generate the candidate set for a record. However, in case of person names the candidate
set can be as much as 10% of all records for high-frequent names. Efficiency can be
improved by computing distances in a trie structure (cf. [90]), using a single distance
computation for paths in the trie that are shared between records. Note that, instead of
a suffix tree, a normal trie is sufficient for this method because all matches have to start
at the beginning of the record. An implementation of filtering using a trie takes around
0.2 seconds to find all matches for a single record (see Table 4.4), which is acceptable
for a query system but not for batch processing. The publicly available implementation
of Agrep for Linux checks a record in around 1.5 seconds. It should be noted, however,

Distance threshold 2 3
Indexing 3 min. 3 min.
Records/sec 1417 136
with pruning 1648 200
Matches 895,144 1,217,459
Matches (blocking) 848,463 1,031,097
Improvement 5% 18%

Table 4.3: Experimental results on the Genlias data set.

Chapter 4: Indexing edit distance 67

that these methods are intended for short queries on longer texts, which is not the case
in record linkage. Conversely, the text querying problem can not be solved efficiently
with the bit vector method.

4.7.1 Comparison to blocking methods

As mentioned in Section 4.1, a reduction in computation time is often accomplished by
blocking or pre-grouping of possible matches. For example, only names starting with
the same character (initial character blocking) can be considered, or only records from a
certain time period or geographical location. The bit vector method can also be applied
to a blocked data set, which results in a double efficiency increment. Using the initial
character blocking results in about 23 candidates on average for each record (note that
this is an average, some blocks are much larger than 23 records). Using the bit vector
method, the number of candidates can be reduced to around 2 or 3 on average. Of course
extra time is needed for tree traversal, but the total computation time is still over 90%
faster compared to blocking only, resulting in a computation time of around 5 minutes
for the full set.

This method is compared to a recent approach in record linkage, Improved suffix
array blocking [129]. Suffix array blocking is a simple yet very effective method for
blocking which maintains a high level of recall. The method extracts for every target
record all suffixes with a minimum length ` and sorts the suffixes in alphabetical order.
In the linkage step, all suffixes with a minimum length ` are extracted from a source
record. The method selects all suffixes from the index that are equal to a source record
suffix, or alphabetically adjacent to a source record suffix. If a target record and a source
record are different, but the difference is not in the last ` characters, there will be an exact
suffix match for this pair of records. If the difference is located in the last ` characters,
then it is very likely that two larger suffixes are alphabetically adjacent. Take for example
the records John Smith and John Snith (example from [129]). With ` = 4, no suffixes
are shared (the shortest suffixes are mith and nith). However, it is likely that for example
ohnSmith and ohnSnith are alphabetically adjacent in the suffix array. An additional
parameter mbs (maximum block size) removes a suffix from the suffix array if more
than mbs records contain this suffix, to limit the number of record comparisons.

The bit vector method with blocking is compared to our own implementation of

68 Chapter 4: Indexing edit distance

Blocking Bit vector Suffix
Matches 626,205 659,068
Indexing 83 sec. 207 sec.
Records/sec 45,838 3,137
Memory 2.28 GB 2.91 GB
Complete Bit vector Filtering Agrep
Records/sec. 200 5.6 0.7

Table 4.4: Method performance for Levenshtein distance ≤ 3 on 1.5 million records.

suffix array blocking, using ` = 4 and mbs= 12 (values based on the results of [129]).
The number of unique suffixes for the Genlias data set is around 16 times as large as
the number of records, therefore memory consumption is a problem for this method.
To perform the comparison, an index is built on the first 1.5 million records for both
methods. The results are outlined in Table 4.4. Suffix array blocking finds more matches,
although the difference is relatively small. The bit vector method with blocking, on the
other hand, is faster in indexing and matching, and consumes less memory.

4.8 Extension to Jaro distance

The method described in this chapter is developed for use with Levenshtein edit distance,
but with a few modifications application to other similarity measures is possible. As
an example this section discusses application to Jaro similarity (see Section 2.2 for a
definition).

For any threshold t of the Jaro distance, the number of shared characters needed to
obtain a Jaro distance of at least t can be computed. This number depends on the length
of both strings, because the proportion of shared characters is used (unlike Levenshtein
distance, where the absolute number of edit operations is measured). The minimum
number of shared characters provides an upper bound on the Jaro distance, because the
score can be adjusted downwards due to transpositions or shared characters outside of
the window.

The tree structure as described for Levenshtein distance can be used for Jaro dis-
tance with a few modifications. For Jaro distance, the maximum number of non-shared

Chapter 4: Indexing edit distance 69

characters can be used as a threshold for incorrect branch traversal. This threshold is
dependent on the length of the source records. Because also the length of the target
records (which are in the tree) is important, the tree can be divided into subtrees accord-
ing to record length. Within a subtree, the incorrect branch threshold is proportional to
the length of the records, which is efficient for shorter records. Between subtrees, the
threshold is usually somewhat larger but only adjacent subtrees need to be checked.

4.8.1 Results for Jaro distance

To give an idea of the performance of the method on the Jaro distance measure, a num-
ber of experiments have been carried out using 10,000 distinct random person names
from the Genlias dataset. For a minimum Jaro distance of 0.8, which is already quite
permissive, the number of candidate records is reduced by 94% compared to full pair-
wise computation. A minimum distance of 0.85 amounts to a reduction of 98%. The
nodes in the tree can be sorted according to the frequency of the corresponding charac-
ters in the data set. If low-frequent characters are queried first, then the lower part of
the three has a higher density. Using the traversal algorithm on this tree leads to a time
reduction of around 65% compared to pairwise computation. Further optimizations on
the arrangement of parts of the tree, grouping characters or pruning might be possible.
As with Levenshtein edit distance, the method is guaranteed to find all pairs of records
within the Jaro threshold.

4.9 Discussion and further research

In this chapter a method is described to transform a set of records into a binary tree in or-
der to find pairs of records within a similarity threshold. The method provides complete
coverage for Levenshtein edit distance within a practical time limit. The algorithm uses
an informed strategy for approximate matching: a possible bit vector variation is only
developed if it is present in the tree (and, therefore, if corresponding records exist in the
data set). This approach is more efficient than a simple generate-and-test procedure for
bit vectors using a hash table. The upper bound on the number of vectors that needs to
be checked is kd for vector length k and maximum distance d. In practise, this number

70 Chapter 4: Indexing edit distance

drops to only a small percentage of the possible vectors for increasing values of d due to
the sparseness of points in multidimensional space. However, for generate-and-test all
hash functions that might select error-free overlapping substrings need to be checked.
For efficiency reasons generally a subset of hash functions is selected with a high prob-
ability of finding record matches (cf. min-wise hashing, e.g., [24]) at the expense of
complete coverage, which is preserved in the current approach.

An extension to Jaro distance is discussed, as well as a combination of the method
with blocking techniques. The thresholds used in the experiments are already useful for
applications, however scaling the method to larger distances is problematic because the
part of the search tree that must be visited increases. The situation can be improved
with domain-specific optimizations such as the pruning procedure as described in Sec-
tion 4.4.3.

Jaro distance can be used with this method because the number of non-shared char-
acters between strings is directly linked to the upper bound of the distance score. This
monotonicity property also holds for Levenshtein distance. If the threshold of non-
shared characters is exceeded, then the presence or absence of other characters will not
enable the distance to reach the threshold. The Winkler modification does not have this
property, because the Jaro-Winkler score is adjusted upwards for shared prefixes. There-
fore, any number of non-shared characters can theoretically be compensated by adding
prefix characters. In practise, the increase in score is limited, because the strings have a
finite length. Additionally, Winkler limits the application of the prefix adjustment in his
implementation of the similarity measure. Therefore it is possible to define non-shared
character thresholds for strings of given lengths also for Jaro-Winkler distance, but the
upper bound will be less useful in this case.

If it is sufficient to find a single match for each record, located anywhere in the data
set (i.e., without using blocking), tree traversal can first try promising paths and stop
searching once a match has been found. This can lead to a large efficiency improvement.

Searching promising paths only can be compared to Locality Sensitive Hashing
[46], a technique in which two similar records are assigned a value by a number of hash
functions such that the probability of a collision for at least one hash function is high.
The vector tree approach can be thought of as generating a new very small family of
hash functions (tree paths) for each data point which contains only functions relevant for

Chapter 4: Indexing edit distance 71

this point. Additionally, the structure of the tree allows for efficient switching between
different tree paths and memory-efficient storage of the index. The current data set, for
example, needs to store around 14 integer values for each 32-dimensional data point due
to shared paths between data points.

In future work, the simulated annealing algorithm generating the distribution of
characters over vector positions can be investigated in more detail. Different settings in
vector size or subvectors per record can be used to attempt further efficiency improve-
ments. Extensions to various other similarity measures could also be investigated.

Chapter 5

A data-driven name variant
model

This chapter describes a machine learning approach to construct a model of name varia-
tion. The goal of the model is to predict the characters in a name which remain constant
under name variation, both for known examples and for unseen variants. The chapter is
based on the paper Data-driven name reduction for record linkage [116].

5.1 Introduction

This chapter presents a record linkage procedure based on the observation that some
parts of a name appear to be more important for the identification of the name than oth-
ers. The sequence of important characters can be considered the core of the name which
remains constant between variants of the same name. An algorithm is presented to au-
tomatically reduce a name to a core representation which can be used in record linkage.
The reduction is based on training examples of name variation in historical archives. On
the conceptual level, the training procedure provides a data-driven foundation for record
linkage that is missing from plain edit distance computation.

The construction of the core representations used for training is described in Sec-

72

Chapter 5: A data-driven name variant model 73

tion 5.2. Related work is discussed in Section 5.3. The method uses an algorithm for
computation of Longest Common Subsequences for a set of strings which is described
in Section 5.4. In Section 5.5 the training method and the set of features used to con-
struct the model for the reduction algorithm are described. The record linkage method
using the core representations resulting from the reduction algorithm is presented in Sec-
tion 5.6. An evaluation of the linkage results is provided in Section 5.7, and Section 5.8
concludes.

5.2 Core representations

Spelling variation is very common for person names in European languages. The num-
ber of variants per name in large databases can range from only 2 or 3 to 50 or more
for high frequent names. In this chapter a training set containing 65,002 manually con-
structed Dutch name-variant pairs is used [1]. As an example, this set contains 73 vari-
ants of the Dutch female first name Aaltje, such as Aaeltien, Aal, Aalie, Altje, Aaltgijn,
Aaltjen, Aeltina, Aeltje, Aaeltjen, Alina, Altijen. The sequence of characters that a name
and its variants have in common, known as the Longest Common Subsequence or LCS,
can be used as a core representation of this name. The 73 variants of the name Aaltje
result in the LCS Al.

Ideally, the core of a name and its variants should be unique to prevent overgener-
alization. Figure 5.1 shows the proportion of unique cores by length. In total 7.8% of
all cores constructed from the training set is non-unique. This percentage is higher for
shorter lengths, but the core remains discriminative in most cases. Moreover, a record
generally contains multiple names. The sequence of cores is unique for virtually all
name combinations (see Table 5.6 for statistics).

5.3 Related work

A name core is essentially a key to identify a certain name and its variants. Various
key extraction algorithms have previously been used in record linkage, for example pho-
netic keys like Soundex and Double Metaphone (see, e.g., [25]), or more syntactically

74 Chapter 5: A data-driven name variant model

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

a
m

o
u
n
t
o
f
n
a
m

e
s

core length

non-unique
unique

Figure 5.1: Distribution of core length as stacked bar graph.

oriented approaches such as suffix keys [129] or skeleton and omission keys [99]. How-
ever, these methods are based on general assumptions about word identity and word
similarity, whereas the method presented in this chapter constructs a key for a name
based on automatically derived specific patterns as observed in training examples.

Record linkage based on LCS (or the closely related concept of longest common
substring) has been performed previously [42, 37]. Record linkage generally consists
of two steps: selection of potential link pairs and comparison of selected pairs using a
similarity measure. In the existing approaches, LCS is used as a similarity measure only.
The current approach constructs an LCS-like key for a single record, which is used both
for selection and as similarity measure.

The Longest Common Subsequence (LCS) problem for two strings a and b can
be addressed using dynamic programming in O(mn) time, with n and m denoting the
length of string a and b, respectively [58]. Several other solutions exist with various
complexity bounds, e.g., O(p` + ` log `) or O(p(m + 1 − p) log n) [59], O(n(m − p))
[75]), or O(r log s) [63]. In these formulas p, ` and s denote the length of the LCS,
max(m, n) and min(m, n), respectively, and r depends on the character distributions in a
and b. These solutions can be very useful under certain circumstances, e.g., for small

Chapter 5: A data-driven name variant model 75

alphabets (DNA) or for a high degree of overlap (text file comparison). The problem
can be extended to a set of strings, also called multiple alignment. The complexity of
dynamic programming-based approaches becomes O(nk) in this case, for string length
n and k elements in the set. The alternative solutions do not always require exponential
time, however a full analysis is beyond the scope of this discussion.

5.4 LCS computation

All of the previous bounds correspond to the worst-case time complexity of computing
a LCS. However, for name variants a greedy backtracking algorithm can be applied
with linear behaviour in practical cases. Algorithm 5.1 implements a straightforward
exponential time method that generates all common subsequences for a string name and
a set of variants of this name and returns the longest. The integer variable pos represents
the current position in name. The string variable lcs is the common subsequence found
after examining the characters of name up to position pos, initialized as the empty string.

Algorithm 5.1 string lcsGreedy(lcs, pos)
if pos > name.size then

return lcs
else

lcsskip ← lcsGreedy(lcs, pos+1)
character ch← name[pos]
for all v ∈ variants do

iv ← (position of last character match of lcs in v) + 1
find ch in v starting from iv

if ch found in all v ∈ variants then
lcsmatch ← lcsGreedy(lcs + ch, pos + 1)

else
lcsmatch ← ε

return Longest(lcsmatch, lcsskip)

76 Chapter 5: A data-driven name variant model

A a l t j e n

A l i n a

(a) Basic matching.

A a l t j e n

A l i n a

(b) Discard characters.

A a l t j e n

A l i n a

(c) Skip character.

A a l t j e n

A l i n a

(d) Match with discarded
character.

A a l t j e n

A l i n a

(e) Retract previous
match.

A a l t j e n

A l i n a

(f) Final LCS.

Figure 5.2: LCS computation examples.

This algorithm can be improved by executing the branching step that computes
lcsskip on demand only. If the remaining part of the string name is a subsequence of the
remaining part of each variant, then branching is not necessary to find the LCS. Alterna-
tively, a character in the remaining part of name may not be present in the remaining part
of some variant. In this case lcsskip needs to be computed for this character. Additionally,
the algorithm checks whether this character has been discarded from the current variant
in an earlier matching step (effectively preventing the later match). If this is the case, the
earlier matching step is retracted and the algorithm proceeds to compute lcsskip from that
point. The various situations are illustrated in Figure 5.2 for the name Aaltjen and the
variant Alina. Basic matching is shown in Figure 5.2a. The branching step to compute
lcsskip is not executed for the character A at position 0 because of the greedy assumption
that all matching characters are part of the LCS. In Figure 5.2b the a at position 1 in Aalt-
jen is matched to the a at position 4 in Alina. The position of the last character match of
Alina is set to 4, which means that the characters l,i,n in Alina are discarded and cannot

Chapter 5: A data-driven name variant model 77

be part of the LCS. Again because of the greedy assumption the branching step to skip
the a in Aaltjen is not executed. However, the l character is not part of Alina after posi-
tion 4. Therefore this character is skipped which is shown in Figure 5.2c. Concurrently
the discarded characters from Alina are examined to check if a match for l can be found,
as shown in Figure 5.2d. In the example this is the case, therefore the match for the a
character at position 1 in Aaltjen is retracted and the algorithm proceeds to perform the
branching step to skip the a which was previously not computed because of the greedy
assumption. The two branches from Figures 5.2c and 5.2e are both completed result-
ing in the common subsequences Aa and Aln, respectively. The longest subsequence is
selected, as shown in Figure 5.2f.

When applied to the name variant data set the median value, which effectively dis-
cards outlier values, of the number of steps (i.e., recursive calls) needed to compute the
LCS for a name is approximately 2.1 times larger than the length of the name corrected
for number of variants (i.e., steps ≈ 2.1 · string length · number of variants). Therefore,
this dataset provides empirical evidence for the average case behaviour of the algorithm.

5.5 Classification

The name variants in the training set can be used as a look-up table for record linkage.
However, a look-up approach is restricted to names that are present in the training set.
To overcome this restriction, a model can be constructed that generates a core represen-
tation for arbitrary names. The longest common subsequences in the training data are
used to construct this model. For each character in a name the model predicts whether it
is included in the core representation or not. The features, listed in Table 5.1, are there-
fore defined at character level. Some redundancy is present in the features to facilitate
convergence of the training algorithm. Consider for example the name Alina with the
associated LCS Al (see Section 5.2). The first character is a, at position 0, word length
5, 3 syllables, second part of syllable, previous character is blank (#), next character l,
distance to end of word is 4. This character is part of the LCS, therefore the class is 1.
Table 5.1 shows all 5 training examples constructed from this name.

78 Chapter 5: A data-driven name variant model

Current character a l i n a
Position of character within word 0 1 2 3 4
Word length 5 5 5 5 5
Number of syllables in word 3 3 3 3 3
Part of syllable 2 1 2 1 2
Previous character # a l i n
Next character l i n a #
Distance to end of word 4 3 2 1 0
Included in LCS (class) 1 1 0 0 0

Table 5.1: Classification features with example vectors.

5.5.1 Syllabification

For two features the names need to be split into syllables. A syllable is a part of a word,
typically consisting of a vowel, called the nucleus (2 in Table 5.1), and the consonants
preceding and following the vowel, called the onset (1) and the coda (3), respectively
[7]. The nucleus is always present, while the onset and coda can be empty. Near-perfect
identification of syllable borders can be performed using machine learning [20]. How-
ever, in the absence of syllable training data a simple rule-based procedure is sufficient
for the present purposes. The name core training procedure is performed to derive pat-
terns from data, and patterns based on incorrect syllabification are still useful as long as
the errors in syllabification are made in a consistent way. The implemented procedure
(cf. [54]) parses a name from left to right. All consonants at the start of the string, if
any, are added to the onset of the first syllable. The following (possibly multi-character)
vowel is the nucleus of the syllable. Consonants following the vowel are added to the
coda, except for the last consonant preceding the next vowel which is considered to be
the onset of the next syllable.

5.5.2 Training

Preliminary classification experiments have been performed using a Naive Bayes classi-
fier, a Bayesian network, a Support Vector Machine, a 1-nearest neighbor classifier and
a C4.5 decision tree. From these the decision tree was selected based on accuracy and

Chapter 5: A data-driven name variant model 79

classification efficiency. This section describes the training process for the decision tree
that implements the name reduction method. For categorical variables (current, previous
and next character) the binary split algorithm of Breiman [22] is used to improve the ef-
ficiency of tree construction. The name variant data set [1] contains 65,002 names with a
total of 554,450 characters with associated feature vectors. As mentioned in Section 5.2
some names have a high number of variants, which generally results in a relatively short
LCS, however many other names have only two or three variants for which the LCS is
generally longer. In this distribution the resulting proportion of characters that are part
of the name core is 0.69. The class bias may influence classification performance, which
is discussed in Section 5.6.1. The tree is evaluated using 80% of the characters for train-
ing and the remaining 20% for testing (see Table 5.2). The accuracy of the classification
is 0.80, which is not perfect but a significant improvement over the prior class probabili-
ties. For the majority of misclassified test examples the corresponding training examples
display conflicting class labels, indicating noise in the data. However, the classification
accuracy is sufficient to perform record linkage (see Section 5.6).

Class distribution of training examples
amount proportion

in core 303,996 0.69
not in core 139,562 0.31

Classification of test examples
XXXXXXXXXXpredicted

actual
in core not in core

in core 68,104 8,033
not in core 13,738 21,015
accuracy: (TP + TN)/all examples 0.80

Table 5.2: Statistics classification tree.

The tree construction algorithm creates leaf nodes based on an absolute impurity
threshold, an impurity improvement threshold relative to the previous node, and a thresh-
old on the number of instances in the node. These thresholds are intended to reduce the
size of the tree, which results in less overfitting and improved efficiency in learning and

80 Chapter 5: A data-driven name variant model

classification. However, the number of training instances that belong to the minority
class of a leaf node also serves as a quality measure of the classification made using
this node (see Definition 1). The tree classifies each character of a name as present or
absent in the core representation. Using the quality of the leaf nodes, the length of the
generated core representation can be varied from permissive (including characters from
lower quality leaf nodes) to strict (using only high-quality leaf nodes). Table 5.3 pro-
vides an example of the quality thresholds for the name Geertien. The eight characters
in this name (with associated feature vectors) are pushed down the tree into eight leaf
nodes. For this name the lowest percentage of training examples with class 1 (i.e., the
character belongs to the core) is 3%, which is found in the leaf node corresponding to
the character i. This means that if the leaf quality threshold is set to 0.03, the full name
is generated as a core representation. For a threshold of 0.5 three leaf nodes remain with
at least 50% training examples of class 1, resulting in the core ger.

threshold core
g e e r t i e n .03 geertien
g e e r t e n .09 geerten
g e e r t e .29 geerte
g e r t e .30 gerte
g e r t .47 gert
g e r .70 ger
g e .83 ge

e .93 e

Table 5.3: Leaf node quality for the name Geertien.

Definition 1 The quality of a leaf node in the classification tree is defined as the pro-
portion of positive training examples in the node. A leaf node returns class 1 if and only
if the quality is above a given threshold.

Chapter 5: A data-driven name variant model 81

5.6 Record linkage

The basic method of record linkage using core representations is straightforward: two
records with the same sequence of core representations are considered as a match. The
number of matches can be influenced by adjusting the quality threshold parameter as
described in Definition 1. Besides adjustment of the quality threshold the number of
matches can be improved using several heuristics, which are described in this section.

The decision tree can be applied twice, first on the original name (single core)
and again on the resulting core representation (double core). To compute the double
core, a new feature vector is constructed for each of the characters in the single core
(see Definition 2). Apart from the character itself, this feature vector can be completely
different from the original. This can result in the removal of additional characters, which
in turn can lead to additional matches. An example is provided in Table 5.4. This
example contains two names with a variant: Harm-Harmen and Janneke-Jannetje. For
the first name, the single core extraction is sufficient: both variants are assigned the core
hr. For the second name, the double core extraction is necessary to provide the core jan
for Janneke. The core algorithm is trained on full names, therefore the second pass of
the algorithm will target cores that morphologically resemble names (such as janek).

Definition 2 A single core of a name is generated by application of the trained decision
tree on the characters of the name using feature vectors computed on the full name. A
double core of a name is generated by application of the trained decision tree on the
characters of the single core of the name using feature vectors computed on the single
core.

record single core double core
Harmen van Buiten hr bute janek kolk hr but jan kolk
Janneke van der Kolk
Harm van Buiten hr bute jan kolk hr but jan kolk
Jannetje van der Kolk

Table 5.4: Example of double core extraction.

Another improvement can be obtained by using the inherent alphabetical order of core

82 Chapter 5: A data-driven name variant model

sequences. The basic method performs an exact match of the sequence of cores for a
record. If no other record is found with the same sequence, a heuristic can be applied that
selects the surrounding records using alphabetical order (similar to the record selection
technique in [129]). The names can be rotated to avoid missing links with a spelling
variation in the first part of a name sequence. The concept of rotation is described as
follows:

Definition 3 A rotation of a core sequence is obtained by shifting the position of the ele-
ments of the sequence from right to left. The relative order of the sequence is preserved.
The first element is placed at the end of the sequence.

The accuracy of the rotation heuristic can be improved by selecting only records
that match in at least two rotations. This procedure is illustrated with a record con-
taining a couple Gerrit Engbringhof and Frouwkje van der Meulen (Table 5.5). This
couple is used to construct the original sequence and three rotation sequences. For
all other couples the core sequences (with rotations) are also computed and alphabet-
ically ordered. For every rotation of the core sequence of the first couple the alpha-
betically preceding and succeeding sequences from the list of couple core sequences
are extracted as possible matches. Two sequences are encountered twice in different
rotations, grt|engbnhof|ant|bonstra and grt|engbrhof|fru|mul. The first se-
quence is based on a match with the original couple sequence and another match with
rotation 1. These two couple sequences both start with a core from the same person
(Gerrit Engbringhof), either the core of the first name (grt) in the original sequence or
the core of the family name (engbnhof) in rotation 1. A single person match is likely to
be incorrect, therefore this link is rejected. The sequence grt|engbrhof|fru|mul is
based on a match with the original sequence and another match with rotation 3. These
two couple sequences start with a core from different people, therefore this match is
accepted. The sequences correspond to the couple Gerrit Engbrenghof, Froukje van der
Meulen, which is indeed a valid match.

Note that the cores in this match are different for both the last name of the first
person (engbnhof vs. engbrhof) and the first name of the second person (fr vs. fru).
This indicates that the core selection mechanism does not perform well for these names,
however the rotation heuristic is capable of solving this issue in many cases (see Sec-
tion 5.7).

Chapter 5: A data-driven name variant model 83

This method uses the information from the non-matching cores by exploiting the
alphabetical order of the full core sequence. In the example the core engbnhof does not
match, but the alphabetical order provides the core engbrhofwhich is part of the correct
match. In the first rotation, where engbnhof is placed in front, the heuristic does not
work because there are several other sequences that contain this core which push the core
engbrhof down the list. However, for the original sequence and the third rotation the
surrounding cores filter out all other occurrences of engbnhof which causes engbrhof
to be alphabetically adjancent. An alternative for this method is to select records with
three cores in common (instead of all four cores as in the basic algorithm). This is
sufficient for a large number of cases, but the current method has several advantages.
First, not all matching records have three cores in common, like in the example described
in this section. In that case two cores can be used, but this leads to a large number of
incorrect matches. Second, when simply selecting three matching cores the information
from the fourth core is lost. Third, this method is efficient to implement using a binary
search tree that provides the preceding and succeeding records in constant time.

rotation core sequence
preceding grt|engbnhof|ant|bonstra

original grt|engbnhof|fr|mul

succeeding grt|engbrhof|fru|mul

preceding engbnhof|ant|bonstra|grt

rotation 1 engbnhof|fr|mul|grt

succeeding engbnhof|r|schepe|mrte

preceding fr|mul|gesk|gorhui

rotation 2 fr|mul|grt|engbnhof

succeeding fr|mul|huber|bierman

preceding mul|grt|elzng|pter

rotation 3 mul|grt|engbnhof|fr

succeeding mul|grt|engbrhof|fru

Table 5.5: Example of core rotations.

84 Chapter 5: A data-driven name variant model

5.6.1 Bootstrapping

The record linkage step results in variant combinations that partly are not present in the
original training data. In a bootstrapping step these new variant combinations are used
as additional training data for the decision tree. The original training data was biased
towards the positive class (0.69), the additional examples are selected to reduce this bias
to 0.53. The classification accuracy after bootstrapping does not significantly change,
however the linkage results are improved (see Section 5.7).

5.7 Evaluation

The record linkage problem is centered around two main aspects: linkage quality and
scalability. Both aspects are essential for practical applicability of a linkage procedure.
From a data mining point of view scalability is of key interest, while link quality is
important on the linguistic level.

The time complexity of computing the core sequence for a record is linear in the
length of the string. The complexity of comparing the core sequence to the database
is logarithmic in the number of records, therefore the method can be easily scaled up
to larger databases. The linking phase for the current data set takes 24.5 minutes for
5.2 million records (2.6 million certificates which each contain two parent couples that
can be linked), or around 3500 records per second. The linking phase is preceded by
constructing the model (67 seconds for around 0.5 million training examples) and com-
puting the reference core sequences (14.5 minutes). Experiments have been performed
on a 3.16 GHz dual core CPU with 6GB memory using 64-bit Linux. All programs are
written in C++.

The quality of record linkage methods can be evaluated by measuring precision
and recall (see Table 2.3 for definitions). The correct links are not known, and due to
missing records also the amount of links is unclear. For evaluation purposes a selection
of the Genlias data has been made that is known to contain a relatively small number
of missing records in order to provide a realistic estimate of the recall of the method
(see Table 5.6). This selection consists of parent couples in the province of Friesland
mentioned in marriage certificates from 1875 or later as source records (47,130 in to-

Chapter 5: A data-driven name variant model 85

threshold 0.4 0.5 0.6 0.7
exact match 0.692 0.692 0.692 0.692
standard core 0.758 0.767 0.773 0.790
double core 0.766 0.784 0.787 0.812
rotations 0.848 0.861 0.857 0.864
bootstrapping n/a n/a 0.899 n/a
large difference 0.008 0.008 0.008 0.008
of which correct 70.5% 75.2% 70.7% 67.2%
duplicate core 0.0007 0.0009 0.0014 0.0021
sequences

Table 5.6: Results of the name core algorithm for different decision tree thresholds.
Values for the basic method and extensions represent the matching rate, defined as the
number of matches relative to the number of source records. The values are cumulative,
i.e., every extension includes the result of the basic method and previous extensions.

tal), which are compared to any marriage couple in the full set of marriage records in
Genlias as target records. The distinction of source and target records is trivial in terms
of implementation, the core sequences are computed for both sets and the sequences
of source records are compared to the sequences of target records (but not vice versa).
Parent couples are expected to be mentioned in a previous certificate as marriage couple,
because virtually all parents were married in the Netherlands in the 19th century. The
time frame of the source records (1875 or later) is chosen such that virtually all parent
marriages will have taken place in the time frame of the target set, which starts in 1811.
The province of Friesland has almost completely digitized all marriage certificates, in
contrast to other provinces. Given that immigration from other provinces is limited,
most source records are expected to have a matching target record. This means that the
matching rate approximates the recall of the method if the number of correct matches is
sufficiently high.

In a small portion of links the Levenshtein edit distance (lv) is 4 or higher, indicated
by large difference in Table 5.6. These links have been manually evaluated. Links
with lv ≤ 3 are assumed to be correct by default. To test this claim, as well as to
evaluate recall, a full manual verification on all matches is provided for a sample of

86 Chapter 5: A data-driven name variant model

6212 records from the small Dutch town of Ferwerderadeel (Table 5.7). The matches
are computed using threshold 0.6 after bootstrapping. Indeed only a single match with a
small edit distance is considered incorrect after verification. The maximum edit distance
of 3 ranges over the full string which consists of four names, therefore the distance
threshold is relatively strict. Additionally, linking on a combination of names prevents
potentially incorrect matches. Consider for example the names Jack and John, which
have edit distance 3 and therefore could be part of an incorrect match. However, in order
for a match with maximum edit distance 3 to occur, the remaining three names in both
records need to be equal which is improbable given the name distribution commonly
found in data.

all matches 1 ≤ lv ≤ 3 lv ≥ 4
True positives 5656 1302 12
True negatives 50 50 50
False positives 5 1 4
False negatives 440 377 68
Precision 0.99 0.99 0.75
Recall 0.93 0.78 0.15
F-measure 0.96 0.88 0.26

Table 5.7: Results on evaluation set.

In Table 5.6 cumulative matching rates are listed for the categories exact match,
standard core, double core and rotations. The matching rate for the single and dou-
ble core matching increases for higher thresholds, because a higher threshold implies a
shorter core sequence with less variation. Conversely, the number of rotation matches
decreases for higher thresholds. Rotations are intended as a repair mechanism in case
standard core matching fails, therefore the decrease can be explained by a smaller need
for repairs for higher thresholds. Bootstrapping has been performed for threshold 0.6
only, as a proof of concept. This results in a total matching rate of 0.899 for this thresh-
old. Except for exact matching, all matching categories can produce matches with a large
difference (lv ≥ 4) between the records. The proportion of large difference matches over

Chapter 5: A data-driven name variant model 87

evaluation measure P R F P R F
Name cores 0.99 0.78 0.88 0.75 0.15 0.26
Traditional blocking 1.00 0.79 0.89 1.00 0.15 0.26
q-grams 0.99 0.91 0.95 0.97 0.37 0.51
Suffix array 0.36 0.84 0.48 0.13 0.20 0.14
Suffix array substring 0.15 0.97 0.24 0.09 0.60 0.15
Suffix array robust 0.31 0.93 0.45 0.18 0.44 0.23
Sorted array 0.36 0.92 0.47 0.21 0.54 0.27
Sorted array adaptive 0.80 0.90 0.84 0.63 0.41 0.47
th-Canopy clustering 0.99 0.86 0.92 0.98 0.30 0.44
nn-Canopy clustering 0.13 0.93 0.22 0.06 0.47 0.11
Sorted inverted index 0.14 0.98 0.24 0.08 0.63 0.14
th-String map 0.45 0.83 0.49 0.28 0.22 0.15
nn-String map 0.48 0.82 0.54 0.27 0.20 0.16

Table 5.8: Comparison between methods on evaluation set. Precision (P), recall (R) and
F-measure (F) are listed for matches with 1 ≤ lv ≤ 3 (left) and matches with lv ≥ 4
(right).

all records and the accuracy of these matches as obtained by manual verification are
listed separately in Table 5.6. The table also shows that the generated core sequence
is unique for virtually all target records, indicating that core extraction preserves the
distinction between different records.

Various indexing methods as described in a recent overview article [29] have been
applied to the verification set for comparison (see Section 5.7.1). The freely avali-
able benchmark evaluation used in [29] as implemented in the Febrl framework [27] is
used for the current comparison as well. Table 5.8 provides evaluation measures for all
matches generated with the name core method, which includes exact matches (distance
0). In the comparison to other methods evaluation measures are provided for matches
with a small edit distance (1–3) and a large edit distance (≥ 4). Exact matches are not
included in the comparison because all methods produce these matches by default.

88 Chapter 5: A data-driven name variant model

5.7.1 Methods description

A short description of the methods involved in the comparison is provided in this section.
Further details can be found in [29].

• Traditional blocking (abbreviation: blocking). As described in Section 2.3 in
traditional blocking only pairs of records with equal blocking keys are compared.

• Array based sorted neighborhood (sorted-array). Every record is compared
to a fixed-size set of records with alphabetically adjacent blocking keys.

• Inverted index based sorted neighborhood (sorted-inv-index). Every block-
ing key (with associated records) is compared to a fixed-size set of alphabetically
adjacent blocking keys (with associated records).

• Adaptive sorted neighborhood (adapt-sorted). Blocking keys (with associ-
ated records) are compared to all subsequent alphabetically adjacent blocking keys
(with associated records) until a pair of adjacent keys is found above a predefined
similarity threshold. The similarity measure and threshold are parameters of this
approach.

• Q-grams (q-gram). Every record is assigned multiple blocking keys consisting
of a set of at least k q-grams from the record. All records with at least one equal
blocking key are compared.

• Suffix array (suffix-array). Every record is assigned multiple blocking keys
consisting of all record suffixes of minimum length k. All records with at least
one equal blocking key are compared.

• Substring array (suffix-array-substr). As Suffix array, but with substrings
instead of suffixes.

• Robust suffix array (robust-suffix-array). As Suffix array, with the addi-
tion that similar suffixes are merged. The similarity measure and threshold are
parameters of this approach.

Chapter 5: A data-driven name variant model 89

• Canopy clustering (canopy). Records are clustered using token similarity based
on q-gram or word tokens. Clusters are built around random centroid records. For
each new cluster a selection of most similar records is removed from the record
pool, while the other records in the new cluster remain available for succesive
clusters. Only records in the same cluster are compared.

The inclusion of records into a cluster and removal of the most similar records
from the pool is performed using either thresholds on similarity or thresholds on
the amount of records included and removed. The type of threshold can affect
performance to a large degree, because a threshold on the amount of records gen-
erates equally sized clusters while a threshold on similarity might generate very
large clusters which are computationally expensive to process. Therefore, in [29]
both types are independently evaluated. However, for the Genlias sample data sets
the difference between threshold types does not significantly influence the perfor-
mance of the algorithm and therefore in the current evaluation only the similarity
threshold is used.

• String Map Indexing (string-map). Records are mapped to k-dimensional ob-
jects and compared to all other records with sufficiently similar mapped objects.
A dimension is defined as the ordering of all records relative to a pair of reference
records or pivot points based on a traditional string similarity measure. The value
of a dimension is given by a triangular projection of the record given the distance
to the current pivot points and the value of the previous dimension (see [39]).
The similarity of multidimensional objects is based on numerical proximity of the
values for each dimension. Similar to canopy clustering the groups of records
to be compared can be defined using similarity or size thresholds, abbreviated as
string-map-th and string-map-nn, respectively.

These methods are more oriented towards recall and efficiency, which is common
in record linkage. The current method is more precision-oriented, however the overall
quality is competitive. In order to investigate scalability properties of the name core
method in comparison with the other methods an additional evaluation is performed on
data sets of various sizes. A comparison of running time and memory consumption is
provided in Figures 5.3 and 5.4. In the figures keys are ordered by method performance.

90 Chapter 5: A data-driven name variant model

In Figure 5.3 a logaritmic scale is used for both axes, while in Figure 5.4 the y-axis
is linear to emphasize the fact that memory is a finite resource. Some computations
have been cut off by time and memory limits of 3600 seconds and 5GB, respectively.
The data sets have been sampled from the set of marriage certificate matches with edit
distance ≤ 3, computed using the method described in Chapter 4. For every sample
size the same amount of records has been randomly selected from the set of remaining
unmatched marriage certificates. Every dataset therefore consists of n bride and bride-
groom couples and n parent couples, containing a total of ½·n matches. Data set sizes
range from 96 to 1,572,864 with every data set containing twice as many records as the
previous set. Figure 5.3 shows that various indexing methods perform above linear in the
number of records with respect to running time. The sorted-array and blocking methods
are faster than the name core method, but both these methods display a prohibitively
high memory consumption for large datasets. The memory consumption of the name
core method is dominated by the core generation model up to 200,000 records. For the
first 50,000 records virtually no additional memory is allocated for the records, which
means that the system-level allocation for the model was sufficient to accomodate these
records as well. Note that all reference methods are implemented in Python using the

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e
 (

s
e
c
)

number of records

suffix-array-substr
string-map

q-gram
suffix-array

canopy
sorted-inv-index

robust-suffix-array
name cores

adapt-sorted
sorted-array

blocking

Figure 5.3: Indexing methods running time.

Chapter 5: A data-driven name variant model 91

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100 1000 10000 100000 1e+06

m
e
m

o
ry

 (
G

B
)

number of records

q-gram
robust-suffix-array

string-map
suffix-array-substr

suffix-array
canopy

adapt-sorted
sorted-inv-index

sorted-array
blocking

name cores

Figure 5.4: Indexing methods memory consumption.

general purpose Febrl framework, while the name core method is implemented in C++
and specifically designed for this particular linkage task. Therefore, a comparison of ab-
solute numbers for time and memory consumption can be influenced by programming
language differences and design considerations. However, scalability observations are
generally implementation independent and therefore remain valid.

5.8 Conclusion and future work

The approach described in this chapter can be used in record linkage with practical
recall and precision properties in a computationally efficient way. Because the model
performs normalization on individual records, there is no trade-off between computa-
tional efficiency and recall. The method produces a substantial number of links with
high edit distance, which is desirable for any record linkage procedure. The accuracy of
the method can be attributed to the fact that a comparison of cores is a more informed
string similarity measure than traditional edit distance. The core of a name represents the
elements that are actually important for the identity of that name, based on training data.
This provides a conceptual foundation for the method, while in traditional edit distance

92 Chapter 5: A data-driven name variant model

all characters are considered equal. There have been various extensions and adaptations
of edit distance that address relative importance of characters, such as Soundex (posi-
tion and grouping of characters), Jaro-Winkler distance (prefix matching), or weighted
Levenshtein distance (learn common edit operations from data). The current work is an
attempt to build a model that can cover all these aspects, and deduce from data what the
most important aspects of strings (in this case names) actually are.

The contribution of this work consists of three aspects: a novel, morphologically
motivated model of name variation; computational efficiency and high recall in discov-
ering links with small edit distance; and additional discovery of a significant amount of
links with large edit distance within practical levels of precision.

The method has been evaluated on the domain of historical archives in the Nether-
lands. However, the method itself is not restricted to the Dutch language or to historical
data. Provided that training data on name variation is available, the method can be ap-
plied to various other domains.

In future work the training data can be chosen to be more specific and the feature
set can be expanded in order to improve precision and recall. Bootstrapping can be
developed to increase the use of information contained in the data.

Chapter 6

Internal variant mining

This chapter describes an approach to discover name variants based on automatically
derived record matches. The chapter is based on the paper Learning name variants from
true person resolution [15].

6.1 Introduction

Variation in person names is a key aspect of record linkage. The issue of variation can
be addressed using string similarity measures, as described in Chapters 1, 2 and 4. Al-
ternatively, names can be mapped to some kind of base representation which results in
a binary classification of variants and non-variants. In Chapter 5 a model is developed
to compute a base form using a set of features. In the current chapter a match-oriented
approach is used to find name variant pairs. These pairs can either be used directly
in matching or as an intermediate step in the derivation of base representations. The
approach is based on the concept of excess information: if a subset of the information
contained in a pair of records is sufficient to establish a match between the two records,
then the remaining information can be used to derive domain knowledge. Applied to
the current dataset this means that if two records that both contain n person names have
n − 1 names in common, then the nth name is a variant. In Figure 6.1 an example of this
concept is provided. In this example all names, except for the first name of the mother,

93

94 Chapter 6: Internal variant mining

marriage, 06-06-1858 death, 13-09-1882
. . .
bride deceased
First name Johanna First name Johanna
Last name Endt Last name Endt
father bride father deceased
First name Gerrit First name Gerrit
Last name Endt Last name father Endt
mother bride mother deceased
First name Dorothea First name Doortje
Last name Kerbert Last name Kerbert

Figure 6.1: Example of a name variant derived from excess information.

are equal. This is sufficient to assume a match between these two certificates. The first
name of the mother is used to derive the true variant Dorothea–Doortje. The Leven-
shtein edit distance between the variant names is 4, which means that the proportional
edit distance relative to word length is around 0.5. Both the absolute and the relative dis-
tance would likely be below any reasonable acceptance threshold for name variants. The
Jaro-Winkler distance is 0.85, which is a borderline value for variant acceptance. How-
ever, using the excess information approach this true variant will be discovered without
considering any string similarity threshold.

This chapter is structured as follows: in Section 6.2 the basic approach is presented,
in Section 6.3 several post-processing procedures are discussed to filter incorrect name
pairs, in Section 6.4 an evaluation of the approach is provided and Section 6.5 concludes.

6.2 Approach

The general idea of the name variant discovery procedure, as described above, is to ex-
tract name variants from accepted record matches. To obtain correct variant pairs, the
source matches should be highly accurate. The matches used in the current approach
are based on exact matching, which is generally assumed to be accurate. The source
data consists of birth, marriage and death certificates from the Genlias dataset. The
three certificate types all contain the relation child-parents: newborn child with parents

Chapter 6: Internal variant mining 95

in birth certificates, bridegroom or bride with respective parents in marriage certificates,
and deceased with parents in death certificates. In many cases the age or birth date of
the child is also provided. Matches between certificates can therefore be based on com-
binations of three people, as illustrated in Figure 6.1. Each person has a first name and
a last name, which is a total of six names, however since the last name of the child is
generally the same as the last name of the father five distinct names can be extracted
from each record. Note that a person can have multiple first names or occasionally mul-
tiple last names, which are initially considered as a single name containing whitespace.
Following the excess information approach as outlined above a match is based on four
out of five names being exactly equal with an additional check on year of birth. The fifth
name, which is not equal, is taken from one of the parents to prevent variant attribution
of sibling names. The additional check imposes that the year of birth is different by at
most one year between certificates. In many cases the age is listed instead of the year
of birth, in which case the value is derived from the certificate date and the age. This
derivation is approximate, because the exact value depends on whether or not the (un-
known) birthday of the individual in the certificate year has already taken place at the
certificate date. However, the margin of one year can accomodate both situations.

The assumption behind this approach is that an exact match on four out of five
names generates accurate matches. To test this assumption, the difference between these
matches and fully matching records (five out of five names and year of birth) is ex-
amined. If only a single match is expected for a record, and this match can be found
using fully exact matching, removal of one of the names should not generate additional
matches for this record. This test cannot be used in case the number of expected matches
is unknown, e.g., birth-marriage pairs (see also Section 3.1). However, other pairs can
be used, such as birth-death for which at most one link is expected. Using fully exact
matching on five names 1,107,162 matches are found, which accounts for around 25%
of all birth certificates. Removing one of the four parent names results in a very low
number of 85 incorrect additional matches (0.008%). This indicates that, given that five
out of five exactly matching names combined with matching year of birth provides ac-
curate matches, also four out of five exactly matching names combined with matching
year of birth provides accurate matches.

The 1.1 million matches between birth and death certificates include 7,808 dupli-

96 Chapter 6: Internal variant mining

cate matches (two or more birth certificates matching a single death certificate or vice
versa), which is 0.2%. A low percentage of duplicate matches indicates that an exact
match on five out of five names is indeed accurate, especially considering that part of
the duplicate matches are in fact source duplicates, i.e., the same birth recorded in differ-
ent municipalities, certificates containing corrected or additional information recorded
alongside the original certificate, digitization duplicates, et cetera. However, some of
the duplicates are actually incorrect, for example two children from the same parents
with the same first name born in the same year in January and November (resulting in
the same year of birth), presumably because the first child has died which makes the
first name available for the next child. Such an error is visible because of the duplicate
match, and the incorrect match can be identified using the exact date and possibly addi-
tional death certificates. However, this type of errors can also occur for single matches
which means that for every match all available information should be checked, and even
then errors can remain undetected. However, without being able to confirm the assump-
tion that this type of exact matching is accurate, we can state that exact matches have a
very high likelihood of being correct and the resulting set of matches is internally highly
consistent.

A matching procedure has been performed on all certificates using the presented
set-up, i.e., the year of birth is equal, four out of five names are equal and the fifth
name is different. For the total of 14.8 million civil certificates this procedure resulted
in 804,470 name pairs. Details are provided in Table 6.1. The table shows a difference
between first names and family names: variation in family names occurs more often
than variation in fist names but first name variants are repeated more often (5-6 times on
average compared to 2 times for family name variants).

name type total pairs unique pairs
male first names 183,050 31,885
female first names 246,519 48,684
family names 374,901 177,258

Table 6.1: Initial variant name pairs.

Chapter 6: Internal variant mining 97

6.3 Name pair reduction

The matches used in the generation of name pairs are assumed to be accurate, therefore
the name pairs could be assumed to be genuine variants. Unfortunately, the latter as-
sumption does not hold for two reasons. First, there may be errors in the transcription of
the original document, which introduces a name pair that does not exist in the original
source. This includes shifted field values, e.g., a family name which is inserted in the
first name field. Second, two different names may have been used for the same per-
son, without these names being onomastically valid variants. An example is presented
in Figure 6.2. This match is very likely to be correct: the birth of Saartje Schipper in
1827 and her death at age 2. However, the name of the father is mentioned as Jacob
at birth and Jan at death. These two names are not related and should not be marked
as possible variants, because besides onomastical invalidity this variant will introduce
serious errors in the matching process if other individuals named Jacob are matched to
individuals named Jan. It may seem strange that a completely different name is reported
for the same person, but this phenomenon is actually quite common. The pair Jacob–Jan
from the example is found 238 times in the data, which is a much higher frequency than
many genuine variants. In this case Jacob seems to be incorrect, given that several other
certificates for marriage, birth and death of this couple and their children all mention
Jan. These other certificates also reveal that both the father and one of the children of
Jan Schipper are called Jacob, which might have caused confusion at the registration
office (especially when a third person reported the event on behalf of Jan Schipper). In
order to create a useful name variant dictionary for record linkage the incorrect name
pairs need to be filtered. Three different filtering methods have been applied, which will
be discussed in the remainder of this section.

6.3.1 Dictionary look-up

For Dutch first names a manually compiled name dictionary is available [109] which
contains a mapping from variants to base names. However, the coverage of this dic-
tionary is limited to a selection of around 20,000 variants, selectivity of course being
inevitable for any manually compiled lexicon. Moreover the dictionary does not contain
names with spelling errors by design. This category might not be considered a proper

98 Chapter 6: Internal variant mining

birth, 21-03-1827 death, 25-02-1830
child deceased
Place of birth Gouderak Place of death Gouderak
First name Saartje First name Saartje
Last name Schipper Last name Schipper

Age 2
father father deceased
First name Jacob First name Jan
Last name Schipper Last name father Schipper
mother mother deceased
First name Neeltje First name Neeltje
Last name Verboom Last name Verboom

Figure 6.2: Example of an onomastically invalid name pair.

variant, however for linkage purposes it should be included. Because of the limited cov-
erage pairs which are not found in the dictionary cannot be rejected, therefore these pairs
are classified by subsequent post-processing methods. Conversely, pairs which are in the
dictionary can be accepted with a high degree of certainty and further post-processing is
not necessary.

6.3.2 Composite names

A person can be given multiple names at birth, which is referred to as a composite name.
Composite names can result from the tradition of naming children after one or more
grandparents, religious traditions or other parental preferences. This phenomenon is
common in 19th century naming practise: from the approximate total of 50 million first
names in the Genlias dataset, 13.9 million (27.8%) is a composite name. As a domain
constraint it can be assumed that elements of a composite name are not variants of each
other [93]. This implies that pairs collected using the procedure described in Section 6.2
are invalid if both names of the pair occur together in a composite name.

However, the assumption that elements of a composite name are never variants
turns out not to be true. Some composite names contain variants with a low degree of
similarity, such as Cornelia Neeltje. In this case the parents might not have been aware

Chapter 6: Internal variant mining 99

of the onomastic relationship between these names. However, also very transparent
variants such as Peter Pieter or Elizabeth Elisabeth are found. These composite names
are likely the result of transcription errors, e.g., when the name in the source document
was stated as Peter/Pieter. However, this might also be the actual name of a person.
In any case, these occurences interfere with the filtering strategy based on composite
names. To address this issue a manual check has been performed. The filtering applied
to around 4,800 name pairs, of which 2% was found to be genuine variants which are
incorrectly rejected by this post-processing method.

6.3.3 Syntactic rules

As mentioned above, the coverage of dictionary look-up is limited to a selection of first
names. Non-variant pairs generated from composite names are also limited in cover-
age. Even though the full dataset contains 13.9 million composite names, a total of 1.3
million unique first names is found in the certificates which means that pairs derived
from composite names are only a small fraction of all possible name pairs. Addition-
ally, family names are generally singular, therefore the composite name approach can be
effectively used for first names only. Consequently, many errors remain unnoticed after
application of composite name filtering. In fact, only 13.8% of first name pairs can be
classified using dictionary look-up and composite name filtering, and for all name pairs
only 4.4% is classified. Table 6.2 provides an overview of classification coverage. To
address the remaining pairs a third post-processing step is applied based on syntactic
similarity.

The syntactic rules are based on Levenshtein distance, with conditions on the length
of the names and prefix equality. An overview is provided in Figure 6.3. The conditions
on name length basically mean that not only character differences but also the amount of
corresponding characters is taken into account, similar to the Jaro metric. The conditions
on prefix equality are similar to the Winkler modification of the Jaro metric. The partic-
ular values chosen for edit distances, name length and prefix length can be considered
tuning of Jaro-Winkler similarity, however a key difference between Jaro-Winkler and
the current ruleset is the use of absolute threshold values on all elements of a rule, while
the elements of the Jaro-Winkler computation are allowed to adjust the score indepen-
dently. This means that in some cases the rules can be more permissive, because once

100 Chapter 6: Internal variant mining

first names family names all names
unique total unique total unique total

initial pairs 80,569 429,569 177,258 374,901 257,827 804,470
dictionary 8.1% 43.1% n/a n/a 2.5% 23.0%
composite 5.8% 4.3% 0.1% 0.1% 1.9% 2.3%
rules (accept) 61.1% 44.2% 67.3% 78.1% 65.4% 60.0%
rules (reject) 22.9% 6.7% 32.0% 21.1% 29.1% 13.4%
manual 2.1% 1.6% 0.6% 0.8% 1.1% 1.2%
resulting pairs 57,295 381,745 120,115 295,116 177,410 676,861

Table 6.2: Overview of classification coverage by post-processing methods.

the thresholds have been reached anything is allowed. An example is the pair Maria–
Martje, which has a relatively low Jaro-Winkler score of 0.79 but is accepted by the
third rule. In other cases the rules can be more strict, for example the pair Melis–Nelis
which has a high Jaro-Winkler similarity of 0.87 but is rejected because the names have
no shared prefix (this is correct, because Melis is derived from Aemilius while Nelis is
short for Cornelis). The differences between the ruleset and Jaro-Winkler are discussed
further in Section 6.4.

Syntactic rules in general suffer from phonetic variation, i.e., words that sound the
same or highly similar but are written differently (for example Elizabeth–Elisabeth, or
Johnson–Johnsson). To address this issue a customized phonetic simplification proce-
dure for Dutch is applied [14]. This procedure, called semi-phonetic conversion, handles
character repetition, vowel similarity and several other grapheme-to-phoneme mapping
issues. Rules have been applied both on the original pairs and on the semi-phonetic con-
version of the names. A pair is accepted if the conditions of a rule applied for either the
original or the semi-phonetic representation (or both).

An additional syntactic rule is designed to handle common Dutch suffixes, which
heavily influence syntactic similarity while being independent of the identity of a name.
This rule stated that a pair is considered a name variant if the names share a prefix of
length 2 and both names have a common (but possibly different) suffix. The list of
suffixes contains a number of phonotactical diminutives, such as –je, –tje, –pjen, –kien,
–ja. This rule is applied on semi-phonetic representations only.

The syntactic rules are applied as a final post-processing step, which means that any

Chapter 6: Internal variant mining 101

Levenshtein length minimum equal example
distance conditions prefix length

1 shortest > 4 1 Joanna
Johanna

2 shortest > 4 2 Gerrit
Geurt

3 longest > 5 3 Maria
Martje

4 longest > 7 4 Laurentius
Laurijs

5 longest > 8 4 Franciscus
Frans(

length of pair −
Levenshtein distance

)
> 16 1 Lingmandus

Luigmondus

Figure 6.3: Syntactic rules for name variation.

pair not accepted by the ruleset is considered a non-variant. However, 2,347 name pairs
which are considered to be false negatives after manual review are added to the name
variant lexicon. The review has been performed only for pairs with a frequency above 3,
for two reasons: false negatives are more likely to occur in high frequent pairs and this
selection (around 4,000 pairs) is sufficiently small for a manual check. Conversely, name
pairs accepted by a syntactic rule have been manually reviewed if the Levenshtein edit
distance between the two names was above 2 (around 7,000 pairs). The full procedure
has resulted in approximately 175,000 unique variant pairs (see Table 6.2 for details).

6.4 Evaluation

The evaluation of the algorithm consists of two parts: a comparison with Jaro-Winkler
similarity and a comparison with a similar name variant data set. In Figure 6.4 the com-
parison to Jaro-Winkler similarity is illustrated. For any Jaro-Winkler threshold a small
but significant number of cases is classified differently by the ruleset. In Figure 6.4a the
area representing differently classified pairs for a similarity of 0.85 is shaded. For bins of
0.05 this similarity level provides the optimal separation between rejected and accepted

102 Chapter 6: Internal variant mining

n
a
m

e
 p

a
ir
s

Jaro-Winkler similarity

original, reject
semi-phon, reject

original, accept
semi-phon, accept

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Number of pairs for different similarity values, bin size 0.5.

%
 o

f
n
a
m

e
 p

a
ir
s

Jaro-Winkler similarity

original, reject
semi-phon, reject

original, accept
semi-phon, accept

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

8.96%

 20

 25

 30

 35

 0.85 0.9 0.95

6.27%

 5

 10

 0.75 0.8 0.85 0.9

(b) Cumulative percentage of pairs for different similarity values.

Figure 6.4: Comparison between syntactic rules and Jaro-Winkler distance.

Chapter 6: Internal variant mining 103

pairs, given that true negatives and true positives are considered equally important. In
Figure 6.4b the comparison of Figure 6.4a is replotted as the cumulative percentage of
all record pairs for the continuous range of Jaro-Winkler similarity values. The cumula-
tive graph shows that around 15% of all pairs is classified differently using a threshold
of 0.85. This difference is composed of 6.27% of pairs with a Jaro-Winkler similarity
below 0.85 which are accepted by the ruleset, and 8.96% of pairs with a Jaro-Winkler
similarity of 0.85 or higher which are rejected by the ruleset. Manual inspection of
a sample of differently classified name pairs shows that both methods produce errors,
and often it is debatable whether or not a conflicting pair should be included in a name
variant lexicon.

During name pair computation and post-processing the quality of the resulting vari-
ant pairs has been manually evaluated based on small samples in order to assess and
develop the procedure as such. However, this type of evaluation is not intended to be
objective, independent or sufficient in measuring the accuracy of the method. Therefore,
the resulting variant pairs have also been compared to an existing name variant database,
which will be called the LDS database in the following discussion. This database has
been constructed by FamilySearch1, which is the research department of the Church of
Jesus Christ of Latter-day Saints (LDS, more commonly known as the Mormon Church).

The LDS database is created as a by-product of genealogical research conducted
by the LDS Church. The collected genealogies are constructed from a large variety
of sources, including census data, church records, court and inheritance records, land
ownership records and migration records. The sources and resulting records have been
reviewed by church clerks and linguists between the 1940s and mid-1980s in order to
record name variation. This review has been mainly a manual process, based on general
phonetic, syntactic and etymological guidelines with name variants resulting from ge-
nealogy research as a starting point. Source data originated mostly from North America,
the British Isles (including Ireland) and continental Europe, but also some Central and
South America and a small amount of sources from Asia. An estimated total of 109

(non-unique) names has been used for the name database.2

1A web-based query interface is available on https://familysearch.org/stdfinder/

NameStandardLookup.jsp.

2FamilySearch has provided a description of the LDS database in personal communication.

https://familysearch.org/stdfinder/NameStandardLookup.jsp
https://familysearch.org/stdfinder/NameStandardLookup.jsp

104 Chapter 6: Internal variant mining

The names in the LDS database are grouped according to onomastic variation.
These name groups provide a basis for comparison to the method discussed in this chap-
ter. This type of evaluation could be performed as a classic test of accuracy, measuring
the ratio between precision (the proportion of algorithm variants sharing the same LDS
name group) and recall (the number of pairs from LDS name groups which are found by
the algorithm). However, the resulting accuracy numbers will not be representative for
the quality of the algorithm.

Measuring recall is problematic because the source data of both variant sets is dif-
ferent, which means that many LDS pairs will not be found by the algorithm because
these names are not in Genlias. Conversely, pairs constructed by the algorithm not found
in an LDS group not necessarily indicate a lack of precision, because the Genlias names
might not be part of the LDS source data. This problem could be adressed by restricting
the accuracy test to the intersection of bot sets of names. However, the LDS classifica-
tion is presented as clusters, while the algorithm results consist of pairs of names. It is
not expected that every pair from the LDS clusters will be present in a Genlias record
match, even though both names are present in at least one Genlias record. This issue
can be resolved by creating Genlias name clusters out of variant pairs, however such
clustering is not a straightforward procedure with an unambiguous result. Therefore,
measuring recall is problematic even if only the intersection of names is considered.

Precision could be measured, however this requires a strict correspondence in the
definition of name variation. Both the LDS database and the algorithm aim to include
onomastical variants, i.e., variants for which both elements are valid, existing names
which can etymologically be traced to the same source name. This definition excludes
spelling and typing errors, such as Anna–Annq. However, the distinction between a
spelling error and a variant is not always clear. Moreover, etymological similarity can be
established with varying granularity, which for instance also complicates the comparison
to the Dutch first name dictionary [109].

The most important problem with a classic accuracy test, however, is the authority
of the benchmark database. If the algorithm considers two names to be variants, but they
are in different LDS name groups, this can mean either that the algorithm has made a
mistake or that the LDS classification is incorrect. Manual inspection of the comparison
shows that both cases occur.

Chapter 6: Internal variant mining 105

The above considerations are reason to be cautious in interpreting the results of a
comparison between the algorithm variant pairs and the LDS database. Numbers are
provided in Table 6.3. All name pairs as collected by the basic method described in
Section 6.2 are taken as the starting point of the comparison. A distinction is made
between male first names, female first names and family names. Furthermore, the result
of post-processing has been taken into account.

LDS classification post-processing first name family name
algorithm male female

not found rejected 3657 4798 33911
accepted 11921 17246 90990

variant rejected 384 552 609
accepted 7104 11571 12414

non-variant rejected 5366 8516 22622
accepted 3452 6001 16711

Table 6.3: Results of comparison between algorithm variant pairs and the LDS database.

6.5 Discussion

A notable observation from Table 6.3 concerns the high number of algorithm pairs which
is not found in the LDS database, defined as one or both of the names in the pair not
being found. The total amount of not found pairs is around 49% for male first names,
45% for female first names and 71% for family names. This is in part caused by the
presence of spelling errors in the algorithm pairs and the coding of diacritic marks.
However, many valid names consisting of only basic characters are just not present in
the LDS database, mostly low-frequent names such as Elijzebet (frequency: 11), Edcko
(frequency: 0 in isolation, 1 as part of a composite name) or Ruighaven (frequency: 6).
However, more common names are missing from the LDS database as well, for exam-
ple the family name Paardekooper (English: horse merchant, frequency: 760) is not
included while the variants Paardekoper, Paardenkooper, Paerdekooper, Paerdekoper,
Parrdekooper, Peerdekooper, Peerdekoper are present. The omissions include several
high-ranked names, such as Pieters as a family name (frequency: 11639). Frequencies

106 Chapter 6: Internal variant mining

mentioned here are counted from Genlias marriage certificates for the names of bride,
bridegroom and parents.

The LDS classification and the algorithm are in agreement for the three combina-
tions variant–rejected (which is inconsistent, and accordingly the amount of pairs for this
combination is low), variant–accepted and non-variant–rejected. However, the combi-
nation non-variant–accepted has a large number of pairs, which could indicate low pre-
cision for the algorithm in general and the post-processing in particular. However, given
that the other inconsistent combination variant–rejected contains only a small number of
pairs, it is more likely that the granularity of the LDS database is higher than the granu-
larity of the algorithm. The other considerations on onomastic ambiguity and authority
as raised in this section also contribute to this result. In general it can be concluded
that the amount of agreement is higher than the amount of disagreement, which means
that both the LDS database and the approach of this chapter are capable of capturing a
significant amount of person name variation.

The goal of the method described in this chapter was to automatically derive name
variants from data, using likely correct record matches. This methodology was intended
to provide high-quality name variant pairs, as an alternative to string similarity mea-
sures which are error-prone and have limited coverage. However, the basic method
to construct name pairs from matches proved to be insufficient. Post-processing was
needed, using manual verification and, for a large percentage of cases, a syntactic string
similarity measure. Therefore, the goal of the method has not been achieved. This result
shows the difficulty of deriving knowledge from raw data, i.e., records without verified
and possibly annotated matches. However, still a large set of name variants is produced
with a presumably high (although not formally established) level of accuracy, which is
potentially useful for the development of record linkage approaches.

Chapter 7

Graph consistency

In this chapter a linkage approach is described in which information from multiple
records is used simultaneously to establish record matches. The chapter is based on
the paper Record linkage using graph consistency [117].

7.1 Introduction

Traditionally, record linkage is performed using pairwise comparison of records. Alter-
natively, multiple records can be used simultaneously in the linkage process. Records
can be represented as nodes in a graph, and the occurrence of a person in two records
can be represented as an edge between the corresponding nodes. The consistency of this
graph with respect to domain constraints can be used as a measure of record linkage
quality. Additionally, graph topology and consistency can suggest previously undiscov-
ered record links. Graph consistency checking uses information from multiple records
simultaneously, providing additional evidence for linking which is not available from
pairwise record comparison.

This chapter presents a method for automatic family reconstruction using domain-
based graph consistency constraints. Records are linked based on a valid sequence of
events, which limits the influence of string similarity computation and the difficulties
associated to similarity measures. In the record linkage process small subgraphs of

107

108 Chapter 7: Graph consistency

candidate record links are constructed. Family reconstruction is performed by merging
subgraphs according to provided constraints.

The chapter is structured as follows: Section 7.2 contains references to related
work. In Section 7.3 the benchmark data used in the current experiments is described.
To perform the family reconstruction, an initial matching procedure is applied to create
a first approximation or seed of the family structure in a dataset of historical records.
The seeded partial families are used for the actual family reconstruction. Section 7.4
provides details of this procedure. In Section 7.5 domain constraints for linkage are
discussed. Section 7.6 provides an evaluation of the method on a benchmark data set,
and Section 7.7 concludes.

7.2 Related work

Record linkage using graph features is known in the literature as collective entity res-
olution or multiple instance learning (MIL). In historical record linkage MIL has been
applied to families in census records [43], using matching family members as compen-
sation for non-matching individuals in the same families. A method using pedigree rela-
tions as classification features for historical record linkage is provided in [62]. In author
disambiguation [10] common unambiguous co-author names are used to cluster ambigu-
ous authors. A topology-oriented approach can be found in [141], using constraints on
nodes and edges for approximate matching of subgraph patterns. Domain-specific con-
straints are applied in, e.g., [85], for mapping of database or ontology definitions based
on the structure and the semantics of the fields in these definitions.

Most current record linkage approaches apply some kind of string similarity metric
as a decision criterium for matching (see Section 2.2 for an overview). These metrics
are not always sufficient to capture variations and errors in strings (see, e.g., [12]). The
current linkage approach uses graph consistency as a partial replacement for string simi-
larity, which consequently reduces the problems associated to the use of string similarity
metrics.

Chapter 7: Graph consistency 109

7.3 Benchmark

The benchmark database consists of a manual family reconstruction for the small Dutch
city of Coevorden. The benchmark is extracted from the website Coevorder Stambomen
(English: Coevorden family trees), which presents family trees as natural language text1.
The text on the website has been generated from a database using a fixed sentence struc-
ture, therefore parsing is relatively straightforward. In some cases the parser is not
entirely accurate, see Section 7.6.2 for further analysis. Out of range records have been
removed from the benchmark. This means that the municipality where the event is filed
is not present in the Genlias database (either not yet entered or foreign), or that the
event is outside of the Genlias timeframe. However, in some cases it can be difficult
to automatically discover that a record is out of range, which complicates evaluation of
algorithm results (see Section 7.6.2). The Coevorden benchmark contains around 6,200
families consisting of around 22,000 people in total. However, the time span of the
benchmark database is larger, which means that only part of the benchmark overlaps
with the Genlias database.

7.4 Method

The linkage approach consists of two main parts. First, potential families are iden-
tified using a seeding algorithm. In the second step event consistency is used to create
the final reconstruction.

To seed the family reconstruction, all birth certificates are included into sets of
certificates with exactly equal names for the parents (see Algorithm 7.1). This process
is illustrated in Figure 7.2. A sample of input data from the Genlias database is shown
in Figure 7.2a, consisting of four birth certificates and a marriage certificate. A birth
certificate contains the names of the child and the parents. In Figure 7.2a, the names
of the parents are used to postulate a hypothetical marriage certificate (dotted boxes).
As a domain constraint, the hypothetical marriage event must take place before the birth
event. The hypothetical certificate functions as a slot where an actual marriage certificate
can be inserted in subsequent steps of the algorithm. In the example, the seeding step

1http://coevern.nl/stambomen/, in Dutch

http://coevern.nl/stambomen/

110 Chapter 7: Graph consistency

Algorithm 7.1 Family seeding. Variables: num[f ,m] contains the number of different
families with parent names 〈 f ,m〉, Ci

f ,m is the set of children for the ith family with parent
names 〈 f ,m〉.

1: for all a = 〈child c, father f , mother m, . . . 〉 ∈ births do
2: if 〈 f ,m〉 < parents then
3: add(parents,〈 f ,m〉)
4: num[f ,m]← 1
5: C1

f ,m ← {a}
6: add(families,C1

f ,m)
7: else
8: if ∃k, a′ : (a′ ∈ Ck

f ,m, δyear(a, a′) ≤ θ) then
9: add (Ck

f ,m, a)
10: else
11: num[f ,m]++

12: Cnum[f ,m]
f ,m ← {a}

results in two partial families which are shown in Figure 7.2b. These partial families
have been obtained as follows: first, the 1846 birth certificate is considered. The parent
names Jan Vermeulen, Aaltje Rijn have not been encountered before (Algorithm 7.1,
line 2), therefore a new family is added. For the 1848 certificate a new family is added
with the parent names Jan Vermeulen, Alida Rijn. For the 1849 certificate, the parent
names are previously encountered (in the 1846 certificate). If certificates are found
with the same parent names but different timeframes, a family is hypothesized for each
timeframe (Algorithm 7.1, line 10, see Figure 7.1 for an example). The 1849 certificate
is however within the same timeframe as the 1846 certificate and therefore the new
certificate can be added to the existing set (line 9). The 1848 and 1850 certificates are
combined into a partial family in the same way.

The family reconstruction process is outlined in Algorithm 7.2. The algorithm
combines two or more partial families and a parent couple (represented by a marriage
certificate) into a full family. It is assumed that a partial family can be linked to a
marriage certificate in case the names of the family parents exactly match the names
of the marriage couple. This assumption can be used as a basic linkage method for

Chapter 7: Graph consistency 111

Families

Jan Vermeulen, Aaltje Rijn

C1

C2

Paulus Gillot, Antje Bruins

C1

Jan Vermeulen, Alida Rijn

C1

1846

1849
1869

1872

1873

1831

1828

1848
1850

Figure 7.1: Example family seeds.

birth and marriage certificates (Algorithm 7.2, line 4). Basic linkage is illustrated in
Figure 7.2c, where one of the partial families is linked to the 1846 marriage certificate
which is an exact match on the names Jan Vermeulen, Aaltje Rijn. A more interesting
case is the use of the assumption for non-exact matching. Candidate links between a
marriage certificate q and a partial family Ck

f ,m are selected by exact matching on one
of the partners (line 2). Using the basic linkage assumption, q is associated to zero or
more partial families Ci

a,b (line 10) where the name of the bride b is different from the
name of the mother m in the couple 〈 f ,m〉. In the example, the partial family with f =

Jan Vermeulen and m = Alida Rijn, consisting of the 1848 and 1850 birth certificates,
potentially matches the marriage certificate with a = Jan Vermeulen and b = Aaltje
Rijn based on an exact match between a and f (line 2). The algorithm performs a
consistency check between Ck

f ,m and Ci
a,b before combining these partial families. A

combined family C′ (line 11) is considered consistent if there is at least one year (line 12)
and at most θ′ years (line 15) between consecutive births. In the example, the partial
family Ci

a,b associated to the marriage couple 〈a, b〉 consists of the 1846 and 1849 birth
certificates. The four births in the combined family all differ by at least one year and
the maximum difference between two consecutive certificates is two years, which is

112 Chapter 7: Graph consistency

below θ′ for any reasonable value of this threshold. Therefore, the two partial families
are linked into a full family consisting of five certificates (Figure 7.2d). This approach
avoids having to decide on the similarity between the strings Aaltje and Alida, as the
similarity requirement is replaced by an event sequence consistency check.

In case the marriage certificate is not associated to any partial family a similarity
measure can be used (line 18). If the partner name differs to a large extent (line 6), the
consistency check might not be sufficient. In the next section these cases are considered
further.

Algorithm 7.2 Family reconstruction. Selection of candidates is based on the father
(line 2). A symmetrical algorithm is used for b = m.

1: for all Ck
f ,m ∈ families do

2: for all q = 〈bridegroom a, bride b, . . . 〉 ∈ marriages : a = f do
3: if b = m then
4: link(Ck

f ,m, q)
5: else
6: if diff(b,m) > θ then
7: reject
8: else
9: if 〈a, b〉 ∈ parents then

10: for all i : Ci
a,b ∈ families do

11: C′ ← Ck
f ,m ∪Ci

a,b

12: if ∃c, c′ ∈ C′ : c , c′ and δyear(c, c′) = 0 then
13: reject
14: else
15: if ∀c ∈ C′∃c′ : c , c′ and δyear(c, c′) ≤ θ′ then
16: link(Ck

f ,m, q)
17: else
18: if diff′(Ck

f ,m, q) ≤ θ′′ then
19: link(Ck

f ,m, q)
20: else
21: reject

Chapter 7: Graph consistency 113

marriage, 1846

Jan Vermeulen
Aaltje Rijn

marriage, ≤ 1846

Jan Vermeulen
Aaltje Rijn

birth, 1846

Melis
Vermeulen

marriage, ≤ 1848

Jan Vermeulen
Alida Rijn

birth, 1848

Arnoldus
Vermeulen

marriage, ≤ 1849

Jan Vermeulen
Aaltje Rijn

birth, 1849

Jacobus
Vermeulen

marriage, ≤ 1850

Jan Vermeulen
Alida Rijn

birth, 1850

Johanna
Vermeulen

(a) Input data

marriage, 1846

Jan Vermeulen
Aaltje Rijn

birth, 1846

Melis
Vermeulen

marriage, ≤ 1846

Jan Vermeulen
Aaltje Rijn

birth, 1849

Jacobus
Vermeulen

birth, 1848

Arnoldus
Vermeulen

marriage, ≤ 1848

Jan Vermeulen
Alida Rijn

birth, 1850

Johanna
Vermeulen

y=3 y=2

(b) Seeding results

marriage, 1846

Jan Vermeulen
Aaltje Rijn

birth, 1846

Melis
Vermeulen

birth, 1849

Jacobus
Vermeulen

birth, 1848

Arnoldus
Vermeulen

marriage, ≤ 1848

Jan Vermeulen
Alida Rijn

birth, 1850

Johanna
Vermeulen

y=0

y→0

y=3 y=2

(c) Basic linkage

birth, 1846

Melis
Vermeulen

birth, 1848

Arnoldus
Vermeulen

marriage, 1846

Jan Vermeulen
Aaltje Rijn

birth, 1849

Jacobus
Vermeulen

birth, 1850

Johanna
Vermeulen

y=0

lv
=

4 lv=4

(d) Family reconstruction result

Figure 7.2: Family reconstruction example. Relevant event date difference (in years)
and name edit distance is indicated by y and lv, respectively.

114 Chapter 7: Graph consistency

7.5 Additional domain-based linkage

The linkage method described above uses a domain-based collective entity resolution
strategy to reduce the dependence on string similarity measures in the linking process.
The assumption behind the method is that a large string distance for certain record fields
between a set of candidate matches can be compensated if a plausible link graph for the
set of candidate matches can be constructed. Applied to the current problem this means
that a large distance for the name of one parent is compensated by a reasonable birth
sequence based on the name of the other parent. However, birth sequence consistency
is not always sufficient to replace string similarity, especially in case both the first name
and the family name of the second parent are different between records. The string
similarity check in Algorithm 7.2 (line 6) is intended to filter candidate matches where
the names of the second parent are completely different. However, even if the second
parent is a different person, the first parent might still be the same. This situation occurs
when one of the parents has died and the other parent is remarried to another person,
which was very common in the 19th century. This additional domain knowledge can
be used to improve the linkage algorithm. In case two different people are assumed, a
death certificate may be present for the individual that was mentioned first. This death
certificate provides support for the original match, and the birth sequence check can
proceed as before. Figure 7.3 provides an example of this procedure. A candidate match
is found between an 1833 birth certificate and an 1830 marriage certificate. However, the
mother on the birth certificate, which is Riemda Kofman, (birth parents are again shown
as a hypothetical marriage above the birth certificate) is completely different from the
bride on the marriage certificate, which is Antje Bruins. The procedure locates a death
certificate for Antje Bruins from 1831. This provides evidence that indeed the father
Paulus Gillot is the same person as the bridegroom. The birth sequence, consisting of an
1831 certificate and an 1833 certificate, confirms this match. Note that the actual 1833
marriage certificate for the new marriage can be found using the standard algorithm
described above.

Another example of domain knowledge for record linkage is the use of event loca-
tion. In the 19th century mobility was limited, therefore a large distance between two
events can be used as evidence that these events should not be linked. To incorporate

Chapter 7: Graph consistency 115

birth, 1831

Albert
Gillot

death, 1831

Antje
Bruins

marriage, 1830

Paulus Gillot
Antje Bruins

birth, 1833

Jakoba
Gillot

marriage, ≤ 1833

Paulus Gillot
Riemda Kofman

Figure 7.3: Linkage using death certificate.

this knowledge, a geographical coordinate (consisting of latitude and longitude) has been
added to each municipality in the Genlias data set. Using the standard Haversine formula
(see, e.g., [106]) a straight line distance between two municipalities can be computed.
This distance is used as a threshold in the reconstruction procedure (Algorithm 7.2, as
part of the difference function in lines 6 and 18).

7.6 Benchmark results

The application of Algorithms 7.1 and 7.2 on the Genlias data set is compared to the
Coevorden benchmark which is described in Section 7.3. The benchmark procedure
consists of two steps. First, marriage certificates from Genlias are mapped to bench-
mark marriages by exact matching of date and municipality. For multiple matches edit
distance is used to select the best match. Second, the families associated to mapped mar-
riages are compared using the year of birth. The union of birth years of both families
is considered to be a complete family. The intersection of birth years from the Genlias
family and the benchmark family represents the match between the two families. The
result of this comparison is summarized in Table 7.1. The rows represent the size of
the complete family, the columns represent the size of the match. Consider for example
the families with two children (146 families in total). For this family size 13 cases are
not discovered by the algorithm. One family has no children in common between the
reconstruction and the benchmark. In this case the reconstruction contains one child

116 Chapter 7: Graph consistency

for this family and the benchmark also contains one child, however these children are
not the same (indicated by different year of birth). The union of the children therefore
has size two while the intersection has size zero. In 23 cases only one child is found in
common, generally because the benchmark contains two children and the reconstruction
has discovered only one of them. Finally, 109 families are matched on both children.
The remainder of Table 7.1 can be interpreted in the same way: the diagonal represents
a perfect match between the reconstruction and the benchmark, the cases close to the
diagonal are near-perfect reconstructions. Note that birth sequence consistency could
not be used for the families of size 0 or 1 (first two rows), the additional linkage meth-
ods from Algorithm 7.2 have been applied to these cases. The families represent a total
of 5183 birth certificates, of which 74.9% is matched by the algorithm. If the families
without any match (column A = ∅ in Table 7.1) are not considered 83.5% of the birth
certificates is correctly matched. The lack of matches for these families can be caused by
data issues (see Section 7.6.2), which means that these birth certificates are not available
for linkage and therefore these cases should be discarded in the evaluation of algorithm
accuracy. In other cases the lack of matches is indeed caused by the design of the link-
age algorithm, however both causes also apply to partially matched families. Therefore
some adjustment of the percentage of correct matches is justified, however the amount
of adjustment is difficult to estimate.

The event consistency algorithm is intended to replace string similarity computa-
tion, both from a conceptual and a computational point of view. This is most useful if the
generated matches indeed differ in string representation. For the benchmark evaluation
41.3% of the families contain at least one marriage-birth event pair with different string
representations (i.e., a non-exact match). Considering the set of all matches 28.0% of
the cases is a non-exact match.

7.6.1 Implementation analysis

Algorithms 7.1 and 7.2 require a data structure to store a total of nearly 15 million birth,
marriage and death events and the families reconstructed from those events, as well as a
look-up procedure for set elements. This has been implemented in C++, using the stan-
dard library map and multimap containers. These containers are generally implemented
as a binary search tree, which allows look-up in logarithmic time. Operations on the

Chapter 7: Graph consistency 117

|A ∩ B|
|A ∪ B| A = ∅ 0, A , ∅ 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 10
1 12 0 104
2 13 1 23 109
3 8 0 5 16 99
4 18 1 8 10 12 84
5 13 0 8 3 7 17 74
6 11 1 8 2 7 8 22 83
7 6 0 6 1 4 3 7 13 55
8 7 0 3 4 4 3 1 3 9 35
9 9 0 1 1 2 0 0 0 3 3 22
10 4 1 3 2 1 2 0 1 0 2 6 14
11 3 0 3 1 1 0 0 1 0 0 0 1 4
12 0 0 0 1 1 1 1 0 2 1 2 0 2 4
≥ 13 1 0 2 0 1 0 1 0 1 1 0 0 0 1 1

Table 7.1: Similarity by set size. Sets denoted by A contain the children of a family
reconstructed by the algorithm, sets denoted by B contain the children of the corre-
sponding family in the benchmark. Column A = ∅ denotes benchmark families that the
algorithm failed to capture.

event and family sets account for a large part of the memory load and processing time
of the algorithm. The C++ implementation is tested on a 3.16 GHz processor running
64-bit Linux with 6GB memory. The seeding algorithm runs in 22 minutes on the full
civil certificate dataset, the reconstruction itself runs in 24 minutes. This kind of perfor-
mance is exceptional for record linkage approaches, which generally take several hours
or even days to process datasets with millions of records.

7.6.2 Analysis of matching errors

In Table 7.1 the column marked A = ∅ contains families that the algorithm failed to link
to a marriage certificate. An overview of different causes for a sample of 30 errors is
given in Table 7.2. Note that some errors have multiple causes, which accounts for a total
of 32 causes. Error 1 is due to the indexing method that requires an exact name match
of one of the parent names on a birth certificate to one of the partners on a marriage
certificate (Algorithm 7.2, line 2). This is a computation issue which is not necessarily

118 Chapter 7: Graph consistency

error description frequency
1 name variation for both parents 13
2 out of range 6
3 parser error 6
4 large difference for one parent 5
5 certificate incomplete 1
6 year difference > θ′ 1
total 32

Table 7.2: Causes of reconstruction errors.

a constraint on the reconstruction procedure. Error 4 represents cases in which both the
first name and the family name of a birth parent are different, and the edit distance to the
corresponding names on the marriage certificate is above some threshold (note that edit
distance is not involved in case only one name differs). Error 6 represents cases where
the model of birth sequences fails. These three types of errors are actual shortcomings
of the algorithm. The other types are examples of missing or incorrect data and cannot
be attributed to the design of the algorithm.

7.7 Discussion and future work

The algorithm described in this chapter provides an approach to record linkage based on
the relations between multiple records. This allows for a strongly reduced dependence
on string similarity metrics. Results on the benchmark set show that the amount of errors
in a practical setting remains limited. Further analysis indicates that a significant part of
the errors is caused by missing or incorrect data, although it is difficult to differentiate
between data issues and method design flaws. However, this method could be considered
as complementary to other record linkage approaches to increase matching coverage.

This approach is an example of collective entity resolution, which has received an
increasing amount of research attention in recent years. Compare for example Figure 7.2
to [10, Figure 1], in which similarity of references as well as overlap in relations is used
for record linkage. In the terminology of [10] the basic linkage step illustrated in Fig-
ure 7.2c can be considered naive relational entity resolution, given that the decision to

Chapter 7: Graph consistency 119

merge the 1846 marriage certificate with the two hypothetical marriage certificates as-
sociated to the 1846 and 1849 birth certificates is based both on the similarity of the
names of the marriage couple and the parent couples, which is an attribute of the records
themselves, but also on the similarity of the date, which is an attribute of the hypothetical
marriage records derived from the related birth records. In this case the type of approach
is not entirely clear, because the hypothetical marriage records are themselves derived
from the birth records and are therefore part of the original records, which may be an
argument to classify the basic linkage step as fully attribute-based pairwise comparison.
Alternatively, the derived date attribute can also be viewed as a normal attribute of a dis-
tinct hypothetical marriage record which is assigned together with the name attributes
as part of the formation of the new marriage record from the original birth record, again
resulting in classic attribute-based comparison. However, the final reconstruction step
(as illustrated in Figure 7.2d) is clearly both relational and incremental, as the link be-
tween the 1848 birth certificate and the 1846 actual marriage certificate is based not only
on the attribute similarity between the marriage couple and the parent couple but also
on the previously established link between the marriage certificate and the 1846 birth
certificate, which is found to be consistent to the new link. The difference between naive
and collective relation entity resolution in [10] seems to be a somewhat gradual distinc-
tion, as the latter uses not only information from nodes with distance 1 as attributes (as
in naive relational linkage) but also information from nodes at larger distances.

Although there are similarities to the method of [10] (and related approaches), the
general problem of collective entity resolution differs from the problem of family recon-
struction, and accordingly the approaches that can be applied are different. Collective
relational entity resolution is based on the notion of clustering (or matching in general)
of multiple references to the same entity using overlap in relational information. This
approach is useful in, e.g., linkage in databases of scientific papers or comparison of
consecutive historical censuses, where relations between entities may occur multiple
times and multiple entities may be linked simultaneously in the source documents (such
as a scientific paper with several authors or a family in a census record with two or more
children). However, in civil registry databases such as Genlias the relations are much
more sparse. The example task of linking birth certificates to marriage certificates as
used in this chapter does not involve duplicate relations at all. A family reconstruction is

120 Chapter 7: Graph consistency

defined as the linkage of a marriage certificate to a set of birth certificates where the mar-
riage couple and all the parent couples refer to the same entity (note that the two people
in a couple are considered a single entity in this case), using only the relation between
a child and a parent couple. Because a birth event is unique, this relation is necessarily
unique as well. Additionally, each relation consists of exactly two entities (there are no
hyperedges in the terminology of [10]). Collective entity resolution based on clustering
of recurring or partly overlapping relations is therefore not possible for this linkage task.
In terms of the domain: entity resolution between children is not possible because the
children are distinct, and entity resolution between parents cannot be performed using
common neighbors or similar structural graph properties because there are no common
neighbors or any other cluster similarities available.

As an alternative to constraints on graph structure the current approach uses domain-
based consistency in event sequences as a measure of linkage quality. This is an exten-
sion and a deviation from previous collective entity approaches which is useful in case
relations are sparse but the domain still has clear collective properties.

The design of the algorithm is influenced by the domain of Dutch 19th century
civil certificates. However, the event sequences are incorporated into the algorithm in a
general way, which is also applicable to other domains. Consider for example an online
travel agent interested in identifying repeated customers in his sales records. As domain
constraints a customer is unlikely to book overlapping trips, or to have booked two
trips only with several years in between. This can be combined with plug-in similarity
measures on person names or, e.g., destination characteristics. An implementation of
this record linkage task is relatively straightforward using the presented method.

In future work, the candidate selection process can be refined to increase the cov-
erage of the method. The consistency model can be extended to improve accuracy of
the matching, for example by imposing a constraint that a child may not have the same
name as the other (living) children in the family. Additionally, the influence of vari-
ous threshold values could provide further insight into the problem of historical family
reconstruction as well as the group linkage problem in general.

Chapter 8

Link validation using Gedcom
databases

This chapter describes parsing of genealogies in the legacy Gedcom file format. The
parsed genealogies can be mapped to Genlias certificates in order to compare links pro-
duced by algorithms to links contained in the genealogy. The chapter is based on the
paper Comparison between historical population archives and decentralized databases
[115].

8.1 Introduction

In the historical demographics and genealogy domain, research data can be collected
from centralized databases such as a historical census or civil registry. Alternatively,
decentralized data can be collected from, e.g., personal archives or local organizations.
Complementary and conflicting information between these sources can be valuable for
research if the overlap, i.e., matching records, is correctly identified. This chapter de-
scribes a method to discover matching records in centralized and decentralized data for
the problem of family reconstruction. The centralized data consists of Genlias certifi-
cates. As a source of decentralized data a manually compiled family tree in the Gedcom

121

122 Chapter 8: Link validation using Gedcom databases

format is used. An overview of related work is presented in Section 8.2. Section 8.3
describes the differences between Genlias record structure and the Gedcom format. Sec-
tion 8.4 provides a mapping procedure between the different data formats. In Section 8.5
the matching procedure is explained at the conceptual and technical level. Section 8.6
provides a verification procedure and results for a test database. An application of the
matching in a family tree visualization tool is provided in Section 8.7. A conclusion and
directions for future research are provided in Section 8.8.

The most important concepts used throughout this chapter are listed in the follow-
ing definition. Concepts from this definition which have also been used in previous
chapters are repeated here for convenience and explicitness of definition.
Record. Unit of matching and linkage. A record refers to a Genlias certificate (Sec-
tion 8.3) or a Gedcom certificate reconstruction (Sections 8.3 and 8.4), unless stated
otherwise.
Record match. A pair of records that refer to the same event (birth, marriage or death).
Record link. A pair of records that refer to related events (e.g., birth and death of the
same person).
Field similarity measure. Similarity between field values, e.g., number of days be-
tween dates.
Record similarity measure. Similarity requirements for selected fields and relations
between the requirements.
Name sequence. Concatenation of person names from a record.
Person name. Single name, i.e., given name or family name.

8.2 Related work

Linkage based on different types of records in the historical domain has been investi-
gated by, e.g., [36] using Dutch civil certificates and notary acts, or [19, 18] for the
francophone Canadian province of Quebec using a variety of sources ranging from cen-
sus data to hospital records. In the Quebec papers the use of field values is discussed:
“the various fields can serve as identifiers (linkage), controls (validation), or variables
(analysis).” The notion of internal validation is discussed further in Section 8.6.

Chapter 8: Link validation using Gedcom databases 123

A detailed overview of elements from genealogical records and the application of
each element for linkage is provided in [134]. Besides historical and/or genealogical
data, various other types of data have been used for development and testing of algo-
rithms, such as hospital records, phone book records, customer records, etc. However,
linkage algorithms generally assume a certain level of uniformity in data representation,
both at a technical and at a conceptual level. This means that generally pedigrees are
linked to other pedigrees but not to civil certificates, and vice versa. Some attempts
have been made to facilitate data exchange and accessability in the genealogical do-
main, either by presenting a standardized format (the Gedcom standard [44] being the
most succesful example), by conversion into a standardized format [69, 68], by enforc-
ing a Semantic Web ontology [142], or by defining a framework that accepts custom
data models as metadata to be provided upon exchange of the genealogical data itself
[139]. Algorithmic solutions for merging of pedigrees have been proposed [133] that
take into account matches between individuals and matching links between individuals.
More elaborate linkage of pedigree data is described in, e.g., [102, 98], using feature
weights and thresholds to increase linkage performance.

Using various definitions of record, such as a single individual, multiple individu-
als, families (i.e., multiple individuals in a family relation), or events (i.e., multiple indi-
viduals in a certain relation at a specific point in time), most research in record linkage
is either directed towards matching of records, i.e., asserting equal reference, or linkage
of related (but not equal) records using matching of record elements (e.g., a birth record
linked to a marriage record based on a match between the child and the bridegroom). In
social networks research a different type of linkage is common, where records are linked
but not matched (e.g., two people sharing common interests). Occasionally this type of
link is used in historical record linkage as well [123].

Test corpora have been developed for development and evaluation of linkage meth-
ods [112], [18], however these are intrinsically domain- and language-specific. More-
over, these corpora are generally not readily available for research.

124 Chapter 8: Link validation using Gedcom databases

Type: birth certificate
Serial number: 176
Date: 16 - 05 - 1883
Place: Wonseradeel
Child: Sierk Rolsma
Gender: male
Father: Sjoerd Rolsma
Mother: Agnes Weldring

Figure 8.1: Genlias birth certificate.

8.3 Data formats

In this chapter records from Genlias are compared to a Gedcom-encoded genealogy file.
An example Genlias birth certificate which is used to illustrate the comparison procedure
is presented in Figure 8.1. This certificate contains the type of event, a serial number,
date and place, name of the child and names of the parents. As noted in Section 2.1, the
certificates do not contain identifiers for individuals and no links are provided between
certificates or individuals.

The decentralized data is extracted from a family tree database in the Gedcom (Ge-
nealogical Data COMmunication) format [44]. In this format genealogical data is stored
based on individuals and nuclear (immediate) families, instead of events as in Genlias.
Every individual or family in Gedcom is assigned a unique identifier. Records for indi-
viduals usually contain personal information like names, birth and death date, etc. The
families in which the individual participates, either as child or as parent, are also indi-
cated. A family record lists the individuals and their roles. Marriage information (date,
place) can also be present in a family record. Using the record identifiers, a link network
between individuals and families can be constructed. The sources of information used
to compile a Gedcom database can be rather diverse, ranging from official sources such
as civil registration and census records to personal letters and individual recollections
of family members. Consequently, the completeness and quality of Gedcom databases
differ considerably. This issue should be taken into account when interpreting the re-
sults of a comparison between databases, however the comparison procedure itself can

Chapter 8: Link validation using Gedcom databases 125

be performed on the structural level independent of the quality of the databases.
Gedcom is a text-based free entry format. The standard [44] states that “A record is

represented as a sequence of tagged, variable-length lines, arranged in a hierarchy. A line
always contains a hierarchical level number, a tag, and an optional value. A line may also
contain a cross-reference identifier or a pointer.” (see Figure 8.2 for an example). The
Gedcom standard is used by a wide variety of genealogical applications, ranging from
full-featured commercially available software to small scripts. The implementation of
the standard differs between applications, as well as the content format entered by users.
The next section describes a parsing procedure designed to process this kind of data.

8.4 Parsing

Prior to actual record matching (see Section 8.5), a mapping between the data formats
must be performed. This requires either a reconstruction of events from the Gedcom file,
or vice versa a reconstruction of individuals and nuclear families from Genlias. The first
option requires links between Gedcom records, for example to construct a birth record
from the three individual records of the child and parents using the intermediate family
record. The second option requires links between Genlias certificates, for example to
construct a family record from the birth certificates of several children. Record links
are available in Gedcom only (consisting of references to individual records in family
records and vice versa using unique identifiers), and therefore reconstruction of events
from Gedcom is the preferred option.

There are various tools available to perform the required data transformation. Many
genealogy programs can export Gedcom data to, e.g., XML or SQL databases which
can be queried to construct events. Alternatively, dedicated Gedcom parsers exist for a
number of programming languages (such as Perl [65], C [128], Python [6], XSLT [68])
that provide data structures to manipulate the Gedcom data from within code. However,
the data structures are still centered around individuals and families and the performance
of the tools is to a greater or lesser degree sensitive to violations of (some version of) the
Gedcom standard. The rest of this section describes a more general parsing algorithm
that can be applied to any kind of level-numbered textual data.

The parser (see Figure 8.3) uses a Prolog DCG-style grammar to specify the ele-

126 Chapter 8: Link validation using Gedcom databases

0 @F294@ FAM
1 HUSB @I840@
1 WIFE @I787@
1 MARR
2 DATE 30 MAY 1874
2 PLAC Wonseradeel
1 CHIL @I847@
1 CHIL @I848@
1 CHIL @I849@

0 @I840@ INDI
1 NAME Sjoerd/Rolsma/

1 BIRT
2 DATE 13 FEB 1849
1 DEAT
2 DATE 17 JAN 1936
1 FAMS @F294@

0 @I787@ INDI
1 NAME Agnes/Welderink/

1 SEX F
1 BIRT
2 DATE ca 1850
1 FAMS @F294@

0 @I849@ INDI
1 NAME Sierk/Rolsma/

1 BIRT
2 DATE 16 MAY 1883
2 PLAC Wonseradeel
2 SOUR
3 REFN 176
1 FAMC @F294@

Figure 8.2: Gedcom database fragment showing a selection of fields from a FAM record
(family) and three INDI records (individual). Dotted lines are added for readability, the
original Gedcom format does not contain record separators.

ments of target records (see Figure 8.4 for an example). Tags found in lines from the
database file are pushed on a stack one by one. Before a tag is pushed, all current
elements with an equal or higher level number are popped, which makes the stack cor-

Chapter 8: Link validation using Gedcom databases 127

S ← ∅

while L← readline(database) do
if(L.level = 0) then

id← L.value
while(S.top.level ≥ L.level) do

S.pop()
S.push(L.tag)
foreach terminalList ∈ grammar do

if(S = terminalList) then
index(id,terminalList)← L.value

foreach id ∈ index do
foreach target ∈ grammar do

if(pointerList ∈ target) then
duplicate(target,id,pointerList)

foreach protoRecord ∈ ({target} ∪ duplicates) do
foreach terminalList ∈ protoRecord do

output ← index(id,terminalList)
output ← record separator

Figure 8.3: Parser algorithm.

respond to the current branch in the database hierarchy. If the stack corresponds to a
list of terminal symbols in the grammar, then the current line is indexed for later use by
the value at level 0. All grammar rules are expanded to terminal symbols and subse-
quently dereferenced for each of the index values in the previous step. If an expanded
rule contains a pointer list (indicated by a + symbol) then the rule is duplicated for each
element of the pointer list associated to the current index value before dereferencing. As
an example the algorithm in Figure 8.3 applied to the database in Figure 8.2 using the
grammar in Figure 8.4 on the index value @F294@ will produce three duplicate pro-
torecords which can be dereferenced to certificates. Figure 8.5 provides an example that
matches the Genlias certificate in Figure 8.1. Note that the family name of the mother
(Weldring or Welderink) differs between the databases.

The use of a domain-independent grammar provides a flexible parser for Gedcom
or structurally similar data formats. Additionally, only information that corresponds
to an element of a target record is indexed, resulting in a light-weight procedure. The

128 Chapter 8: Link validation using Gedcom databases

birthcertificate −−> [@],[fam,chil(+)]:birthbasic,
[fam,husb]:personname, [fam,wife]:personname.

birthbasic −−> birthdate, birthplace, birthref, personname.
birthdate −−> [indi,birt,date].
birthplace −−> [indi,birt,plac].
birthref −−> [indi,birt,sour,refn].
personname −−> [@],[indi,name].
target −−> birthcertificate.

Figure 8.4: Grammar fragment. Special characters: ’@’ level 0-value (record id), ’+’
pointer list, ’:’ pointer dereference.

output of the parser can be directly used for record matching, which is described in the
next section.

8.5 Matching

After parsing, the Gedcom database is represented in the Genlias data format. This
enables a definition of similarity between records from both databases based on the
values of corresponding fields. Sufficiently similar record pairs are considered a record
match which is included as output of the comparison procedure. Record matches are
subsequently used to compare record links (see Section 8.7).

In the current experiments a partial similarity measure is used, meaning that any
sufficiently large subset of the corresponding fields must be similar whereas the com-
plement set remains unchecked. Using a partial similarity measure allows for internal
verification (see Section 8.6.1) and this type of similarity computation can increase the
number of matches as compared to a full similarity measure. This approach assumes
sparseness of high-dimensional data, i.e., a medium to large set of attributes each with
a large set of possible values or vice versa. If the number of possible combinations of
values is much larger than the number of records the set of field values of each record is
likely to be unique and moreover any large subset of field values is also likely unique.
This property can easily be verified (by counting the number of distinct value combina-
tions) on a given database and if it holds, the similarity measure can be simplified ac-

Chapter 8: Link validation using Gedcom databases 129

Protorecord

[@], [fam,chil(2)]:[indi,birt,date],
[fam,chil(2)]:[indi,birt,plac],
[fam,chil(2)]:[indi,birt,sour,refn],
[fam,chil(2)]:[@], [fam,chil(2)]:[indi,name],
[fam,husb]:[@], [fam,husb]:[indi,name],
[fam,wife]:[@], [fam,wife]:[indi,name]

Certificate

@F294@, 16 MAY 1883, Wonseradeel, 176,
@I849@, Sierk/Rolsma/, @I840@,
Sjoerd/Rolsma/, @I787@, Agnes/Welderink/

Figure 8.5: Parsing example for index value @F294@ using the pointer
[@F294@,CHIL(2)], which is @I849@.

cordingly. For the current experiments this allows for name variation in civil certificates
which is hard to detect automatically by similarity measures. A certificate generally
contains at least three individuals, which amounts to six names in total (given names
and family names). If one of the names is subject to large variation in two matching
records (for example Elizabeth vs. Lisa), this match might be undetected when using all
names in the record comparison. However, by ignoring this field in a partial comparison
the match will be discovered.

A partial record similarity measure can be defined by stating similarity require-
ments for each of the fields used in the measure and relations between the requirements.
As an example, consider the matching between marriage certificates based on the year
of marriage and the names of the bride and bridegroom (four names in total) which is
used in the current experiments, as stated in Figure 8.6. Note that the first clause in
this definition requires an exact match on person names. This has the conceptual ad-
vantage that exact matching is more reliable than similarity matching based on, e.g.,
edit distance. Additionally, exact matching allows for straightforward string indexing
and efficient look-up. Memory consumption is less efficient, the example index of two
names out of four requires

(
4
2

)
= 6 entries per record. Therefore it might be necessary to

130 Chapter 8: Link validation using Gedcom databases

adjust the similarity measure to meet computational resources.

At least two out of four names are exactly equal, and

the year of marriage is equal or different by a small margin, or

the year of marriage is different by a larger margin and the edit distance between name
sequences is below a small threshold, or

the year of marriage in a record is specified as a range and the year of marriage in
another record is within this range, and the edit distance between name sequences is
below a small threshold.

Figure 8.6: Record similarity measure for marriage certificates.

8.6 Results and verification

The record similarity measure in Figure 8.6 is applied to the Genlias database and a
sample Gedcom database containing 1327 individuals and 423 families. The quality of
this database is unknown, which is the general case for decentralized data. However, as
mentioned in Section 8.3, the quality of the database is not an essential issue in the dis-
cussion of matching methodology. The implementation of the method needs to address
some practical issues. In case the similarity measure produces multiple candidates the
match with the smallest edit distance is selected. This situation is quite common, how-
ever the distance between the selected match and the other candidates is generally very
large which indicates a justifiable selection. As preprocessing, given names are reduced
to the first token (for example: Quentin Jerome Tarantino→ Quentin Tarantino). Sep-
arate family name prefixes, which are common in Dutch, are stripped using a stop list
(for example: Vincent van Gogh→ Vincent Gogh). The edit distance threshold and year
margins required by the similarity measure are set according to empirical knowledge
of the domain. A subset of the Gedcom records is used to match the timeframe of the
Genlias database (1796–1920). Settings and matching results are displayed in Table 8.1.
The matching is performed for the three main types of civil certificates: birth, marriage

Chapter 8: Link validation using Gedcom databases 131

Edit distance threshold 5
Large year margin 10
Small year margin
marriage 2
birth, death 0
Marriage match 153

no match 23
Birth match 335

no match 276
Death match 100

no match 239

Table 8.1: Matching parameters and results.

and death. For birth and death certificates the marriage record similarity measure (Fig-
ure 8.6) is used replacing the roles of bride and bridegroom by mother and father of the
child or deceased person for birth and death certificates respectively (i.e., the name of
the child or deceased person itself is not used). To avoid confusion with other siblings,
the small year margin for birth and death certificates is set to zero. Again the match
with the smallest edit distance between name sequences is used if multiple matching
candidates are found using the record similarity measure. The large amount of missed
matches for birth and death certificates is expected, because the Genlias database is still
under active development and a significant number of birth and death certificates are not
yet digitized. Moreover, Gedcom databases generally contain many peripheral individ-
uals for which no parents are listed (usually inlaws of the family of interest), prohibiting
the reconstruction of birth and death certificates.

Verification of record matches should ideally be performed using a test set of known
matches (a gold standard). However, for this particular combination of databases such
a test set is not available. The lack of test sets extends to the majority of decentralized
historical data, as well as Genlias itself (which does not have any kind of internal links
or verification sets). This is a quite undesirable situation given the large variation in
data quality and coverage between databases in the historical domain. Because the char-
acteristics of any two databases regarding the contents can differ to a large degree, the
performance of a matching algorithm obtained on one database is not indicative for other

132 Chapter 8: Link validation using Gedcom databases

databases. Put differently: every application of a matching algorithm has to perform its
own verification, which is difficult in the absence of test sets.

8.6.1 Internal verification

A possible solution for the verification problem is to re-use the sparseness assumption to
obtain a measure of support for a match. The matches returned by the similarity measure
are based on a subset of fields. If other field values are equal or similar as well, they
provide additional support for the match independent of the similarity measure. Any
separation between fields used for similarity computation and fields used for support
computation is possible, however in order to obtain reasonable support figures similarity
fields and support fields need to be balanced in terms of selectivity and specificity. As an
example consider linking on toponym only, e.g., place of birth. This similarity measure
is not very selective, therefore many false matches will be found and support figures
based on fields such as names or birth dates will be very low. If in contrast almost
all fields are used for similarity computation, e.g., full names, day and place of birth,
former partners et cetera, then the available information might be too specific to find
candidate matches and the remaining fields available for support computation are likely
to be volatile (e.g., age, occupation, place of residence) which lowers support figures
as well. Note that a solution using support fields is only applicable if there are fields
available which are not used in the record similarity measure. Because of the specificity
requirements categorical variables like gender or religion are not suitable. For many
linkage tasks extra fields are not available, for example linking a marriage certificate
of a person to the marriage certificate of this person’s parents, in which case the only
available information about the parents are the person names. However, in the current
experiments a certificate from one database is being matched to the same certificate in
another database, therefore the amount of available information is much larger.

A candidate field for verification is the serial number, which has been recorded
since the start of the civil registry in the Netherlands. The numbers are assigned per year
by the municipality issuing the certificate, meaning that the combination of municipal-
ity, year and serial number uniquely references a certificate (also known as a persistent
identifier or PID). A shared PID between two records in a match therefore provides
strong support for this match. However, in a Gedcom database serial numbers are not

Chapter 8: Link validation using Gedcom databases 133

necessarily included. The source of the data can be something different than the civil
registry, such as church records, or the database author might just have omitted the se-
rial number. Moreover, if the source of the Gedcom record is the civil registry, then the
match is not very indicative of the performance of the similarity measure in combining
different data sources. Therefore, the serial number is of limited use only for verification
purposes. Other candidate fields are dates and toponyms (location names). The year is
used in the similarity measure, but the day and month can be used for support. For the
current experiments three levels of support are defined: exact date match, a difference
of 1 to 7 days, or a difference of more than 7 days.

In case of limited support from the verification fields, edit distance (or any other
string similarity measure) can be used as an indication of the correctness of a match.

8.6.2 Toponym mapping

Toponyms cannot always be compared directly, because of the difference in use between
Genlias and most Gedcom databases. In Genlias the toponym that denotes the location of
the event is always the municipality that has issued the certificate. In a Gedcom database
often the actual location of the event is used, which can be a town that is part of a
larger municipality. A comparison between toponyms is therefore more informative after
mapping each toponym to the corresponding municipality. In the current experiments
a reference database of Dutch toponyms [60] is used to perform the mapping. Because
the municipal organization in the Netherlands changes over time, the year of the event
is required for a correct mapping. Ambiguity for toponyms (i.e., multiple locations with
the same name) can generally be resolved using the province of the event. In case that
the province is not recorded the toponym can be disambiguated by choosing the location
with the most inhabitants by default.

8.6.3 Interpretation of support figures

Table 8.2 shows the results of record match verification using serial numbers, dates and
mapped toponyms as support fields. The support figures should be interpreted with the
distribution of data values in mind. The first two rows of Table 8.2 represent matches
with equal serial numbers. Most of these matches have equal PIDs (toponym and year

134 Chapter 8: Link validation using Gedcom databases

equal as well). Given that each PID is unique these matches are correct. Differences in
toponym are usually small for matches with equal serial numbers, therefore a PID match
can be assumed (although support is higher for true PID matches). The third row repre-
sents matches with the same toponym and date, and also two names equal (by definition
of the similarity measure). Note again that the match was selected using the names and
the year only, and verified using the toponym and the full date. These matches could be
incorrect, because it is possible that different couples with (partially) the same name got
married on the same day in the same place, for example. In the Genlias database this is
the case for around 0.3% of all marriage certificates. Therefore, the sparseness assump-
tion largely holds for this set of fields and these matches can also be considered correct.
Similarly, other verification field values can be interpreted in terms of confidence in a
match (based on the validity of the sparseness assumption) or counterevidence against
a match (in case of large differences in field values). For the current experiments, the
last row of matches should be considered incorrect. The relatively large number of
incorrect matches for birth and death certificates can be attributed to the lack of cover-
age in Genlias. The best match is returned, however this assumes true matches to be
present in the data set. Unequal support fields include cases where the value is missing
in the Gedcom database. For the serial number most of the unequal cases result from
missing values, whereas toponyms and dates are generally available (although dates are
occasionally listed as approximations, e.g., around 1820). The record similarity match
can be adjusted using the verification fields, however it is preferred to keep similarity
computation and verification separated.

8.7 Application

The previous sections have discussed matching records from different databases that
refer to the same event, applied to the civil registry and a manually compiled family
tree. However, most research in historical record linkage is focussed on links between
events, such as a birth of a person and the marriage of that person two or three decades
later. These links can be added to a database by manual annotation or using automatic
linkage methods. Different databases in the same population domain are likely to contain
complementary and conflicting links, which can be used to increase the quality and

Chapter 8: Link validation using Gedcom databases 135

field marriage birth death
s t d e
+ + + 69 170 9
+ - + 2 30 0
– + + 41 20 1
– + ∼ 0 33 6
– + – 2 1 0
– – + 10 2 7
– – ∼ 2 5 10
– – – ≤ 3 11 2 3
– – – > 3 16 72 64
total 153 335 100

Table 8.2: Support values for record matches. Columns: (s)erial number, (t)oponym,
(d)ate, (e)dit distance. Support level: + equal, ∼ 1–7 days difference, – not equal (s,t) or
> 7 days difference (d). Edit distance is only used for the matches without support from
the verification fields (final two rows).

quantity of links in both databases. An example of a conflicting link for the databases
used in the current experiments could be a link between a birth an a marriage of the
same person in Genlias, while the Gedcom database states that the person mentioned on
the birth certificate has died at a young age and instead the marriage certificate refers to
one of the siblings of the deceased person. In this case the Genlias link can be corrected
using the additional information from the Gedcom database. To compare links between
databases the records need to be matched first, which can be achieved using the record
matching method as described in this chapter. The matching procedure is developed
specifically for the current application setting. However, the method of using parsing
to create a uniform representation, a record similarity measure to produce candidate
matches and an internal verification procedure using support fields can be applied as
well using fields and thresholds appropriate for other databases.

To demonstrate the application of the method, a comparison is performed on links
between marriage certificates in Genlias and corresponding links in the sample Gedcom
database used in the matching experiments. A marriage certificate contains the marriage
couple and the parents of both bride and bridegroom. A link can be defined between a

136 Chapter 8: Link validation using Gedcom databases

marriage and the marriage of one of the parent couples (see Figure 2.5). For the Gen-
lias database links have been constructed by selecting all record pairs with a maximum
Levenshtein edit distance of 3 between name sequences, as described in Chapter 4. Ad-
ditional record links are computed by converting each name to a base form and selecting
record pairs with matching base name sequences, as described in Chapter 5. In the Ged-
com database links between marriages can be derived from marriage events which are
attached to individuals in parent-child relationships.

@F171@

13-05-1848

Sjoerd Riemerts Riemersma

Johanna Sikkes van der Zee

@F100@

01-05-1824

Sikke Sasses van der Zee
Aafke Klazes de Boer
Afke de Boer

@F15@

09-05-1857

Jan Johannes Altena

Klaaske Sikkes van der Zee

@F16@

02-07-1892

Johannes Altena

Elisabeth Vonk

@F17@

16-11-1889

Eke Foekema

Aaltje Altena

@F18@

09-01-1896

Sikke Altena
Cornelia Verkooyen
Cornelia Verkooijen

@F13@

13-06-1896

Ruurd Altena

Anna Jans Rolsma

@F19@

~1900

H Wesseling

Agatha Altena

9797998

08-05-1895

Hendrikus Wesseling

Agatha Altena

@F122@

~1920

Sikkes ?

IJbeltje Altena

@F123@

~1925

Bartolomeus Mathias van Oerle

Klaaske Altena

@F124@

18-05-1923

Sikke Altena

Trijntje Homminga

Figure 8.7: Visualization of link comparison.

The link comparison procedure is as follows: first, marriage certificates from Gen-
lias and marriage events extracted from the Gedcom database by parsing are matched
using the method described in Section 8.5. For every matched certificate the marriages of
the children are identified using the automatic links from Genlias and the manual links
from the Gedcom database. These two sets of marriages are aligned using a slightly
more strict version of the record similarity measure in Figure 8.6, to accomodate for the
inherent similarity in names and timeframe of sibling marriages. Using the alignment,
the links can be divided into three categories: present in both databases, present in the
Gedcom database only, or present in Genlias only. The latter two categories represent
complementary and conflicting links. A visualization tool is developed that shows the

Chapter 8: Link validation using Gedcom databases 137

results of the comparison in a link tree (see Figure 8.7), which can be browsed by ex-
panding or collapsing record links1. Every level of the tree represents a generation, con-
sisting of the (married) children of one of the couples from the previous level. Colours
indicate differences between databases (red and blue for the Gedcom database and Gen-
lias, respectively). Field values and links in black represent exact record matches and
corresponding record links, respectively. If a field value in a matched record differs be-
tween databases both values are shown, for example the family name of the bride in the
@F18@ marriage is listed as Verkooyen in the Gedcom database (shown in red) while
the matching record in Genlias contains the name Verkooijen (shown in blue). Records
@F19@ and 9797998 are an example of a false negative match, i.e., the two certificates
represent the same marriage event but the matching procedure failed to discover this
match. For this particular false negative the first clause of the record similarity does not
apply because of the approximate date on the Gedcom record and the other two clauses
do not apply because the Gedcom record uses an initial as given name of the bridegroom.
The lower row is found in the Gedcom database only because these records are outside
of the Genlias timeframe. The tool enables users to provide their own Gedcom database
and identify differences with the nation-wide Genlias database. Due to data licensing
issues the tool has not yet been released, however it could be integrated in the Genlias
website in the future.

8.8 Conclusion and future work

In this chapter a method is described to compare a dataset based on events (Genlias)
to a dataset based on individuals (the Gedcom model). This method is complementary
to most current approaches in record linkage, in which only datasets with the same
conceptual structure are compared. A combination of multiple string indexing and field
similarity measures provides a computationally efficient and flexible record matching
method.

In future research, other Gedcom databases can be presented to the matching proce-
dure. A crowdsourcing set-up can be envisioned to perform large-scale data collection,

1The + and – buttons on the nodes indicate expandable and expanded, respectively. In Figure 8.7 a devel-
opment version of the visualization tool is shown in which not all buttons are labeled correctly.

138 Chapter 8: Link validation using Gedcom databases

consisting of people submitting their own Gedcom databases for matching, combining
partially overlapping Gedcom databases, perform manual data cleaning, et cetera. Eval-
uation of the approach can be crowdsourced as well, consisting of manual assessment
of record matches and record link correspondences. The matching procedure itself can
be refined by improving the record similarity measure or by incorporating a network
approach in which record links can contribute to matching. Finally, functionality can be
added to the visualization tool, preferably resulting in a public release.

Chapter 9

Cognitive processing of proper
names

In this chapter a research method from cognitive science is applied to investigate the
nature of name variation. The chapter is based on the paper Lexical decision for proper
names [118].

9.1 Introduction

Among several competing paradigms, artificial intelligence can be defined as the study
of human intelligence as a model of computational intelligence. As an application of
this paradigm, the current chapter discusses research into the cognitive aspect of record
linkage. However, several issues need to be addressed in order to apply cognitive science
methodology to a data mining problem. This chapter describes an exploration of these
issues. The discussion is presented from a methodological point of view, using cognitive
processing of proper names as an example of record linkage research in a cognitive
science context.

Proper names (referred to as names throughout this chapter) are a class of words
with distinct properties that presumably affect cognitive processing. The lifespan and so-

139

140 Chapter 9: Cognitive processing of proper names

cial or geographical distribution of a name is subject to fashion and other socio-cultural
factors. Therefore, names function as linguistic markers for a social group or commu-
nity (cf. [51]). This type of social connotation evokes specific neurological behaviour,
e.g., related to attitudes and stereotypes [138] or related to emotional valence in gen-
eral [130]. Names can have multiple references within or between language users, in
particular regarding high frequency first names. This means that in communication the
speaker must account for the possibility that the hearer associates a different person to
a particular name than the speaker and the hearer frequently needs to disambiguate a
name by choosing between the set of people he associates with this name. This requires
incorporating contextual information on social relations in the cognitive process. Names
that consist of, contain or resemble standard vocabulary can exhibit some lexical seman-
tics (the family name Goodman for example can be associated to the noun phrase a good
man), however many names have no intrinsic lexical meaning. This indicates that names
should be discarded while processing general semantic constraints of a sentence. With-
out imposing a specific model of semantic parsing the lack of lexical meaning can be
considered a factor in the cognitive process. One of the most characteristic properties of
names, however, is the lack of standardized spelling. Many names, both first names and
family names, can be expressed using a number of variants (e.g., Peterson and Petersen),
while in standard vocabulary almost all words and phrases have a single fixed spelling.
Proficient language users are generally able to perform a mapping from a name variant
to some canonical form, even if the variant is only occasionally or never encountered
before (e.g., Peeterson). This task can be considered as a special case of visual word
recognition, i.e., identifying a lemma from a large and highly diverse set of possible
and actual variants. Names are an open class, i.e., any string that sufficiently adheres to
phonotactic constraints of a language is a possible name. All of these properties can also
be observed in standard vocabulary, but to a far lesser degree as compared to names.

9.1.1 Motivation

In Chapter 5 a computational model is constructed with the aim of automatically clas-
sifying the important (i.e., identifying) characters in a name and its variants. This can
be considered an instance of the classical AI problem in which a task can be performed
succesfully by humans while an implementation on a computer is non-trivial. The model

Chapter 9: Cognitive processing of proper names 141

t name 1 name 2 name 1 name 2
0

1 M..... M....... M..... M.......

2 Ma.... Ma...... M..k.. M..t....

3 Mar... Mar..... M.rk.. M..t.n..

4 Mark.. Mart.... M.rk.s M.rt.n..

5 Marku. Marti... Mark.s M.rt.n.s

6 Markus Martin.. Markus Mart.n.s

7 Markus Martinu. Markus Martin.s

8 Markus Martinus Markus Martinus

Figure 9.1: Two example trials of a potential experiment.

training algorithm had several predefined properties to choose from as features for clas-
sification, such as the character position, the length of the name, the role of the character
in the syllable, et cetera. A set of examples of names and variants was available for the
algorithm to determine how each feature was used, if at all.

An automatic procedure is useful if it can be performed faster, cheaper and with
less overhead than a manual procedure, while achieving comparable or possibly supe-
rior levels of accuracy. One way of achieving comparable accuracy is by using similar
strategies. For this task that means that a computational model could benefit from know-
ing which features are used by humans performing the task of classifying name variants.

The initial intention of using cognitive research as a part of the LINKS project
was motivated by this line of reasoning. An analysis of human behaviour could provide
guidelines for solving the name variation problem automatically, and possibly provide
some additional insights into human cognition. An initial experimental set-up was en-
visioned in which participants would be asked to classify pairs of names as variants
or non-variants. In such an experiment the availability of features could be controlled,
which would enable a comparison of the importance of various features. An example of
such a procedure is provided in Figure 9.1. This example shows two different trials for
the non-variant pair Markus–Martinus. The left trial presents characters in sequential
order, the right trial presents characters according to the role in the syllable (onset, coda,
and nucleus, respectively). The participant could be asked to indicate after every added
character whether or not the two (partial) names are a variant. Data collected from this

142 Chapter 9: Cognitive processing of proper names

particular example might support a claim that characters in the onset of syllables are
more important for name identification than word-initial characters, because the onset
characters are already indicative of a non-variant at t = 2 or t = 3 while the word-initial
characters start to be indicative at t = 4. Note that name variation is different from string
similarity: in this example the different characters might be considered as evidence for
a non-variant by the participant, while for true name variants two partial names may
be very different yet the participant could still be undecided. The latter case can be
illustrated by, e.g., the true variant Elizabeth–Liesje represented by the subsequences
El.z....h and L..sje.

The envisioned experimental set-up was designed to be closely related to the model
in Chapter 5, in order to allow a comparison between machine learning and cognitive
behaviour. However, prohibitive difficulties are anticipated in properly designing such
an experiment. The number of variables that need to be controlled and manipulated is
too large to permit construction of suitable stimuli or to manage the recruitment of a
participant group that would fit the experimental design. Therefore, an alternative re-
search question is formulated to analyze human processing of names using a practically
feasible research paradigm.

Research into cognitive processing of proper names involves methodological issues
which need to be addressed in the design of the experiment. Standard research concepts
such as masked priming and lexical decision tasks (LDTs) are not readily applicable to
names because of the properties listed in Section 9.1. In the current research, a lexical
decision task based on familiarity is used to enable application of the well-established
LDT methodology to proper names. This task is used to investigate morphological suf-
fix recognition in names, an operation which is thought to be important for name variant
mapping. The experimental task does not explicitly address name variation (in con-
trast to Figure 9.1), however the phenomenon under investigation is suggested as a key
component in the cognitive process of name variant recognition.

This chapter is structured as follows: Section 9.2 presents a review of related work,
Section 9.3 describes the lexical decision task, Section 9.4 discusses the application of
this task to suffix recognition, Section 9.5 provides details of the experiment, Section 9.6
contains results, in Section 9.7 the results are analyzed and Section 9.8 concludes. Ap-
pendix A contains the list of stimuli used in the experiment.

Chapter 9: Cognitive processing of proper names 143

9.2 Related work

The current research into proper name reading is based on the general orthographic pro-
cessing literature, see, e.g., [50] for an overview. Bigram presence and approximate
letter position have been shown to influence visual word recognition, which may corre-
late to lexical memory structures (see, e.g., [49] for a comparison of different models).
Detection and mapping of name variants resembles text error detection for standard
vocabulary. Proofreading research has shown the importance of word frequency and
syntactic class [96], phonological similarity [77] and reader proficiency and task set-
ting [52]. However, these studies generally focus on sentence-level processing, while
for name reading word-level processing appears to be more important. Additionally,
although the underlying processes might be similar, the proofreading task is different
from proper name reading in the respect that a name variant is not considered an error
but an accepted alternative. Furthermore a phonotactically correct string is likely to be
accepted as an element of the language while the same string presented as a content
word is likely to be rejected by a proficient language user performing a proofreading
task.

The neural substrate of proper name processing may be located in the left tempo-
ral pole (LTP), according to [119]. The involvement of a separate area could indicate
that the processing of person names is indeed different from the processing of standard
vocabulary. Although debated, visual word identification of standard vocabulary is be-
lieved to involve the visual word form area (VWFA) in the fusiform gyrus (see, e.g.,
[55]).

9.3 Lexical decision

A lexical decision task is generally intended to measure the time taken to complete or
abort (for words or nonwords, respectively) a search strategy in lexical memory. A short
reaction time (RT) indicates that the query (prime and/or target) is a good fit for the
index or structure of the lexicon which provides information about the nature of lex-
ical processing. The LDT itself is of little interest, it is a rather artificial task since
typical language processing does not involve nonwords nor this type of decisions. Con-

144 Chapter 9: Cognitive processing of proper names

sequently, any task can be used as long as it provides clearly defined moments in time
for start and end of a lexical search or lookup operation.

For names the general LDT that discriminates between words and nonwords cannot
be used because phonotactically well-formed nonnames do not exist. However, names
and standard vocabulary are equivalent in terms of presence in memory: a name is either
present (cf. words) or not present (cf. nonwords). Therefore an equivalent LDT for
proper names is to ask participants whether or not a name is present in their memory,
which can be operationalized as asking whether or not they know a particular name.

The concept of knowing a name is more complex than the distinction between
words and nonwords, and can cause the test participant to perform extensive deliberation
before responding. This is undesired because lexical look-up is preferably investigated
in isolation. If another task interferes, then the amount of interference should be equal
across stimuli and test participants, which is difficult to realize in case of extensive pro-
cessing. The test participants should therefore be carefully instructed to use a simple
interpretation of the task. This issue is discussed further in Section 9.7.

9.4 Application

Structural decomposition has been considered in the literature as part of the visual word
recognition process. The type of unit has been debated, e.g., syllables [126], morphemes
[82], or homophonic syllables [2] for Spanish. Decomposition has been described as
“optional rather than obligatory” by [4], who states that decomposition can be useful but
only under certain conditions. According to [103], structural decomposition occurs both
for morphemes with a semantic function (e.g., clean-er) and for apparent morphological
relationships (i.e., words for which a decomposition using known morphemes is not
semantically valid, for example corner), while words without morphological suffixes
are not decomposed.

For proper names, and person names in particular, structural decomposition appears
to be useful in the process of name variant recognition. Spelling variation is often located
in the periphery of a name, which roughly corresponds to inflectional or (secondary)
compound morphemes or affixes (cf. Peter-son vs. Peter-sen as mentioned above).
Therefore, if the reader encounters a common affix, this affix can be stripped before

Chapter 9: Cognitive processing of proper names 145

or during the lexical look-up to facilitate recognition of the target as variant of another
name with the same stem but a different affix. However, if a name is composed of a
stem with uncommon affixes, decomposition and subsequent stem identification will be
slower.

The proper name LDT is used to investigate this hypothesis. Participants are pre-
sented with prime-target pairs in which the prime has either a common or an uncommon
suffix. Targets were either known names or unknown names. Prime and target share
the same stem. Every target has a familiar suffix (however different from the suffix used
for the prime). Further details of the procedure can be found in the next section. The
hypothesis entails the following predictions:

• A prime with a common suffix has a larger priming effect than a prime with an
uncommon suffix for known targets because the stem has faster and/or stronger
lexical activation for common suffixes.

• For unknown targets there is no difference between the priming conditions be-
cause lexical activation of the stem does not occur (since it has no lexical entry).

Note that the decomposition of a name into stem and suffix is only one out of several
processes involved in name variant recognition. Moreover, suffix stripping in itself is a
general element of syntactic parsing which can be used for various other processing
tasks besides variant recognition. In case all variation is indeed located in the suffix, the
suffix is clearly identifiable and the stem is used for a single lemma only, decomposition
is sufficient for name variant detection. In other cases however various complementary
or alternative processing is necessary. The research presented in the current chapter is
intended as a pilot study of the cognitive aspects of record linkage in general and person
name variation in particular, for which suffix stripping is selected as topic of interest.

Suffixation occurs both for first names and for family names, however the nature
of suffixes for the two types of names is somewhat different. First name suffixes are
generally diminutives (see also Section 6.3.3) and ornamentations (e.g., latinization or
general elongation). In contrast, family name suffixes are generally more semantic in
nature (even though the semantics have been discarded in present use). Family names
can be grouped in four main categories [83]: patronyms, location/origin names, profes-
sion names and names based on personal characteristics. In the development of family

146 Chapter 9: Cognitive processing of proper names

names a suffix could be used to derive a description of a person (i.e., a name) from a
stem of one of the categories, for example Peter-sen (son of Peter), Dijk-stra (occupant
of a dijk, English: dike), Schip-p-er (person involved with a schip, English: ship, added
p for spelling reasons) or Oud-man (man who is oud, English: old). Because of the orig-
inal function suffixation is a common phenomenon throughout the inventory of family
names, therefore these names are used in the experiment described in this chapter.

9.5 Experimental details

Design. A masked priming lexical decision task is used. The task is to classify
a name as ’known’ (high frequency) or ’unknown’ (low frequency). The targets are
names with a common suffix. Primes are the target stem with either a different common
suffix or an uncommon suffix. Targets are presented once, and in random order, to each
participant. The prime type that preceeds an individual target is alternated between
participants.

Participants. Fourty-four individuals participated in the experiment in exchange
for pay. All participants were native speakers of Dutch and had normal or corrected-to-
normal vision. The participants were mostly undergraduate students. Seventeen partic-
ipants were male and twenty-seven female, average age 22.0 years (standard deviation
5.2 years). Thirty-five participants originated from the western conurbation area in the
Netherlands, while the others originated from various other parts of the country.

Materials. From the set of Genlias marriage certificates the family names of the
parents have been used to obtain stimuli. This set contains around 300.000 distinct
names (around 10 million names in total). The particular selection of parent names
from marriage certificates is not based on domain-specific considerations, but rather as a
simple means of obtaining a reasonably large sample. This set is biased towards families
with a high marriage rate (dependent on both the number of children and the number of
marriages per child), however the selection of target names and suffixes most likely
remains representative despite the bias.

The suffixes used in the experiment are listed in Table 9.1. In order to create uncom-
mon suffixes which are as similar to common suffixes as possible (except for being un-
common), three aspects have been considered: subsyllabic structure (consonant-vowel

Chapter 9: Cognitive processing of proper names 147

suffix frequency bigram suffix frequency bigram
-en 739 0.045 -is 5 0.008
-sen 5381 0.027 -ket 86 0.008
-er 2600 0.039 -am 25 0.004
-stra 901 0.003 -scho 4 0.003
-e 884 0.031 -o 138 0.003
-man 6042 0.025 -bor 11 0.007
-ma 2159 0.014 -ko 92 0.002
-huis 971 0.004 -ries 78 0.011
-veld 1370 0.007 -sert 76 0.016
-land 599 0.006 -gars 16 0.008
-hof 1154 0.005 -tis 80 0.006
-huizen 668 .005 -rieven 4 0.012
-hout 559 0.004 -kaan 11 0.008

Table 9.1: Common suffixes (left) with uncommon counterparts (right). Frequency is
listed as the amount of distinct occurrences as a suffix in the Genlias data set. Bigram
numbers denote the harmonic mean of relative bigram frequencies.

sequence), character bigram frequency and suffix frequency. These aspects are in part
based on the pseudo-word generation literature, in particular the Wuggy toolkit [70]. The
subsyllabic structure is matched between common and uncommon suffixes. The maxi-
mum suffix frequency for uncommon suffixes is 10 per million, i.e., a maximum of 100
in the Genlias dataset. Within this subset, bigram frequencies have been used to select
an uncommon suffix for each of the common suffixes. Bigram frequency counts are ob-
tained from the subset of all word-final syllables in the corpus. The selection is based on
the harmonic mean H of the relative frequencies of the bigrams in the suffix, as defined
in Equation (9.1). The relative mean of a bigram is defined as the total number of oc-
currences of this bigram in all suffixes divided by the total number of occurrences of all
bigrams in all suffixes. The definition of harmonic mean emphasizes smaller values in a
series. Very infrequent bigrams (such as qa or zx) strongly influence the experience of
a suffix being common or not, therefore the mean of bigram frequencies should reflect
infrequent bigrams in particular.

H =
n∑n

i=1
1
xi

(9.1)

148 Chapter 9: Cognitive processing of proper names

For many common suffixes it is not possible to find an uncommon suffix with
matching bigram frequencies, because a frequent suffix contributes to the frequency
of the constituent bigrams to a degree that cannot be reached by other combinations
of bigrams. This effect is amplified by the choice to compute frequencies from word-
final syllables in the corpus, instead of using general bigram frequencies for modern-day
Dutch. This choice is motivated by the aim to create uncommon suffixes which are sim-
ilar to common suffixes. The differences in morphological properties of 19th century
name endings and general modern-day Dutch may interfere with this aim, therefore the
morphological properties of the target category are used for frequency counts. Despite
the lack of uncommon suffixes with bigram frequencies comparable to common suf-
fixes, bigram frequency can still be used in the design by selecting a suffix with a high
bigram frequency relative to the available candidates. The final constraint on uncommon
suffixes is a manual assessment of the suitability of the suffix as a name ending.

Targets are selected by frequency in the corpus. Targets in the low frequency cate-
gory all have a frequency of 1 (per 10 million, however increasing the corpus size is not
expected to produce additional occurences). Targets in the high frequency category have
a frequency of around 100 to >5.000 per million, i.e., at least 1000 occurrences in the
Genlias data set. Eight low frequency names and eight high frequency names per suffix
are selected, which amounts to 8 · 2 · 13 = 208 names in total. A stem can be adjusted
to follow Dutch orthographic rules when combined with different suffixes. The set of
stimuli is listed in Appendix A.

Procedure. Participants were tested individually in a room with normal lighting.
Experiments are performed using a Windows computer running E-Prime on a 60Hz
screen. Each experiment consisted of 10 warm-up trials and 208 test trials, with a break
after every 70 trials. The length of the break was determined by the participant. Every
trial consisted of a forward mask (500 ms, a random letter string of the same length
as the prime), a prime (55 ms, 3 frames on 60Hz), a backward mask (18 ms, 1 frame,
equal to the forward mask), the target (2000 ms) and a pause (500 ms). Responses were
collected using two keys on a standard QWERTY keyboard. The participant instructions
were as follows:

A random letter string is shown, followed by a family name. You have to indicate
whether or not you know this name. A name is known if you know somebody having

Chapter 9: Cognitive processing of proper names 149

Frequency Response Mean RT № %
high none n/a 42 0.9

known 780 2880 62.9
unknown 830 1654 36.1

total 791 4576
low none n/a 19 0.4

known 810 367 8.0
unknown 768 4190 91.6

total 768 4576
total none n/a 61 0.7

known 783 3247 35.5
unknown 785 5844 63.9

total 779 9152

Table 9.2: Responses by target category.

this name, or if you have heard or read this name before, for example on television,
in a newspaper or on the internet. Names with a slightly different spelling or names
with different separate prefixes1 also count as known. The most important thing is
that you answer quickly according to your first impression. Keep both your index
fingers above the two assigned keys.

9.6 Experimental results

Participant responses by target category are listed in Table 9.2. Note that the totals do not
fully reflect response time numbers, because a failure to respond is counted as 0 ms. The
total error rate, defined here as the percentage of high-frequency names classified as un-
known or low-frequency names classified as known, is 22.1%. The error rate for the high
frequency category (36.1%) is higher than for the low frequency category (8.0%). The
mean reaction time is 779 ms with a standard deviation of 251 ms. The correct combina-
tions [high frequency, known] and [low frequency, unknown] are classified significantly
faster than incorrect combinations. Low-frequency names are classified significantly

1Separated prefixes are common in Dutch, generally function words like of, from, the, e.g., van der Molen,
English from the mill

150 Chapter 9: Cognitive processing of proper names

faster than high-frequency names. The overall reaction times do not significantly differ
by classification (p=0.697). However, within categories the correct response is signif-
icantly faster (p<0.01 for all significant differences). All statistical tests are T-tests for
equality of means, unless specified differently.

Analysis of mean reaction times by participant shows that 19 out of 44 participants
responded faster to high-frequency names, even though overall the low-frequency names
have shorter latencies. For the response 22 participants provided faster known-responses,
and therefore the other 22 provided faster unknown-responses, even though overall the
reaction time did not differ by response. The latency differences within the subject
subgroups are significant (p<0.01).

The data show a positive correlation between target frequency and correct classifi-
cation (R=0.38), and a negative correlation between target frequency and response time
(R=0.29). The regression curves are displayed in Figures 9.2 and 9.3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

p
ro

p
o
rt

io
n
 k

n
o
w

n

log(frequency)

linear, R=0,378
quadratic, R=0,384

Figure 9.2: Correlation between frequency and response.

An ANOVA (analysis of variance) with independent variables category, response
and prime type did not show a suffix type priming effect. Outlier removal by selecting
observations within 2 or 3 standard deviations of the mean, or by using the median in-
stead of the mean, did not change the outcome of the analysis. T-tests for equality of

Chapter 9: Cognitive processing of proper names 151

 600

 650

 700

 750

 800

 850

 900

 950

 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

m
e
a
n
 R

T

log(frequency)

linear, R=0,245
quadratic, R=0,290

Figure 9.3: Correlation between frequency and RT.

means on specific conditions showed a marginally significant effect of prime type on ob-
servations with both RT <750 ms and a known-response (p=.06, n=1773). Furthermore,
a significant effect of prime type was found on observations with RT <700 ms in the
high frequency category with a known-response (p=.045, n=1287). No other specific
conditions showed significant effects of prime type.

The cutoff values of 750 ms and 700 ms that have been used in statistical testing
are intended to separate the different processes that contribute to response times. This
problem has been addressed in the literature, e.g., [104]. Ratcliff lists several alternative
processes that can influence response times, such as guessing, inattention, or multiple
runs of the process under study. Each process can be modeled with a different response
time probability curve, and the actual response time histogram is accordingly modeled
as a mixture of these curves. An appropriate probability distribution for response times
is the Exponentially Modified Gaussian (EMG) distribution (see [84], chapters 1 and 3).
The EMG is a combination of a Gaussian curve (the normal distribution) and an expo-
nential random variable that can generate a skewed right tail. The different components
of this distribution might correspond to the various aspects of a decision task, although
these correspondences are debated [94]. Multiple EMG curves combined model simul-

152 Chapter 9: Cognitive processing of proper names

tanuous processes, each of which is composed of different aspects (perception, decision
and response generation). The distribution is defined as follows:

f (x; µ, σ, λ) =
λ

2
e
λ
2 (2µ+λσ2−2x) 2

√
π

∫ ∞

µ+λσ2−x
√

2σ

e−t2
dt (9.2)

Figure 9.4 shows a simulated distribution of response times which are influenced by two
different processes. The response times (shown as histogram) are drawn from the two
processes (shown as EMG curves) with an 80–20 ratio. The means of the two EMG
functions have been chosen such that the peaks of the distributions differ by approxi-
mately two standard deviations (all parameters adapted from [104]). This figure shows
that it is difficult to detect the mixture distribution from the shape of the response time
histogram, even if the process distributions differ considerably. A solution to this prob-
lem would be to mathematically filter the interfering distributions, however this requires
that the number of distributions and the parameters of each distribution are known in
advance or can be estimated reliably from data, which is generally not the case in exper-
imental result sets. Similar observations apply if instead of an EMG other functions are
used to model the response time distribution. The theoretical analysis of Ratcliff can be

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000

fr
e
q
u
e
n
cy

response time (ms)

µ=800, σ=40, λ=0.3

simulated observations
µ=400, σ=40, λ=0.3

Figure 9.4: Simulated response times influenced by different processes.

applied to the response time measurements for the current experiment. A histogram is
provided in Figure 9.5a, showing all observations and the subset of observations with a

Chapter 9: Cognitive processing of proper names 153

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

fr
e
q
u
e
n
c
y

response time (ms)

all observations
response ’known’

(a) Experimental measurements

 0

 5

 10

 15

 20

 25

 400 600 800 1000 1200 1400

fr
e
q
u
e
n
c
y

response time (ms)

(b) 10 ms moving average, tails removed

Figure 9.5: Histogram of response times.

known-response, which is the subset of interest for the priming analysis. The histogram
is shaped like an EMG distribution with a number of small peaks in the right tail, both

154 Chapter 9: Cognitive processing of proper names

for the full set and for the subset of known-responses. This observation becomes more
apparent after smoothing the histogram using a 10 ms moving average (see Figure 9.5b).
This indicates that indeed multiple processes are involved in the experimental task. To
isolate the main process, a cutoff value can be chosen that allows sufficient observations
from the main process while eliminating the influence of the other processes. Because
the distributions generally have a considerable overlap (cf. Figure 9.4), choosing an
appropriate cutoff value is non-trivial. A value of 700 or 750 ms for the current obser-
vations removes a part of the histogram that appears to be part of the main distribution,
however this seems to be unavoidable given the parameters of the other apparent distri-
butions. It should however be noted that this selection causes a rather dramatic reduction
of the number of data points, and a priming effect is observed for this selection only.

9.7 Discussion

In the LDT names are classified as known or unknown to individual participants. There-
fore, responses can strictly speaking never be considered incorrect, as long as the par-
ticipant is thruthful in the response and able to produce the response under the given
conditions (both of which are assumed). However, the LDT is designed to mirror a
typical word/nonword task using the assumption that generally low-frequency names
are unknown to the participants and high-frequency names are known. The error rate is
therefore defined as the percentage of responses for which the assumption does not hold.
This error rate is quite high, especially for high-frequency names (36.1%). Figure 9.2
shows that a large part of the stimulus set is to some degree responsible for the errors,
which limits the possibilities for decreasing the error rate by altering the stimulus set.
The errors can simply be isolated in the analysis (with the disadvantage of decreased
statistical power), but the cause of the high error rate should nevertheless be considered.
Either the proper name lexicon is indeed highly different across individuals, even for
high-frequency names, or the LDT instructions have been unclear, leading participants
to rejecting names that they are actually aware of. This in turn indicates that the par-
ticipant is using complex criteria for a decision which will influence the priming effect
under investigation.

The mean reaction time of 779 ms with a standard deviation of 251 ms is relatively

Chapter 9: Cognitive processing of proper names 155

high compared to other LDT experiments. This also indicates further processing which
could interfere with priming. The high standard deviation, which is also present across
participants, indicates differences in task execution. The differences in categories and
responses regarding average lowest reaction time across participants also indicates task
interpretation differences. Some participants might focus on the lexical decision as such,
and report whether or not a name looks familiar to them. This would predict longer av-
erage RTs for low-frequency/unknown names, cf. nonwords in a standard LDT. Other
participants might focus on the operationalization of knowing a name, by searching
episodic memory or other memory resources outside of the lexicon. Yet another group
might have focussed on the linguistic variation task, trying to syntactically or semanti-
cally match a name to another name they know. The latter two interpretations predict
longer average RTs for high-frequency/known names because these names have a larger
presence in general memory (without imposing a specific model of memory storage and
retrieval). Task interpretation can impact priming effects as well.

Figures 9.2 and 9.3 show that a large part of the variation in responses and reaction
times is not explained by the frequency of the targets. This is a further indication, besides
the high error rate as discussed above, that other factors besides frequency should be
included in stimulus design in order to balance the target set. Possible additional factors
include name distribution over social class, geographic region effects, morphosyntactic
regularity, etc. Including these factors could simplify the task of classifying a name as
known or unknown for participants, which would provide a more reliable setting for
investigating components of name processing such as suffix recognition.

A significant priming effect is observed for observations with RTs <700 ms in the
high frequency category with a known-response. The reaction time for high frequency
prime suffixes is on average 8 ms shorter than for low frequency suffixes. No other
priming effects are observed. This is consistent with the predictions resulting from the
hypothesis in Section 9.4. Note that for both prime types the name stem is equal to the
target stem, and the suffixes are different between the primes and the target. Therefore,
responses for both prime types were subject to onset priming which is inhibited or am-
plified by the suffix, while the suffix does not cause priming itself. Onset priming is a
strong and consistent effect [71], therefore the influence of the different suffix conditions
is expected to be limited.

156 Chapter 9: Cognitive processing of proper names

9.8 Conclusion

A lexical decision task for proper names is presented based on the participant’s familiar-
ity with a name. This LDT is intended to mirror the typical word/nonword task for stan-
dard vocabulary in order to investigate lexical retrieval mechanisms for proper names.
The LDT is applied in an experiment regarding suffix stripping. This experiment showed
that the proper name LDT can be used to observe priming effects, however, various con-
siderations apply on which lexical or semantic processes are actually measured regarding
the task itself and the stimuli used in the experiment. Additional research is necessary
to improve the robustness of the LDT.

Although the experiment described in Section 9.1 could not be used for the original
purpose of investigating human linguistic processing, it could be used as a component
of an active learning approach. Active learning (see, e.g., [120] for an overview) is a
subfield of machine learning in which a so-called oracle, generally a human user (or
alternatively an external data source or an expert system) is asked to provide class labels
for previously unlabeled data points during the training cycle of a classifier. Because
user involvement is a limited resource the main problem in active learning is to select
only unlabeled examples that will actually reduce the classification error. Many types
of classifiers provide some kind of uncertainty value for each data point, e.g., the error
of a leaf node in a classification tree, the distance to the hyperplane in a Support Vector
Machine or the predicted class probability in a Naive Bayes classifier or a Bayesian
Network. Unlabeled examples with a high uncertainty value are likely to contribute
to classification accuracy when the actual label is known, therefore these examples are
useful in an active learning setting. Alternatively examples can be selected based on
disagreement among members of an ensemble classifier, see, e.g., [108] for an example
of this approach applied to record linkage.

The experimental set-up described in the current section can be used in the con-
text of active learning in two different ways. Firstly, the examples presented for user
review can be analyzed in terms of features using different trials of the same example
with different users. The relative importance of features can be assigned a higher weight
in the training process of the learning algorithm. Secondly, user interaction can be in-
corporated to select possibly interesting training examples without the need for reliable

Chapter 9: Cognitive processing of proper names 157

uncertainty values from the classification algorithm. This can be done by selecting a ran-
dom record that has not been linked and presenting the name sequence from this record
to the user by iteratively adding characters as described above. Once the user correctly
identifies the names this partially displayed name sequence can be used as a pattern to
search the dataset for candidate records. The user can subsequently be asked to choose
the correct match from the candidates, which results in a new positive training example.
This approach might be able to reduce the effects of the unbalanced class distribution,
which is a general problem in the application of machine learning for record linkage.

Bibliography

[1] Redmer Alma. Thesauri of standardized personal names in Drenthe. Per-
sonal communication. Data set supplied by Drents Archief, http://www.
drentsarchief.nl, 2011.

[2] Carlos Álvarez, Manuel Carreiras, and Manuel Perea. Are syllables phonological
units in visual word recognition? Language and Cognitive Processes, 19(3):427–
452, 2004.

[3] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Eliminating
fuzzy duplicates in data warehouses. In Proceedings of the 28th international
conference on Very Large Data Bases, pages 586–597, 2002.

[4] Sally Andrews. Morphological influences on lexical access: Lexical or nonlexical
effects? Journal Of Memory and Language, 25:726–740, 1986.

[5] Max Arellano and Donald Simborg. A probabilistic approach to the patient iden-
tification problem. In Proceedings of the Annual Symposium on Computer Ap-
plication in Medical Care, page 852. American Medical Informatics Association,
1981.

[6] Madeleine Ball. python-gedcom: Python module for parsing, analyz-
ing, and manipulating GEDCOM files. https://github.com/madprime/

python-gedcom/, 2012.

[7] Susan Bartlett, Grzegorz Kondrak, and Colin Cherry. Automatic syllabification
with structured SVMs for letter-to-phoneme conversion. In Proceedings of ACL-
08: HLT, pages 568–576. ACL, 2008.

[8] Rohan Baxter, Peter Christen, and Tim Churches. A comparison of fast blocking
methods for record linkage. In Proceedings of the KDD03 Workshop on Data

158

http://www.drentsarchief.nl
http://www.drentsarchief.nl
https://github.com/madprime/python-gedcom/
https://github.com/madprime/python-gedcom/

Bibliography 159

Cleaning, Record Linkage and Object Consolidation, KDD 2003, pages 25–27.
ACM SIGKDD, 2003.

[9] Robert Bayer and Edward McCreight. Organisation and maintenance of large
ordered indexes. Acta Informatica, 1:173–189, 1972.

[10] Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in relational
data. ACM Transactions on Knowledge Discovery from Data, 1(1):Article 5,
2007.

[11] Mikhail Bilenko and Raymond Mooney. Adaptive duplicate detection using
learnable string similarity measures. In Proceedings of the Ninth International
Conference on Knowledge Discovery and Data mining, pages 39–48. ACM, 2003.

[12] Mikhail Bilenko, Raymond Mooney, William Cohen, Pradeep Ravikumar, and
Stephen Fienberg. Adaptive name matching in information integration. Intelligent
Systems, 18(5):16–23, 2003.

[13] Maximilian Bisani and Hermann Ney. Joint-sequence models for grapheme-to-
phoneme conversion. Speech Communication, 50(5):434–451, 2008.

[14] Gerrit Bloothooft. Corpus–based name standardization. History and Computing,
6(3):153–167, 1994.

[15] Gerrit Bloothooft and Marijn Schraagen. Learning name variants from true per-
son resolution. In Proceedings of the International Workhop on Population Re-
construction. International Institute of Social History, 2014.

[16] Onno Boonstra and Anton Schuurman (eds). Tijd en ruimte: nieuwe toepassingen
van GIS in de alfawetenschappen. Matrijs, 2009.

[17] Antal van den Bosch, Bertjan Busser, Sander Canisius, and Walter Daelemans.
An efficient memory-based morpho-syntactic tagger and parser for Dutch. Com-
putational Linguistics in the Netherlands: Selected Papers from the Seventeenth
CLIN Meeting, pages 99–114, 2007.

[18] Gérard Bouchard. Current issues and new prospects for computerized record
linkage in the province of Québec. Historical Methods: A Journal of Quantitative
and Interdisciplinary History, 25(2):67–73, 1992.

[19] Gérard Bouchard and Christian Pouyez. Name variations and computerized
record linkage. Historical Methods: A Journal of Quantitative and Interdisci-
plinary History, 13(2):119–125, 1980.

160 Bibliography

[20] Gosse Bouma. Finite state methods for hyphenation. Natural Language Engi-
neering, 9(01):5–20, 2003.

[21] Loes Braun. Information retrieval from Dutch historical corpora. Master’s thesis,
Maastricht University, 2002.

[22] Leo Breiman, Jerome Friedman, Charles Stone, and Richard Olshen. Classifica-
tion and regression trees. The Wadsworth and Brooks-Cole statistics-probability
series. Chapman & Hall, 1984.

[23] Christopher Carrino. A Study of Repeat Collaboration in Social Affiliation Net-
works. PhD thesis, Pennsylvania State University, 2006.

[24] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Robust
and efficient fuzzy match for online data cleaning. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, pages 313–
324. ACM, 2003.

[25] Peter Christen. A comparison of personal name matching: Techniques and prac-
tical issues. In Proceedings of the Sixth IEEE International Conference on Data
Mining — Workshops, pages 290–294. IEEE, 2006.

[26] Peter Christen. Automatic record linkage using seeded nearest neighbor and sup-
port vector machine classification. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 151–
159. ACM, 2008.

[27] Peter Christen. Febrl: an open source data cleaning, deduplication and record
linkage system with a graphical user interface. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 1065–1068. ACM, 2008.

[28] Peter Christen. Data Matching: Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer, 2012.

[29] Peter Christen. A survey of indexing techniques for scalable record linkage and
deduplication. Transactions on Knowledge and Data Engineering, 24:1537–
1555, 2012.

[30] Peter Christen, Tim Churches, and Justin Zhu. Probabilistic name and address
cleaning and standardisation. In AUSDM02: Proceedings of the Australasian
Data Mining Conference, pages 99–108. Springer-Verlag, Lecture Notes in Com-
puter Science, 2002.

Bibliography 161

[31] Peter Christen and Ross Gayler. Towards scalable real-time entity resolution us-
ing a similarity-aware inverted index approach. In Seventh Australasian Data
Mining Conference (AusDM 2008), volume 87, pages 51–60. ACS, 2008.

[32] Munir Cochinwala, Verghese Kurien, Gail Lalk, and Dennis Shasha. Efficient
data reconciliation. Information Sciences, 137:1–15, 2001.

[33] William Cohen and Jacob Richman. Learning to match and cluster large high-
dimensional data sets for data integration. In Proceedings of ACM SIGKDD ’02,
pages 475–480. ACM, 2002.

[34] Fred Damerau. A technique for computer detection and correction of spelling
errors. Communications of the ACM, 7:171–176, 1964.

[35] Morris DeGroot and Prem Goel. The matching problem for multivariate normal
data. Sankhyā: The Indian Journal of Statistics, Series B, pages 14–29, 1976.

[36] Julia Efremova, Bijan Ranjbar-Sahraei, Frans Oliehoek, Toon Calders, and Karl
Tuyls. A baseline method for genealogical entity resolution. In Proceedings of
the International Workhop on Population Reconstruction. International Institute
of Social History, 2014.

[37] Mohammadreza Ektefa, Fatimah Sidi, Hamidah Ibrahim, Marzanah Jabar, and
Sara Memar. A comparative study in classification techniques for unsupervised
record linkage model. Journal of Computer Science, 7:341–347, 2011.

[38] Mohamed Elfeky, Vassilios Verykios, and Ahmed Elmagarmid. TAILOR: A
record linkage toolbox. In ICDE’02: Proceedings of the 18th International Con-
ference on Data Engineering, pages 17–28. IEEE, 2002.

[39] Christos Faloutsos and King-Ip Lin. FastMap: A fast algorithm for indexing,
data-mining and visualization of traditional and multimedia datasets. In Proceed-
ings of the 1995 ACM SIGMOD international conference on Management of data,
pages 163–174. ACM, 1995.

[40] Ivan Fellegi and Alan Sunter. A theory for record linkage. Journal of the Ameri-
can Statistical Association, 64(328):1183–1210, 1969.

[41] Edward Fredkin. Trie memory. Communications of the ACM, 3:490–499, 1960.

[42] Carol Friedman and Robert Sideli. Tolerating spelling errors during patient vali-
dation. Computers and Biomedical Research, 25:486–509, 1992.

162 Bibliography

[43] Zhichun Fu, Jun Zhou, Peter Christen, and Mac Boot. Multiple instance learning
for group record linkage. In Advances in Knowledge Discovery and Data Mining,
pages 171–182. Springer, 2012.

[44] GEDCOM Team. The GEDCOM standard release 5.5. Technical report, Family
and Church History Department, The Church of Jesus Christ of Latter-day Saints,
Salt Lake City, 1996.

[45] Lise Getoor and Christopher Diehl. Link mining: a survey. SIGKDD Explorations
Newsletter, 7:3–12, 2005.

[46] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high
dimensions via hashing. In VLDB ’99: Proceedings of the 25th International
Conference on Very Large Data Bases, pages 518–529. Morgan Kaufmann Pub-
lishers Inc., 1999.

[47] Ron Goeken, Lap Huynh, T Lynch, and Rebecca Vick. New methods of census
record linking. Historical methods, 44(1):7–14, 2011.

[48] Karl Goiser and Peter Christen. Towards automated record linkage. In Pro-
ceedings of the Fifth Australasian Conference on Data Mining and Analytics,
volume 61, pages 23–31. Australian Computer Society, Inc., 2006.

[49] Pablo Gomez, Roger Ratcliff, and Manuel Perea. The Overlap Model: A model
of letter position coding. Psychological Review, 115(3):577–600, 2008.

[50] Jonathan Grainger. Cracking the orthographic code: An introduction. Language
and Cognitive Processes, 23(1):1–35, 2008.

[51] John Gumperz. The speech community. In David Sills, editor, Encyclopedia of
the Social Sciences 9(3), pages 382–386. Macmillan, 1965.

[52] Douglas Hacker, Carolyn Plumb, Earl Butterfield, Daniel Quathamer, and Edgar
Heineken. Text revision: Detection and correction of errors. Journal of Educa-
tional Psychology, 86(1):65, 1994.

[53] Richard Hamming. Error detecting and error correcting codes. The Bell System
Technical Journal, 29(2):147–160, 1950.

[54] Michael Hammond. Optimality theory and prosody. In Optimality Theory: An
Overview, pages 33–58. Blackwell Publishers, 1997.

Bibliography 163

[55] Thomas Hannagan and Jonathan Grainger. Protein analysis meets visual word
recognition: A case for string kernels in the brain. Cognitive Science, 36:575–
606, 2012.

[56] Steffen Heinz, Justin Zobel, and Hugh E. Williams. Burst tries: A fast, efficient
data structure for string keys. ACM Transactions on Information Systems, 20:192–
223, 2002.

[57] Steven Henikoff and Jorja Henikoff. Amino acid substitution matrices from pro-
tein blocks. Proceedings of the National Academy of Sciences, 89(22):10915–
10919, 1992.

[58] Daniel Hirschberg. A linear space algorithm for computing maximal common
subsequences. Communications of the ACM, 18:341–343, 1975.

[59] Daniel Hirschberg. Algorithms for the longest common subsequence problem.
Journal of the ACM, 24:664–675, 1977.

[60] Dionysius Huijsmans. IISG–LINKS dataset historische Nederlandse to-
poniemen spatio-temporeel 1812-2012. http://www.iisg.nl/hsn/data/

place-names.html, 2013.

[61] Handbook of the International Phonetic Association: A guide to the use of the
International Phonetic Alphabet. Cambridge University Press, 1999.

[62] Stephen Ivie, Burdette Pixton, and Christophe Giraud-Carrier. Metric-based data
mining model for genealogical record linkage. In Proceedings of the IEEE In-
ternational Conference on Information Reuse and Integration, pages 538–543.
IEEE, 2007.

[63] Guy Jacobson and Kiem-Phong Vo. Heaviest increasing/common subsequence
problems. In Combinatorial Pattern Matching, volume 644 of Lecture Notes in
Computer Science, pages 52–66. Springer, 1992.

[64] Matthew Jaro. Advances in record-linkage methodology as applied to matching
the 1985 census of Tampa, Florida. Journal of the American Statistical Associa-
tion, 84(406):414–420, 1989.

[65] Paul Johnson. Gedcom — a module to manipulate Gedcom genealogy files.
http://search.cpan.org/˜pjcj/Gedcom-1.18/, 2013.

[66] Petteri Jokinen and Esko Ukkonen. Two algorithms for approximate string match-
ing in static texts. In MFCS’91: Proceedings of the 16th International Symposium
on Mathematical Foundations of Computer Science, pages 240–248, 1991.

http://www.iisg.nl/hsn/data/place-names.html
http://www.iisg.nl/hsn/data/place-names.html
http://search.cpan.org/~pjcj/Gedcom-1.18/

164 Bibliography

[67] Karen Sparck Jones. A statistical interpretation of term specificity and its appli-
cation in retrieval. Journal of Documentation, 28(1):11–21, 1972.

[68] Michael Kay. Up-conversion using XSLT 2.0. In Proceedings of XML: From
Syntax to Solutions. IDEAlliance, 2004.

[69] Michael Kay. Positional grouping in XQuery. In Proceedings of the 3rd In-
ternational Workshop on XQuery Implementation, Experience and Perspectives
(XIME-P), 2006.

[70] Emmanuel Keuleers and Marc Brysbaert. Wuggy: A multilingual pseudoword
generator. Behavior Research Methods, 42(3):627–633, 2010.

[71] Sachiko Kinoshita. The nature of masked onset priming effects in naming: A
review. In Masked Priming: The State of the Art, chapter 8, pages 123–132.
Psychology Press, 2003.

[72] Scott Kirkpatrick, Daniel Gelatt, and Mario Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[73] Marijn Koolen, Frans Adriaans, Jaap Kamps, and Maarten de Rijke. A cross-
language approach to historic document retrieval. In ECIR 2006: Proceedings of
the 28th European Conference on IR Research, pages 407–419. Springer, 2006.

[74] Ian Korf, Mark Yandell, and Joseph Bedell. BLAST: an essential guide to the
Basic Local Alignment Search Tool. O’Reilly, 2003.

[75] Kiran Kumar and Pandu Rangan. A linear space algorithm for the LCS problem.
Acta Informatica, 24:353–362, 1987.

[76] Tak-Wah Lam, Wing-Kin Sung, and Swee-Seong Wong. Improved approximate
string matching using compressed suffix data structures. Algorithmica, 51:298–
314, 2008.

[77] Pascale Larigauderie, Daniel Gaonac’h, and Natasha Lacroix. Working memory
and error detection in texts: What are the roles of the central executive and the
phonological loop? Applied Cognitive Psychology, 12(5):505–527, 1998.

[78] Antoine Laurent, Sylvain Meignier, and Paul Deléglise. Improving recognition
of proper nouns in asr through generating and filtering phonetic transcriptions.
Computer Speech & Language, 2014.

Bibliography 165

[79] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densi-
fication laws, shrinking diameters and possible explanations. In KDD ’05: Pro-
ceedings of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, pages 177–187. ACM, 2005.

[80] Vladimir Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[81] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social
networks. Journal of the American Society for Information Science and Technol-
ogy, 58:1019–1031, 2007.

[82] Susan Lima and Alexander Pollatsek. Lexical access via an orthographic code?
The basic orthographic syllabic structure (BOSS) reconsidered. Journal Of Verbal
Learning and Verbal Behavior, 22:310–332, 1983.

[83] Paul Longley, Richard Webber, and Daryl Lloyd. The quantitative analysis of
family names: Historic migration and the present day neighborhood structure of
Middlesbrough, United Kingdom. Annals of the Association of American Geog-
raphers, 97(1):31–48, 2007.

[84] Robert Luce. Response Times: Their Role in Inferring Elementary Mental Orga-
nization, volume 8. Oxford University Press, 1986.

[85] Jayant Madhavan, Philip Bernstein, AnHai Doan, and Alon Halevy. Corpus-based
schema matching. In Proceedings of the 21st IEEE International Conference on
Data Engineering, pages 57–68, 2005.

[86] Andrew McCallum, Kamal Nigam, and Lyle Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In Proceedings of
the Sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’00, pages 169–178. ACM, 2000.

[87] Howard Morgan. Spelling correction in systems programs. Communications of
the ACM, 13(2):90–94, 1970.

[88] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput-
ing Surveys, 33:31–88, 2001.

[89] Gonzalo Navarro and Ricardo Baeza-Yates. A new indexing method for approx-
imate string matching. In CPM ’99: Proceedings of the 10th Annual Symposium
on Combinatorial Pattern Matching, pages 163–185. Springer-Verlag, 1999.

166 Bibliography

[90] Gonzalo Navarro, Erkki Sutinen, and Jorma Tarhio. Indexing text with approxi-
mate q-grams. Journal of Discrete Algorithms, 3:157–175, 2005.

[91] Joshua O’Madadhain, Jon Hutchins, and Padhraic Smyth. Prediction and rank-
ing algorithms for event-based network data. SIGKDD Explorations Newsletter,
7:23–30, 2005.

[92] Jose Oncina and Marc Sebban. Learning stochastic edit distance: Application in
handwritten character recognition. Pattern Recognition, 39(9):1575–1587, 2006.

[93] Maarten Oosten. Verleden namen, Familieverbanden uit Genlias–data. Master
thesis, Universiteit Leiden, 2008.

[94] Evan Palmer, Todd Horowitz, Antonio Torralba, and Jeremy Wolfe. What are the
shapes of response time distributions in visual search? Journal of Experimental
Psychology: Human Perception and Performance, 37(1):58–71, 2011.

[95] Ulrich Pfeifer, Thomas Poersch, and Norbert Fuhr. Retrieval effectiveness of
proper name search methods. Information Processing & Management, 32:667–
679, 1996.

[96] Maura Pilotti, Martin Chodorow, Ian Agpawa, Marta Krajniak, and Salif Ma-
hamane. Proofreading for word errors. Perceptual and Motor Skills, 114(2):641–
664, 2012.

[97] Jakub Piskorski, Marcin Sydow, and Anna Kupść. Lemmatization of Polish per-
son names. In Proceedings of the Workshop on Balto-Slavonic Natural Language
Processing: Information Extraction and Enabling Technologies, pages 27–34.
Association for Computational Linguistics, 2007.

[98] Burdette Pixton and Christophe Giraud-Carrier. MAL4:6 - using data mining for
record linkage. In Proceedings of the 5th Annual Workshop on Technology for
Family History and Genealogical Research. FamilySearch, 2005.

[99] Joseph Pollock and Antonio Zamora. Automatic spelling correction in scientific
and scholarly text. Communications of the ACM, 27:358–368, 1984.

[100] Martin Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[101] Bruno Pouliquen, Ralf Steinberger, Camelia Ignat, Irina Temnikova, Anna Widi-
ger, Wajdi Zaghouani, and Jan Žižka. Multilingual person name recognition
and transliteration. CORELA-COgnition, REpresentation, LAnguage, Poitiers,
France: CERLICO, 3(3), 2005.

Bibliography 167

[102] Dallan Quass and Paul Starkey. Record linkage for genealogical databases. In
KDD-2003 Workshop on Data Cleaning, Record Linkage, and Object Consolida-
tion, pages 40–42, 2003.

[103] Kathleen Rastle, Matthew Davis, and Boris New. The broth in my brothers
brothel: Morpho-orthographic segmentation in visual word recognition. Psycho-
nomic Bulletin & Review, 11(6):1090–1098, 2004.

[104] Roger Ratcliff. Methods for dealing with reaction time outliers. Psychological
Bulletin, 114(3):510–532, 1993.

[105] Eric Sven Ristad and Peter Yianilos. Learning string-edit distance. Transactions
on Pattern Analysis and Machine Intelligence, 20(5):522–532, 1998.

[106] C.C. Robusto. The cosine-haversine formula. The American Mathematical
Monthly, 64(1):38–40, 1957.

[107] Robert Russell. Index. US Patent 1261167, 1918.

[108] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using ac-
tive learning. In Proceedings of the Eighth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 269–278. ACM, 2002.

[109] Johannes van der Schaar and Doreen Gerritzen (ed). Prisma voornamen. Het
Spectrum, 2000.

[110] Theresa Scharl and Friedrich Leisch. The stochastic QT-Clust algorithm: Eval-
uation of stability and variance on timecourse microarray data. In Compstat
2006: Proceedings in Computational Statistics 17th Symposium, pages 1015–
1022. Physica-Verlag, 2006.

[111] Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In
Proceedings of the International Conference on New Methods in Language Pro-
cessing, pages 44–49, 1994.

[112] Patrick Schone, Chris Cummings, Stuart Davey, Michael Jones, Barry Nay, and
Mark Ward. Comprehensive evaluation of name matching across historic and lin-
guistic boundaries. In Proceedings of the 12th Annual Family History Technology
Workshop. FamilySearch, 2012.

[113] Marijn Schraagen. Complete coverage for approximate string matching in record
linkage using bit vectors. In 23rd IEEE International Conference on Tools with
Artificial Intelligence, pages 740–747. IEEE, 2011.

168 Bibliography

[114] Marijn Schraagen and Hendrik Jan Hoogenboom. Predicting record linkage po-
tential in a family reconstruction graph. In Proceedings of the 23rd Benelux Con-
ference on Artificial Intelligence, pages 199–206, 2011.

[115] Marijn Schraagen and Dionysius Huijsmans. Comparison between historical
population archives and decentralized databases. In 7th Workshop on Language
Technology for Cultural Heritage, Social Sciences, and Humanities, pages 20–28.
ACL, 2013.

[116] Marijn Schraagen and Walter Kosters. Data-driven name reduction for record
linkage. In Second International Conference on Innovative Computing Technol-
ogy, pages 311–316. IEEE, 2012.

[117] Marijn Schraagen and Walter Kosters. Record linkage using graph consistency.
In 10th International Conference on Machine Learning and Data Mining, 2014.

[118] Marijn Schraagen and Niels O. Schiller. Lexical decision for proper names. In
preparation, 2014.

[119] Carlo Semenza. Naming with proper names: The left temporal pole theory. Be-
havioural Neurology, 24:277–284, 2011.

[120] Burr Settles. Active learning literature survey. Computer Sciences Technical
Report 1648, University of Wisconsin–Madison, 2009.

[121] Gilberto Silva and Claudia Oliveira. A lexicon-based stemming procedure. In
Computational Processing of the Portuguese Language, pages 159–166. Springer,
2003.

[122] Mark Skolnick, Luca Cavalli-Sforza, Antonio Moroni, and Enzo Siri. A pre-
liminary analysis of the genealogy of Parma Valley, Italy. Journal of Human
Evolution, 5(1):95–115, 1976.

[123] Matthew Smith and Christophe Giraud-Carrier. Genealogical implicit affinity
network. In Proceedings of the 6th Annual Family History Technology Workshop.
FamilySearch, 2006.

[124] Chakkrit Snae. A comparison and analysis of name matching algorithms. Inter-
national Journal of Applied Science. Engineering and Technology, 4(1):252–257,
2007.

Bibliography 169

[125] Cary Sweet, Tansel Özyer, and Reda Alhajj. Enhanced graph based genealogical
record linkage. In ADMA ’07: Proceedings of the 3rd International Conference
on Advanced Data Mining and Applications, pages 476–487. Springer-Verlag,
2007.

[126] Marcus Taft. Lexical access via an orthographic code: The basic orthographic
syllabic structure (BOSS). Journal Of Verbal Learning and Verbal Behavior,
18:21–39, 1979.

[127] Cyprien Tanguay. Dictionnaire généalogique des familles canadiennes depuis la
fondation de la colonie jusqu’à nos jours. E. Senécal, 1871.

[128] Peter Verthez. The Gedcom parser library. http://gedcom-parse.

sourceforge.net/, 2004.

[129] Timothy de Vries, Hui Ke, Sanjay Chawla, and Peter Christen. Robust record
linkage blocking using suffix arrays. In CIKM ’09: Proceedings of the 18th ACM
Conference on Information and Knowledge Management, pages 305–314. ACM,
2009.

[130] Tor Wager, K. Luan Phan, Israel Liberzon, and Stephan Taylor. Valence, gender,
and lateralization of functional brain anatomy in emotion: a meta-analysis of
findings from neuroimaging. NeuroImage, 19:513–531, 2003.

[131] Robert Wagner and Michael Fischer. The string-to-string correction problem.
Journal of the ACM, 21:168–173, 1974.

[132] Holger Wandt and Vincent van Hunnik. High precision matching at the heart of
master data management. Whitepaper, Human Inference, 2013.

[133] D. Randall Wilson. Graph-based remerging of genealogical databases. In Pro-
ceedings of the 1st Annual Family History Technology Workshop. FamilySearch,
2001.

[134] D. Randall Wilson. Genealogical record linkage: Features for automated person
matching. In Proceedings of RootsTech 2011, pages 331–340. FamilySearch,
2011.

[135] Ian Winchester. The linkage of historical records by man and computer: Tech-
niques and problems. The Journal of Interdisciplinary History, 1(1):107–124,
1970.

http://gedcom-parse.sourceforge.net/
http://gedcom-parse.sourceforge.net/

170 Bibliography

[136] William Winkler. String comparator metrics and enhanced decision rules in the
Felligi-Sunter model of record linkage. In Proceedings of the Section on Survey
Research Methods, pages 354–359. American Statistical Association, 1990.

[137] William Winkler. Overview of record linkage and current research directions.
Technical report, U.S. Census Bureau, 2006.

[138] Jacqueline Wood. Social cognition and the prefrontal cortex. Behavioral and
Cognitive Neuroscience Reviews, 2(2):97–114, 2003.

[139] Scott Woodfield. Effective sharing of family history information. In Proceedings
of the 12th Annual Family History Technology Workshop. FamilySearch, 2012.

[140] Sun Wu and Udi Manber. A fast algorithm for multi-pattern searching. Technical
report, Department of Computer Science, University of Arizona, 1994.

[141] Stéphane Zampelli, Yves Deville, and Pierre Dupont. Declarative approximate
graph matching using a constraint approach. In Proceedings of the Second Inter-
national Workshop on Constraint Propagation and Implementation, pages 109–
124, 2005.

[142] Ivo Zandhuis. Towards a genealogical ontology for the semantic web. In Human-
ities, Computers and Cultural Heritage: Proceedings of the XVI international
conference of the Association for History and Computing, pages 296–300, 2005.

[143] Vivienne Zhu, Marc Overhage, James Egg, Stephen Downs, and Shaun Gran-
nis. An empiric modification to the probabilistic record linkage algorithm using
frequency-based weight scaling. Journal of the American Medical Informatics
Association, 16(5):738–745, 2009.

[144] Justin Zobel and Philip Dart. Phonetic string matching: Lessons from information
retrieval. In Proceedings of the 19th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 166–172. ACM,
1996.

Appendix A

List of stimuli used in the
Lexical Decision experiment

This Appendix contains the set of stimuli used in the cognitive experiment described in
Chapter 9.

prime target
common suffix uncommon suffix name frequency

High frequency names
Hohuizen Horieven Homan 2105

Dijker Dijkam Dijkstra 14492
Spoelhuis Spoelries Spoelstra 1166

Nije Nijo Nijhof 3322
Maashout Maaskaan Maassen 2023
Barnestra Barnescho Barneveld 2281
Deurhof Deurtis Deursen 2017
Bruger Brugam Brugge 1518
Pijpsen Pijpket Pijper 1603
Damen Damis Damme 1797

Bleekveld Bleeksert Bleeker 2048
Moerma Moerko Moerland 760
Veenhout Veenkaan Veenhuizen 578
Hengeen Hengeis Hengeveld 1391
Lindland Lindgars Lindhout 682

171

172 Appendix A: List of stimuli used in the Lexical Decision experiment

prime target
common suffix uncommon suffix name frequency

Berender Berendam Berendsen 3374
Schoutstra Schoutscho Schouten 11137

Hofhuis Hofries Hofland 1066
Lieshuizen Liesrieven Lieshout 3669

Scma Scko Schout 980
Westerveld Westersert Westerhof 2406

Dijkma Dijkko Dijkhuizen 1557
Kerkhout Kerkkaan Kerkhof 4561
Klundman Klundbor Klunder 1389
Tuinland Tuingars Tuinstra 1050

Hoeksestra Hoeksescho Hoeksema 1435
Rutveld Rutsert Rutten 4810
Veldhof Veldtis Veldman 3841

Beekman Beekbor Beekhuizen 417
Wijnman Wijnbor Wijnen 4443
Joostma Joostko Joosten 5160
Rietland Rietgars Rietveld 4046
Beekhof Beektis Beekman 3132
Korthuis Kortries Korte 1886
Broeker Broekam Broekhuizen 2310

Zandhout Zandkaan Zande 1668
Velte Velto Velthuizen 708

Langehout Langekaan Langeveld 1023
Janssen Jansket Jansen 54540

Kooijhuizen Kooijrieven Kooijman 3527
Oosterhuis Oosterries Oosterhof 2024
Boersman Boersbor Boersma 4347
Zantland Zantgars Zanten 3754
Endstra Endscho Ende 2711
Hofveld Hofsert Hofstra 1421
Nijland Nijgars Nijhuis 3837

Kleinsen Kleinket Kleine 1356
Oosterhuis Oosterries Oosterveld 1324
Zijlhuizen Zijlrieven Zijlstra 4614
Blokstra Blokscho Blokland 1778

Nieuwenhof Nieuwentis Nieuwenhuizen 2224
Kolkhout Kolkkaan Kolkman 1930

Buitenhout Buitenkaan Buitenhuis 1767
Nieuwveld Nieuwsert Nieuwland 1560

Appendix A: List of stimuli used in the Lexical Decision experiment 173

prime target
common suffix uncommon suffix name frequency

Wiersveld Wierssert Wiersma 3476
Nijen Nijis Nijland 4709

Brandshuis Brandsries Brandsma 1340
Bultma Bultko Bulthuis 1169
Berker Berkam Berkhof 865

Kuijphof Kuijptis Kuijper 3573
Jansen Jansis Jansma 1662

Terpman Terpbor Terpstra 3159
Veensen Veenket Veenstra 7706

Zuideland Zuidegars Zuidema 2760
Drieshuizen Driesrieven Driessen 6234

Veldveld Veldsert Veldhuizen 3754
Zonnee Zonneo Zonneveld 1621

Grootstra Grootscho Groothuis 1624
Voortman Voortbor Voorthuizen 538
Damhout Damkaan Damen 3470
Bakhuis Bakries Bakker 45817
Stegee Stegeo Stegeman 2923
Dijken Dijkis Dijkhuis 1495

Kruitma Kruitko Kruithof 1571
Olten Oltis Olthof 2171

Janshuis Jansries Janssen 39535
Harme Harmo Harmsen 4196

Dijkland Dijkgars Dijke 1393
Hooger Hoogam Hoogland 2566
Miedeer Miedeam Miedema 2093
Oosterer Oosteram Oosterhout 1788
Gerriten Gerritis Gerritsen 9467

Meijhuizen Meijrieven Meijer 26607
Cornelisveld Cornelissert Cornelissen 5073

Woltman Woltbor Wolthuis 1628
Westerhof Westertis Westerveld 1951
Woudhof Woudtis Woudstra 1525

Broekhuizen Broekrieven Broekhuis 1772
Brinken Brinkis Brinkman 4122

Slingersen Slingerket Slingerland 1154
Hulssen Hulsket Hulshof 1720
Hoper Hopam Hopman 1927

Posthusen Posthuket Posthuma 1158

174 Appendix A: List of stimuli used in the Lexical Decision experiment

prime target
common suffix uncommon suffix name frequency

Groenesen Groeneket Groeneveld 5738
Mulden Muldis Mulder 28864
Korvhof Korvtis Korver 1906
Elsstra Elsscho Elshout 845
Veldma Veldko Velde 9330
Velde Veldo Veldhuis 4255
Stipe Stipo Stiphout 1248

Oosthuis Oostries Oosten 3612
Loenveld Loensert Loenhout 682
Holhuizen Holrieven Holland 857
Boekman Boekbor Boekhout 632

Low frequency names
Arnsman Arnsbor Arnshuis 1
Panderma Panderko Panderen 1
Lindeer Lindeam Lindehout 1
Gilland Gilgars Gillstra 1

Zuikersen Zuikerket Zuikerland 1
Kruisstra Kruisscho Kruisma 1
Rietzere Rietzero Rietzerveld 1
Grooser Groosam Grooshuizen 1
Srenhuis Srenries Srensen -1

Marzelisland Marzelisgars Marzelissen 1
Kuikeer Kuikeam Kuikestra 1
Buetstra Buetscho Buetveld 1

Hogehuizen Hogerieven Hogehout 1
Akkersveld Akkerssert Akkershuis 1

Cije Cijo Cijhof 1
Schuurhuizen Schuurrieven Schuurma 1
Soomerhout Soomerkaan Soomerveld 1
Staverland Stavergars Stavere 1

Stijgsen Stijgket Stijgstra 1
Othof Ottis Othuis 1

Huningstra Huningscho Huninge 1
Capteinman Capteinbor Capteinnen 1
Brondhuis Brondries Brondveld 1

Peltsen Peltket Pelthuizen 1
Zaalhuizen Zaalrieven Zaalhof 1

Sanden Sandis Sandhuizen 1
Randsen Randket Randhout 1

Appendix A: List of stimuli used in the Lexical Decision experiment 175

prime target
common suffix uncommon suffix name frequency

Thesselman Thesselbor Thesselhof 1
Cighuis Cigries Ciggen 1

Rodenma Rodenko Rodenhuizen 1
Vaalte Vaalto Vaalthuis 1
Zouten Zoutis Zouthout 1

Kwinkelhof Kwinkeltis Kwinkelen 1
Ietszeen Ietszeis Ietszema 1

Beunisstra Beunisscho Beunissen 1
Jagerland Jagergars Jagere 1
Weuseveld Weusesert Weuseman 1
Laakveld Laaksert Laakhuizen 1
Wagtland Wagtgars Wagtveld 1
Reynehof Reynetis Reyneveld 1
Coenderer Coenderam Coenderman 1

Deine Deino Deinman 1
Rysstra Rysscho Rysman 1
Klikveld Kliksert Klikland 1

Pichelhout Pichelkaan Pichelen 1
Gulen Gulis Gulland 1

Kijlshout Kijlskaan Kijlsma 1
Bunslsen Bunslket Bunsler 1
Hoftstra Hoftscho Hofter 1
Wolveld Wolsert Wolstra 1

Manninkland Manninkgars Manninkhof 1
Tileer Tileam Tilema 1

Engenhout Engenkaan Engenhof 1
Toveerikhout Toveerikkaan Toveeriksen 1

Lenie Lenio Lenisen 1
Krijger Krijgam Krijghuis 1

Dunschutman Dunschutbor Dunschutte 1
Weckstra Weckscho Weckhout 1
Biestsen Biestket Biesthuis 1
Mijlma Mijlko Mijlhof 1

Nichtsen Nichtket Nichte 1
Boerland Boergars Boerhuizen 1

Haanderland Haandergars Haanderen 1
Menkeland Menkegars Menkeman 1
Boersteke Boersteko Boersteker 1
Sjeddesen Sjeddeket Sjeddema 1

176 Appendix A: List of stimuli used in the Lexical Decision experiment

prime target
common suffix uncommon suffix name frequency

Ovene Oveno Ovenveld 1
Neyshuis Neysries Neyssen 1
Overhout Overkaan Overre 1

Werdhuizen Werdrieven Werder 1
Heijderman Heijderbor Heijderveld 1
Vouwhuis Vouwries Vouwland 1

Louwerisma Louwerisko Louwerissen 1
Coema Coeko Coehuis 1
Wilema Wileko Wilesen 1
Droshof Drostis Droshout 1

Nugerhuizen Nugerrieven Nugerman 1
Eizersen Eizerket Eizeren 1
Ribbenen Ribbenis Ribbenhuis 1

Pipelinghuis Pipelingries Pipelinghuizen 1
Tielma Tielko Tielland 1

Oldehane Oldehano Oldehanen 1
Eenhuishout Eenhuiskaan Eenhuisstra 1

Feidshuis Feidsries Feidsma 1
Seusveld Seussert Seusser 1

Schelderhof Scheldertis Schelderman 1
Wertstra Wertscho Wertland 1
Jalveld Jalsert Jalma 1
Banma Banko Banhout 1

Steenihout Steenikaan Steeniman 1
Dithout Ditkaan Dithuizen 1

Raeshuizen Raesrieven Raesland 1
Veerland Veergars Veerhof 1

Kloedhuizen Kloedrieven Kloedstra 1
Eekman Eekbor Eekstra 1
Cijkman Cijkbor Cijkhout 1
Graffeier Graffeiam Graffeiland 1
Senzen Senzis Senzer 1
Fodman Fodbor Fodde 1
Neizhof Neiztis Neizer 1

Mettinstra Mettinscho Mettinhof 1
Capilma Capilko Capille 1
Grauwen Grauwis Grauwstra 1
Riefhuis Riefries Rieffer 1

Appendix B

IPA Dissertation Series

Titles in the IPA Dissertation Series since 2008

W. Pieters. La Volonté Machinale: Un-
derstanding the Electronic Voting Con-
troversy. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-03

A.M. Marin. An Integrated System to
Manage Crosscutting Concerns in Source
Code. Faculty of Electrical Engineer-

ing, Mathematics, and Computer Sci-
ence, TUD. 2008-04

N.C.W.M. Braspenning. Model-based
Integration and Testing of High-tech
Multi-disciplinary Systems. Faculty of
Mechanical Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syn-
tax: Syntax Definition, Parsing, and As-
similation of Language Conglomerates.
Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verifica-
tion of Optimistic Fair Exchange Pro-
tocols. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2008-07

177

178 Appendix B: IPA Dissertation Series

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical Engi-
neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coal-
gebras. Faculty of Science, Mathematics
and Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Spec-
ifications Using Context-Sensitive Wild-
cards. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-13

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2008-14

P. E. A. Dürr. Resource-based Veri-
fication for Robust Composition of As-
pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-15

E.M. Bortnik. Formal Methods in Sup-
port of SMC Design. Faculty of Mechan-
ical Engineering, TU/e. 2008-16

R.H. Mak. Design and Perfor-
mance Analysis of Data-Independent
Stream Processing Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems
with Data - Enumerative Methods and
Constraint Solving. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty
of Mathematics and Computer Science,
TU/e. 2008-21

Appendix B: IPA Dissertation Series 179

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Experimental As-
pects of Pattern Evaluation. Faculty
of Mathematics and Natural Sciences,
UL. 2008-22

R. Brijder. Models of Natural Computa-
tion: Gene Assembly and Membrane Sys-
tems. Faculty of Mathematics and Natu-
ral Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-
ing and Its Certification. Faculty
of Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Develop-
ment. Faculty of Mathematics and Com-
puter Science, TU/e. 2008-25

J. Markovski. Real and Stochastic Time
in Process Algebras for Performance
Evaluation. Faculty of Mathematics and
Computer Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Provi-
sioning. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

180 Appendix B: IPA Dissertation Series

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-
vices. Integration in Energy-Constrained
Mobile Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digital
Exchange. Faculty of Mathematics and
Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top of
Proof Assistants and making Proof Assis-
tants available over the Web. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2009-18

R.S.S. O’Connor. Incompleteness &

Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty

Appendix B: IPA Dissertation Series 181

of Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Anal-
ysis of Probabilistic Models. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strate-
gies for Parameter Optimization and
Their Applications to Medical Image
Analysis. Faculty of Mathematics and
Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks.
Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty
of Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-
ments. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-26

J.F.J. Laros. Metrics and Visualisa-
tion for Crime Analysis and Genomics.
Faculty of Mathematics and Natural Sci-
ences, UL. 2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking Non-
deterministic and Randomly Timed Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-02

J. Endrullis. Termination and Produc-
tivity. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented Lan-
guages. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-04

Y. Wang. Epistemic Modelling and Pro-
tocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and
Probability in Model Checking Timed Au-
tomata. Faculty of Science, Mathematics
and Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML Model-
ing on the Quality of Software. Faculty
of Mathematics and Natural Sciences,
UL. 2010-07

182 Appendix B: IPA Dissertation Series

A. Silva. Kleene Coalgebra. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2010-08

J.S. de Bruin. Service-Oriented Dis-
covery of Knowledge - Foundations, Im-
plementations and Applications. Faculty
of Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Faculty
of Mathematics and Natural Sciences,
UL. 2010-11

R. Bakhshi. Gossiping Models: For-
mal Analysis of Epidemic Protocols. Fac-
ulty of Sciences, Department of Com-
puter Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty
of Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-03

L. Astefanoaei. An Executable The-
ory of Multi-Agent Systems Refinement.
Faculty of Mathematics and Natural Sci-
ences, UL. 2011-04

J. Proença. Synchronous coordina-
tion of distributed components. Faculty
of Mathematics and Natural Sciences,
UL. 2011-05

A. Moralı. IT Architecture-Based Confi-
dentiality Risk Assessment in Networks of
Organizations. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2011-06

M. van der Bijl. On changing models
in Model-Based Testing. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis of
Information Leakage in Probabilistic and
Nondeterministic Systems. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2011-09

M. Atif. Formal Modeling and Verifi-
cation of Distributed Failure Detectors.
Faculty of Mathematics and Computer
Science, TU/e. 2011-10

Appendix B: IPA Dissertation Series 183

P.J.A. van Tilburg. From Computabil-
ity to Executability – A process-theoretic
view on automata theory. Faculty
of Mathematics and Computer Science,
TU/e. 2011-11

Z. Protic. Configuration management for
models: Generic methods for model com-
parison and model co-evolution. Faculty
of Mathematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty
of Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime En-
forcement. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2011-14

M. Raffelsieper. Cell Libraries and Ver-
ification. Faculty of Mathematics and
Computer Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and
Visibility on Triangulated Terrains. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Qual-
ity of Service of Component Connectors.
Faculty of Mathematics and Natural Sci-
ences, UL. 2011-17

R. Middelkoop. Capturing and Exploit-
ing Abstract Views of States in OO Ver-
ification. Faculty of Mathematics and
Computer Science, TU/e. 2011-18

M.F. van Amstel. Assessing and Improv-
ing the Quality of Model Transforma-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2011-20

H.J.S. Basten. Ambiguity Detection
for Programming Language Grammars.
Faculty of Science, UvA. 2011-21

M. Izadi. Model Checking of Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Lan-
guage Workbenches. Faculty of Electri-
cal Engineering, Mathematics, and Com-
puter Science, TUD. 2011-23

S. Kemper. Modelling and Analysis of
Real-Time Coordination Patterns. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-24

J. Wang. Spiking Neural P Systems.
Faculty of Mathematics and Natural Sci-
ences, UL. 2011-25

184 Appendix B: IPA Dissertation Series

A. Khosravi. Optimal Geometric Data
Structures. Faculty of Mathematics and
Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Program
Properties with Attribute Grammars, Re-
visited. Faculty of Science, UU. 2012-02

Z. Hemel. Methods and Techniques
for the Design and Implementation of
Domain-Specific Languages. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2012-03

T. Dimkov. Alignment of Organiza-
tional Security Policies: Theory and
Practice. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2012-04

S. Sedghi. Towards Provably Secure Ef-
ficiently Searchable Encryption. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2012-05

F. Heidarian Dehkordi. Studies on Veri-
fication of Wireless Sensor Networks and
Abstraction Learning for System Infer-
ence. Faculty of Science, Mathematics
and Computer Science, RU. 2012-06

K. Verbeek. Algorithms for Car-
tographic Visualization. Faculty of
Mathematics and Computer Science,
TU/e. 2012-07

D.E. Nadales Agut. A Compositional
Interchange Format for Hybrid Systems:
Design and Implementation. Faculty of
Mechanical Engineering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-Protein
Interaction Networks by Means of Anno-
tated Graph Mining Algorithms. Faculty
of Mathematics and Natural Sciences,
UL. 2012-09

S.D. Vermolen. Software Language Evo-
lution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches
to Reliable Software. Faculty of
Mathematics and Computer Science,
TU/e. 2012-11

F.P.M. Stappers. Bridging Formal Mod-
els – An Engineering Perspective. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2012-12

W. Heijstek. Software Architecture
Design in Global and Model-Centric
Software Development. Faculty of
Mathematics and Natural Sciences,
UL. 2012-13

C. Kop. Higher Order Termination. Fac-
ulty of Sciences, Department of Com-
puter Science, VUA. 2012-14

Appendix B: IPA Dissertation Series 185

A. Osaiweran. Formal Development of
Control Software in the Medical Systems
Domain. Faculty of Mathematics and
Computer Science, TU/e. 2012-15

W. Kuijper. Compositional Synthesis of
Safety Controllers. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2012-16

H. Beohar. Refinement of Communica-
tion and States in Models of Embedded
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2013-01

G. Igna. Performance Analysis of Real-
Time Task Systems using Timed Au-
tomata. Faculty of Science, Mathematics
and Computer Science, RU. 2013-02

E. Zambon. Abstract Graph Transfor-
mation – Theory and Practice. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-
Oriented Programming for Incident Re-
sponse Applications. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-05

M.S. Greiler. Test Suite Comprehen-
sion for Modular and Dynamic Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2013-06

L.E. Mamane. Interactive mathemati-
cal documents: creation and presenta-
tion. Faculty of Science, Mathematics
and Computer Science, RU. 2013-07

M.M.H.P. van den Heuvel. Compo-
sition and synchronization of real-time
components upon one processor. Faculty
of Mathematics and Computer Science,
TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse
Framework and its Third-party Plug-ins.
Faculty of Mathematics and Computer
Science, TU/e. 2013-09

S. van der Burg. A Reference Archi-
tecture for Distributed Software Deploy-
ment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2013-10

J.J.A. Keiren. Advanced Reduction
Techniques for Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling:
Computing push plans for disk-shaped

186 Appendix B: IPA Dissertation Series

robots, and dynamic labelings for mov-
ing points. Faculty of Mathematics and
Computer Science, TU/e. 2013-12

M. Timmer. Efficient Modelling, Gen-
eration and Analysis of Markov Au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data Struc-
tures in the Black-Box Model. Faculty
of Mathematics and Computer Science,
TU/e. 2013-14

L. Lensink. Applying Formal Methods
in Software Development. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-15

C. Tankink. Documentation and For-
mal Mathematics — Web Technology
meets Proof Assistants. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-16

C. de Gouw. Combining Monitoring
with Run-time Assertion Checking. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2013-17

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in
Automated Digital Forensics. Faculty of
Science, UvA. 2014-01

D. Hadziosmanovic. The Process Mat-
ters: Cyber Security in Industrial Control
Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-03

C.-P. Bezemer. Performance Opti-
mization of Multi-Tenant Software Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2014-04

T.M. Ngo. Qualitative and Quantita-
tive Information Flow Analysis for Multi-
threaded Programs. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-05

A.W. Laarman. Scalable Multi-Core
Model Checking. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-06

J. Winter. Coalgebraic Characteri-
zations of Automata-Theoretic Classes.
Faculty of Science, Mathematics and
Computer Science, RU. 2014-07

W. Meulemans. Similarity Mea-
sures and Algorithms for Cartographic

Appendix B: IPA Dissertation Series 187

Schematization. Faculty of Mathematics
and Computer Science, TU/e. 2014-08

A.F.E. Belinfante. JTorX: Exploring
Model-Based Testing. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2014-09

A.P. van der Meer. Domain Specific
Languages and their Type Systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Col-
laboration in Online Software Communi-
ties. Faculty of Mathematics and Com-
puter Science, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the Gap
between Active Learning and Real-World
Systems. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty
of Mathematics and Computer Science,
TU/e. 2014-13

M. Helvensteijn. Abstract Delta Model-
ing: Software Product Lines and Beyond.
Faculty of Mathematics and Natural Sci-
ences, UL. 2014-14

P. Vullers. Efficient Implementations
of Attribute-based Credentials on Smart
Cards. Faculty of Science, Mathematics
and Computer Science, RU. 2014-15

F.W. Takes. Algorithms for Analyzing
and Mining Real-World Graphs. Faculty
of Mathematics and Natural Sciences,
UL. 2014-16

M.P. Schraagen. Aspects of Record
Linkage. Faculty of Mathematics and
Natural Sciences, UL. 2014-17

Appendix C

Samenvatting in het Nederlands

Dit proefschrift behandelt verschillende aspecten van het record linkage-probleem. Een
record (in goed Nederlands dossier geheten) is een vermelding in een database, bijvoor-
beeld een gebruikersprofiel op een webpagina of een geboortevermelding in de burger-
lijke stand. Binnen een database komt het regelmatig voor dat meerdere records voor
dezelfde entiteit aanwezig zijn, bijvoorbeeld twee gebruikersprofielen voor dezelfde per-
soon met een verschillend e-mailadres. Ook bevatten de meeste databases records over
verschillende onderwerpen (personen, gebeurtenissen, objecten etc.) die gerelateerd aan
elkaar zijn, zoals twee geboortes met dezelfde ouders. Het is in veel gevallen niet tri-
viaal om te bepalen welke records kunnen worden gekoppeld en welke niet, dit is het
probleem van record linkage (dat overigens gegeneraliseerd kan worden naar meerdere
databases).

Het proefschrift bevat verschillende deelonderzoeken uitgevoerd met de Genlias-
database. Dit is een historische database met akten van de burgerlijke stand in Nederland
uit (voornamelijk) de 19e eeuw. Deze data, in totaal ongeveer 15 miljoen aktes, is ge-
digitaliseerd en beschikbaar gesteld voor onderzoek1. De digitalisatie is echter nog niet
compleet, de database zoals gebruikt in het onderzoek bevat naar schatting ongeveer
de helft van alle aktes die in de archieven aanwezig zijn. Dit bemoeilijkt het zoeken

1De database is vanaf 2002 vrij te doorzoeken op internet. Sinds medio 2012 is de database onder de naam
WieWasWie beschikbaar op de website http://www.wiewaswie.nl.

188

http://www.wiewaswie.nl

Appendix C: Samenvatting in het Nederlands 189

naar gerelateerde of dubbele records. Daarnaast is de evaluatie van links (koppelingen)
een probleem, omdat er geen informatie beschikbaar is over de juistheid van links in de
Genlias-database of een deel daarvan. Ook voor vergelijkbare databases zijn er vrijwel
geen geverifieerde links beschikbaar.

Vanwege de incomplete digitalisatie en het ontbreken van geverifieerde links wordt
er in het proefschrift aandacht besteed aan het voorspellen van de verwachte hoeveel-
heid links voor een record (Hoofdstuk 3). De methode maakt gebruik van automatisch
bepaalde eenvoudige links tussen records om een voorspelling te doen over de beschik-
baarheid van aanvullende links voor een record. De netwerkstructuur (in de informatica
meestal een graaf genoemd) die ontstaat door de eenvoudige links tussen records blijkt
voldoende informatie te bevatten om nieuwe links te kunnen voorspellen, zonder hierbij
gebruik te hoeven maken van de specifieke inhoud van de records zelf.

Een veelgebruikte methode voor het vinden van links is het vergelijken van records
op syntactisch niveau, meer specifiek het verschil in spelling tussen de tekst van de re-
cords uitgedrukt in het aantal letters dat moet worden veranderd om de spelling van twee
records aan elkaar gelijk te maken. Voor de paarsgewijze vergelijking van records zijn
efficiënte methodes beschikbaar, waarmee links kunnen worden gevonden door eenvou-
dig alle mogelijke combinaties van records met elkaar te vergelijken. Echter, het totale
aantal combinaties van records is het kwadraat van het aantal records, waardoor het voor
grote databases praktisch onuitvoerbaar is om alle combinaties te controleren. In Hoofd-
stuk 4 wordt een methode beschreven om alle relevante combinaties te vinden zonder dat
alle mogelijke combinaties moeten worden geprobeerd, door het gebruik van een index
op de inhoud van de records. In deze index worden records in een bepaalde volgorde
geplaatst waarbij alle records die een klein verschil in spelling hebben gegarandeerd bij
elkaar in de buurt staan. De efficiëntie van deze index wat betreft zowel rekentijd als ge-
heugengebruik maakt het gebruik van record linkage in real-time toepassingen mogelijk,
naast het in relatief korte tijd verwerken van volledige datasets.

De belangrijkste bron van informatie voor het linken van records wordt gevormd
door persoonsnamen. Deze zijn vaak erg specifiek en daardoor identificerend voor een
bepaald persoon, zeker in combinatie met andere persoonsnamen in een record zoals de
namen van de ouders. Echter, vanwege de specificiteit is ook de hoeveelheid variatie in
namen erg groot. Het onderzoek gepresenteerd in Hoofdstuk 5 richt zich op een model

190 Appendix C: Samenvatting in het Nederlands

dat de variatie in persoonsnamen beschrijft. Dit model leidt op basis van voorbeelden
van naamvariatie automatisch een beslisstrategie af waarmee kan worden bepaald welke
letters in een naam tot de kern van deze naam horen en welke letters deel uitmaken van de
variatie tussen namen. In Hoofdstuk 6 wordt naamvariatie opnieuw bekeken vanuit een
kwantitatieve benadering. Omdat de Genlias-database relatief veel records bevat, kan
een grote hoeveelheid naamvarianten worden verzameld door te kijken welke varianten
voorkomen in eenvoudige links. Deze varianten kunnen als zodanig worden gebruikt
bij het zoeken naar aanvullende links, of de varianten kunnen (al dan niet automatisch)
worden afgebeeld op een beperkte hoeveelheid basisnamen waarbij twee records als link
kunnen worden beschouwd als de basisnamen met elkaar overeenkomen. In het onder-
zoek is echter gebleken dat deze methode in een klein maar significant aantal gevallen
onjuiste naamvarianten oplevert, waardoor verschillende controlemechanismen moeten
worden gebruikt om tot een bruikbaar resultaat te komen.

In record linkage is het gebruikelijk dat twee records met elkaar vergeleken wor-
den, waarna een link wordt vastgesteld of verworpen aan de hand van de uitkomst van
de vergelijking. Echter, in veel gevallen kunnen andere records die niet direct betrok-
ken zijn bij de vergelijking informatie bevatten over de correctheid van een link. Een
voorbeeld is een database met wetenschappelijke artikelen, waarbij het vaak onzeker is
of twee artikelen waarbij de naam van de auteur gelijk is ook door dezelfde persoon ge-
schreven zijn. Echter, als er bij beide artikelen een (van elkaar verschillende) co-auteur
betrokken is en er kan een derde artikel worden gevonden waar deze co-auteurs geza-
menlijk worden vermeld, dan maakt dit derde artikel een link tussen de twee originele
artikelen veel waarschijnlijker. Ook in de burgerlijke stand kunnen dergelijke situaties
optreden, bijvoorbeeld een link tussen twee geboorteaktes die als incorrect kan worden
beoordeeld door de aanwezigheid van een overlijdensakte van de moeder in de periode
tussen de twee geboortes. Hoofdstuk 7 beschrijft een onderzoek naar het gebruik van
dergelijke informatie.

In Hoofdstuk 7 wordt een benchmark-database gebruikt, dit is een externe database
met (gedeeltelijk) dezelfde records als in Genlias waarbij links tussen records handmatig
zijn toegevoegd. Deze database heeft een ander formaat dan Genlias, waardoor er eerst
moet worden bepaald welke records met elkaar overeenkomen voordat de links kunnen
worden vergeleken. Het gebruik van verschillende databases wordt verder behandeld

Appendix C: Samenvatting in het Nederlands 191

in Hoofdstuk 8. Het onderzoek richt zich daarbij op het onder genealogen populaire
Gedcom-bestandsformaat, wat in opzet sterk afwijkt van de Genlias-database. De ver-
schillen in structuur bemoeilijken de vergelijking tussen records, maar deze aanpak heeft
als voordeel, naast het vergroten van het toepassingsgebied van de verschillende algo-
ritmes, dat er in de vorm van bestaande genealogische bestanden een grote hoeveelheid
extra informatie kan worden gebruikt voor het vinden en verifiëren van links.

In het proefschrift wordt onderzocht hoe de computer kan worden gebruikt bij het
koppelen van grote hoeveelheden records. Hierbij is gebleken dat deze taak niet een-
voudig te automatiseren is. Echter, mensen zijn over het algemeen goed in staat om te
beoordelen of twee records aan elkaar gerelateerd zijn, en bij het zoeken naar een link
is de strategie van mensen om snel tot een resultaat te komen vaak succesvol. Als on-
derdeel van het onderzoek is daarom ook vanuit een cognitief psychologisch perspectief
gekeken naar het gedrag van mensen bij het uitvoeren van een taak die kan worden ge-
bruikt tijdens het uitvoeren van record linkage. Deze taak (beschreven in Hoofdstuk 9)
betreft het onderverdelen van persoonsnamen in een stam en een suffix (in de brede be-
tekenis van het woord suffix, d.w.z. een of meerdere letters aan het eind van een woord),
bijvoorbeeld de naam Beekman verdeeld in Beek en man. De vraag in het onderzoek
was of veelgebruikte suffixes (zoals man) sneller worden herkend dan weinig gebruikte
suffixes (bijvoorbeeld bor). Uit het onderzoek is niet gebleken dat er in het algemeen
een verschil is tussen de twee suffixtypes. Dit kan verschillende oorzaken hebben, zoals
interferentie van andere processen tijdens het onderverdelen van een naam. Om meer
duidelijkheid te krijgen over de precieze cognitieve processen is verder onderzoek nood-
zakelijk.

De deelonderzoeken in dit proefschrift behandelen verschillende aspecten van het
record linkage-probleem. Dit is uiteraard slechts een selectie van mogelijke aspecten en
uitgangspunten. Echter, als deze selectie in staat blijkt om enige kennis en inzichten
te verschaffen op het gebied van record linkage, dan is het proefschrift in zijn doel
geslaagd.

Appendix D

English summary

This thesis discusses several different aspects of the record linkage problem. A record
is an entry in a database, e.g., a user profile on a website or a birth certificate in a civil
registry. Within and between databases it is common that duplicate or near-duplicate
records exist, such as two user profiles for the same person with a different e-mail ad-
dress. Furthermore many databases contain records on different subjects (people, events,
objects, etc.) which are related, such as two birth events where the same parents are in-
volved. It is generally non-trivial to establish which records can be linked and which
records should not be linked, this is the problem of record linkage.

The various approaches to record linkage in this thesis are applied to the Genlias
database. This is a historical database that contains civil certificates in the Netherlands
from (mainly) the 19th century. These data, around 15 million certificates in total, has
been digitized and made available for research. The digitization process is not yet com-
pleted, it is estimated that the database as used in the research contains approximately
half of the total number of certificates available in the paper archives. This complicates
the search for related or duplicate records. Besides this also the evaluation of links is
non-trivial, because in the Genlias database there is no information available on the cor-
rectness of links. Also for comparable databases the availability of verified links is very
limited.

Because of the partial digitization and the lack of verified links the thesis discusses

192

Appendix D: English summary 193

a method to predict the expected number of links for a record (Chapter 3). This method
uses automatically produced likely correct links to predict the availability of additional
links for a record. The network structure (referred to as a graph in computer science)
which results from the automatic links is shown to contain sufficient information of
predict additional links, without using the domain-specific content of the records.

A common method to discover links is a comparison of record content on the syn-
tactic level, specifically the difference in spelling between the text of records expressed
as the minimum number of characters that need to be changed in order to resolve the
difference between texts. For pairwise comparison of records efficient algorithms are
available to compute differences, therefore links can be found by applying pairwise com-
parison to every possible pair of records. However, the total number of combinations of
records is equal to the square of the number of records, which is practically infeasible
to check for large databases. In Chapter 4 a method is discussed to discover all relevant
combinations without checking every possible combination, using an index on the con-
tent of records. In this index records are positioned in an order defined by the algorithm
which has the property that any two records within a difference threshold are guaranteed
to be placed within close distance in the index. The efficiency of this index with re-
gard to both computation time and memory requirements allows real-time applications
of record linkage as well as practical time limits of batch computation on full datasets.

The most important source of information for linking records in many databases
(including Genlias) are fields containing person names. Names are often highly specific
and therefore identifying for a particular person, especially when combined with other
person names in a record such as parent names. However, because of the specificity
the amount of variation in person names is also high, which introduces difficulties for
matching. The research discussed in Chapter 5 aims to develop a model that describes
variation in names. This model uses a large amount of examples of name variation to
derive a decision strategy to determine which characters in a name belong to the core
of this name and which characters are part of the variation between names. In Chap-
ter 6 name variation is re-examined using a quantitative approach. Because the Genlias
database contains a relatively large amount of records, many person name variants can
be collected from likely correct automatic links. These variants can be used as-is to
discover additional links, or the variants can be clustered (either automatically, semi-

194 Appendix D: English summary

automatically or manually) into groups of base names that serve to discover links for
which the base names associated to the records are equal. The research has shown how-
ever that this method is inaccurate in a small but significant number of cases, therefore
several post-processing steps need to be applied to improve the quality of the variant set
resulting from the approach.

Many record linkage approaches use pair-wise comparison of records, where the
comparison computation between two records generally does not involve other records
in the dataset. However, in many cases other records contain information that is relevant
for the comparison process. An example is a database with scientific papers, in which
it is often unclear whether two papers with equal author names are written by the same
person or by two different people with the same name. If both papers however list a
(different) co-author and the names of these co-authors are listed together in another
paper in the dataset, then a link between the original two papers is considered more
likely. Also for civil certificates the type of situation occurs, e.g., a link between two
birth certificates which is considered unlikely because a death certificate can be found
for the mother dated in between the two birth events. Chapter 7 describes research into
using this type of information.

In Chapter 7 a benchmark database is used, which is an external database with
(partly) the same records as in Genlias for which record links have manually been added.
The format of this database differs from the format of Genlias, therefore records need
to be matched first before a comparison of links is possible. The use of differently
structured databases is discussed in Chapter 8. This research considers the popular ge-
nealogical file format Gedcom, which is structurally highly different from the Genlias
format. Differences in data format complicate the comparison between records, however
this approach has the advantage of expanding the application area of various algorithms
as well as increasing the amount of data available for development and evaluation of
record linkage using the vast amount of existing genealogical reconstructions available
on the internet.

This thesis investigates the use of computational methods for linkage in large data-
sets. The research has shown that this task is difficult to automate. People are however
generally capable of performing an assessment of relatedness for two records, and hu-
man search strategies for locating related records in large databases are often efficient

Appendix D: English summary 195

and succesful. To investigate this aspect of record linkage the thesis discusses human
cognitive behaviour on a task related to record linkage. This task, which is described in
Chapter 9, involves splitting a person name in a stem and a suffix (in the general sense
of the term suffix, i.e., a string of letters at the end of a word), for example the family
name Beekman which can be split into Beek and man. The research question in the
experiment was whether suffixes with high frequency (such as man) are faster to split
as compared to suffixes with low frequency (such as bor). The research did not show
a clear difference between the two suffix types. This can have several causes, such as
interference from additional processes during name splitting. Further research is neces-
sary to increase understanding of cognitive processes involved in this task and in record
linkage in general.

The research described in the thesis has combined elements from different scientific
areas, most notably the application of methods from computer science to data from the
humanities. This fits into the Digital Humanities research paradigm, which has received
an increasing amount of research attention due to the availability of humanities data
in digital form. Two issues associated with digital humanities research are the large
amount of data and the diversity of data content, both of which influence the application
of computer science methods and concepts. However, the impact of these issues on the
research described in this thesis is relatively limited. The civil certificates used in the
research have been originally created using uniform and properly executed procedures,
the archives have been well-preserved and the paper certificates have been digitized in
a reasonably consistent way. Record linkage on this type of data content is relatively
straightforward, using well-known string similarity measures such as edit distance are
sufficient to produce the majority of the links. Also considering the amount of data the
difficulties have shown to be smaller than originally anticipated. The full database fits in
main memory of a regular desktop computer or laptop if processed properly, even when
multiple indexes are used simultaneously. Computation can be performed within a few
minutes for many of the methods described in the thesis, or several hours at maximum
for some of the other methods. Even for seemingly prohibitive operations, such as a
full quadratic comparison of all records which amounts to a few hundred billion record
pairs, a feasible implementation can be made using some clever engineering that checks
every single pair using brute force within a couple of days. These observations were not

196 Appendix D: English summary

fully anticipated at the start of the research project.

An issue which was anticipated, and which unfortunately has remained mostly un-
resolved during the research process, is the evaluation of linkage results. The Genlias
database does not contain any verified links, which reflects a more general issue in Dig-
ital Humanities where most databases do not contain verification information for the
desired analysis. This means that the majority of computer science methods that might
be considered for the task of record linkage is not applicable, e.g., machine learning
approaches that create a model from examples, or the methods are applicable but the
quality of the input is unknown, e.g., a graph traversal algorithm applied to a graph
of unverified links. Other algorithms that are applicable cannot be developed or im-
proved in an objective way because it is not possible to provide useful feedback to the
algorithms. Therefore, even though record linkage on the Genlias database is relatively
straightforward as stated above, the verification of algorithms has shown to be the most
important limiting issue in the research of record linkage as such.

This situation has resulted in a larger focus on different aspects of record linkage,
starting from Chapter 5. The analysis of name variation, both from a modeling per-
spective and by using a quantitative approach, addresses an important aspect of record
linkage that can be investigated and evaluated relatively independent from record link-
age itself. The analysis of consistency constraints in Chapter 7 and the use of differently
structured databases in Chapter 8 are more closely related to the main record linkage
task, however both internal consistency as a mapping to external sources can be consid-
ered as data analysis in general. The cognitive aspect as described in Chapter 9 is the
most clear example of an analysis that might have some implications for record linkage
without addressing the linkage task itself.

In general it can be concluded that each of the approaches and aspects can con-
tribute to the analysis of record linkage. The density of a link graph is correlated with
the existence of additional links (Chapter 3), record pairs with a small Levenshtein edit
distance can be computed efficiently using a tree index (Chapter 4), a model predict-
ing the importance of characters in a name can be derived automatically from examples
which is useful for the computation of record links (Chapter 5), a large dataset such
as Genlias is a rich source of name variants which can be extracted automatically us-
ing the principle of excess information (Chapter 6), a link between two records can be

Appendix D: English summary 197

challenged or supported by other records from the dataset in a meaningful way, which
reduces dependence on pairwise comparison (Chapter 7), and external partly overlap-
ping genealogical databases can be aligned with the results of algorithms automatically
(Chapter 8). The details of cognitive processing of person names (Chapter 9) are still
mostly unknown, however the study of human behaviour may provide linguistic insights
when developed further.

The selection of aspects in this thesis is intended to reflect the possibilities of com-
putational modeling and algorithm design for this type of data, which has been the re-
search goal from a computer science perspective. At the same time the goal of the thesis
has been to provide a context in which plausible inferences can be made from a human-
ities perspective, more specifically from the point of view of genealogy and population
reconstruction. The thesis discusses considerations on the nature of the data, method-
ological choices and implementation details. The reader is encouraged to develop the
area of record linkage using all relevant aspects. Hopefully this thesis will be of assis-
tance in such an enterprise.

Appendix E

Curriculum Vitae

Name Marijn Paul Schraagen
Birth date 22-10-1983
Birth place Hilversum

Education and professional experience
2014–present Post-doc Digital Humanities Lab, Utrecht University
2009–2014 PhD Candidate Leiden University
2008–2009 Research assistant Linguistics, Uttrecht University
2009 Summer School “Consciousness and the Brain”,

CSCA, University of Amsterdam
2005–2008 Master Cognitive Artificial Intelligence (CAI),

Utrecht University
2006–2007 European Master in Language and Communication Technology

(exchange programme within master CAI),
Free University of Bozen-Bolzano, Italy

2002–2005 Bachelor Cognitive Artificial Intelligence (CAI),
Utrecht University

1996–2002 High school (gymnasium),
Comenius College Hilversum

198

	Title Page
	Table of Contents
	Introduction
	Development of record linkage
	Introductory examples
	Weighted edit distance
	Name frequency

	Linkage strategy
	Overview of chapters

	Preliminaries
	Data
	Similarity measures
	Phonetic similarity

	Blocking
	Evaluation

	Link prediction using graph density
	Introduction
	Approach
	Basic record linkage
	Graph construction
	Record mapping and prediction

	Stemming-based linkage
	Experiment
	Conclusions and future research

	Indexing edit distance
	Introduction
	Related work
	Approach
	Algorithm
	Similarity matches

	Model parameters
	Subvectors per record
	Characters per node
	Pruning

	Vector assignment
	Experiment
	Example
	Results for Levenshtein distance

	Comparison to existing methods
	Comparison to blocking methods

	Extension to Jaro distance
	Results for Jaro distance

	Discussion and further research

	A data-driven name variant model
	Introduction
	Core representations
	Related work
	LCS computation
	Classification
	Syllabification
	Training

	Record linkage
	Bootstrapping

	Evaluation
	Methods description

	Conclusion and future work

	Internal variant mining
	Introduction
	Approach
	Name pair reduction
	Dictionary look-up
	Composite names
	Syntactic rules

	Evaluation
	Discussion

	Graph consistency
	Introduction
	Related work
	Benchmark
	Method
	Additional domain-based linkage
	Benchmark results
	Implementation analysis
	Analysis of matching errors

	Discussion and future work

	Link validation using Gedcom databases
	Introduction
	Related work
	Data formats
	Parsing
	Matching
	Results and verification
	Internal verification
	Toponym mapping
	Interpretation of support figures

	Application
	Conclusion and future work

	Cognitive processing of proper names
	Introduction
	Motivation

	Related work
	Lexical decision
	Application
	Experimental details
	Experimental results
	Discussion
	Conclusion

	Bibliography
	List of stimuli used in the Lexical Decision experiment
	IPA Dissertation Series
	Samenvatting in het Nederlands
	English summary
	Curriculum Vitae

