656 research outputs found

    Anomaly detection in moving-camera videos with sparse and low-rank matrix decompositions

    Get PDF
    This work presents two methods based on sparse decompositions that can detect anomalies in video sequences obtained from moving cameras. The first method starts by computing the union of subspaces (UoS) that best represents all the frames from a reference (anomaly-free) video as a low-rank projection plus a sparse residue. Then it performs a low-rank representation of the target (possibly anomalous) video by taking advantage of both the UoS and the sparse residue computed from the reference video. The anomalies are extracted after post-processing this video with these residual data. Such algorithm provides good detection results while at the same time obviating the need for previous video synchronization. However, this technique looses its detection efficiency when target and reference videos presents more severe misalignments. This may happen due to small uncontrolled camera moviment and shaking during the acquisition phase, which is often common in realworld situations. To extend its applicability, a second contribution is proposed in order to cope with these possible pose misalignments. This is done by modeling the target-reference pose discrepancy as geometric transformations acting on the domain of frames of the target video. A complete matrix decomposition algorithm is presented in order to perform a sparse representation of the target video as a sparse combination of the reference video plus a sparse residue, while taking into account the transformation acting on it. Our method is then verified and compared against state-of-the-art techniques using a challenging video dataset, that comprises recordings presenting the described misalignments. Under the evaluation metrics used, the second proposed method exhibits an improvement of at least 16% over the first proposed one, and 22% over the next best rated method.Apresentamos dois métodos baseados em decomposições esparsas que podem detectar anomalias em sequências de vídeo obtidas por câmeras em movimento. O primeiro método estima a união de subespaços (UdS) que melhor representa todos os quadros de um vídeo de referência (livre de anomalias) como uma projeção de baixo-posto mais um resíduo esparso. Em seguida, é realizada uma representação de baixo-posto do vídeo alvo (possivelmente anômalo) aproveitando a UdS e o resíduo esparso calculado a partir do vídeo de referência. As anomalias são extraídas após o pós-processamento destas informações residuais. Esse algoritmo fornece bons resultados de detecção, além de eliminar a necessidade de uma sincronização prévia dos vídeos. No entanto, essa técnica perde eficiência quando os vídeos de referência e alvo apresentam desalinhamentos mais graves entre si. Isso pode ocorrer devido a pequenos movimentos descontrolados da câmera e tremores durante a fase de aquisição. Para estender sua aplicabilidade, uma segunda contribuição é proposta a fim de lidar com esse possível desalinhamento. Isso é feito modelando a discrepância de pose de câmera entre os vídeos de referência e alvo com transformações geométricas agindo no domínio dos quadros do vídeo alvo. Um algoritmo completo de decomposição de matrizes é apresentado para realizar uma representação esparsa do vídeo alvo como uma combinação esparsa do vídeo de referência, levando em consideração as transformações que atuam sobre seus quadros. Nosso método é então verificado e comparado com técnicas de última geração com auxílio de vídeos de uma base desafiadora, apresentando os desalinhamentos em questão. Sob as métricas de avaliação usadas, o segundo método proposto exibe uma melhoria de pelo menos 16% em relação ao primeiro, e 22% sobre o método melhor avaliado logo em seguida

    Automated Intruder Detection from Image Sequences using Minimum Volume Sets

    Get PDF
    We propose a new algorithm based on machine learning techniques for automatic intruder detection in surveillance networks.  The algorithm is theoretically founded on the concept of minimum volume sets.  Through application to image sequences from two different scenarios and comparison with some existing algorithms, we show that it is possible for our proposed algorithm to easily obtain high detection accuracy with low false alarm rates

    Subspace discovery for video anomaly detection

    Get PDF
    PhDIn automated video surveillance anomaly detection is a challenging task. We address this task as a novelty detection problem where pattern description is limited and labelling information is available only for a small sample of normal instances. Classification under these conditions is prone to over-fitting. The contribution of this work is to propose a novel video abnormality detection method that does not need object detection and tracking. The method is based on subspace learning to discover a subspace where abnormality detection is easier to perform, without the need of detailed annotation and description of these patterns. The problem is formulated as one-class classification utilising a low dimensional subspace, where a novelty classifier is used to learn normal actions automatically and then to detect abnormal actions from low-level features extracted from a region of interest. The subspace is discovered (using both labelled and unlabelled data) by a locality preserving graph-based algorithm that utilises the Graph Laplacian of a specially designed parameter-less nearest neighbour graph. The methodology compares favourably with alternative subspace learning algorithms (both linear and non-linear) and direct one-class classification schemes commonly used for off-line abnormality detection in synthetic and real data. Based on these findings, the framework is extended to on-line abnormality detection in video sequences, utilising multiple independent detectors deployed over the image frame to learn the local normal patterns and infer abnormality for the complete scene. The method is compared with an alternative linear method to establish advantages and limitations in on-line abnormality detection scenarios. Analysis shows that the alternative approach is better suited for cases where the subspace learning is restricted on the labelled samples, while in the presence of additional unlabelled data the proposed approach using graph-based subspace learning is more appropriate
    • …
    corecore