11,793 research outputs found

    PUE attack detection in CWSN using collaboration and learning behavior

    Get PDF
    Cognitive Wireless Sensor Network (CWSN) is a new paradigm which integrates cognitive features in traditional Wireless Sensor Networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in Cognitive Wireless Sensor Networks is an important problem because these kinds of networks manage critical applications and data. Moreover, the specific constraints of WSN make the problem even more critical. However, effective solutions have not been implemented yet. Among the specific attacks derived from new cognitive features, the one most studied is the Primary User Emulation (PUE) attack. This paper discusses a new approach, based on anomaly behavior detection and collaboration, to detect the PUE attack in CWSN scenarios. A nonparametric CUSUM algorithm, suitable for low resource networks like CWSN, has been used in this work. The algorithm has been tested using a cognitive simulator that brings important results in this area. For example, the result shows that the number of collaborative nodes is the most important parameter in order to improve the PUE attack detection rates. If the 20% of the nodes collaborates, the PUE detection reaches the 98% with less than 1% of false positives

    Hierarchical Design Based Intrusion Detection System For Wireless Ad hoc Network

    Full text link
    In recent years, wireless ad hoc sensor network becomes popular both in civil and military jobs. However, security is one of the significant challenges for sensor network because of their deployment in open and unprotected environment. As cryptographic mechanism is not enough to protect sensor network from external attacks, intrusion detection system needs to be introduced. Though intrusion prevention mechanism is one of the major and efficient methods against attacks, but there might be some attacks for which prevention method is not known. Besides preventing the system from some known attacks, intrusion detection system gather necessary information related to attack technique and help in the development of intrusion prevention system. In addition to reviewing the present attacks available in wireless sensor network this paper examines the current efforts to intrusion detection system against wireless sensor network. In this paper we propose a hierarchical architectural design based intrusion detection system that fits the current demands and restrictions of wireless ad hoc sensor network. In this proposed intrusion detection system architecture we followed clustering mechanism to build a four level hierarchical network which enhances network scalability to large geographical area and use both anomaly and misuse detection techniques for intrusion detection. We introduce policy based detection mechanism as well as intrusion response together with GSM cell concept for intrusion detection architecture.Comment: 16 pages, International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010. arXiv admin note: text overlap with arXiv:1111.1933 by other author

    Intrusion-aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks

    Get PDF
    Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.Comment: 19 pages, 7 figure

    Distributed Anomaly Detection using Autoencoder Neural Networks in WSN for IoT

    Full text link
    Wireless sensor networks (WSN) are fundamental to the Internet of Things (IoT) by bridging the gap between the physical and the cyber worlds. Anomaly detection is a critical task in this context as it is responsible for identifying various events of interests such as equipment faults and undiscovered phenomena. However, this task is challenging because of the elusive nature of anomalies and the volatility of the ambient environments. In a resource-scarce setting like WSN, this challenge is further elevated and weakens the suitability of many existing solutions. In this paper, for the first time, we introduce autoencoder neural networks into WSN to solve the anomaly detection problem. We design a two-part algorithm that resides on sensors and the IoT cloud respectively, such that (i) anomalies can be detected at sensors in a fully distributed manner without the need for communicating with any other sensors or the cloud, and (ii) the relatively more computation-intensive learning task can be handled by the cloud with a much lower (and configurable) frequency. In addition to the minimal communication overhead, the computational load on sensors is also very low (of polynomial complexity) and readily affordable by most COTS sensors. Using a real WSN indoor testbed and sensor data collected over 4 consecutive months, we demonstrate via experiments that our proposed autoencoder-based anomaly detection mechanism achieves high detection accuracy and low false alarm rate. It is also able to adapt to unforeseeable and new changes in a non-stationary environment, thanks to the unsupervised learning feature of our chosen autoencoder neural networks.Comment: 6 pages, 7 figures, IEEE ICC 201

    Outlier Detection Techniques For Wireless Sensor Networks: A Survey

    Get PDF
    In the field of wireless sensor networks, measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the multivariate nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a decision tree to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier degree

    Outlier detection techniques for wireless sensor networks: A survey

    Get PDF
    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree
    corecore