1,662 research outputs found

    Requirements and Use Cases ; Report I on the sub-project Smart Content Enrichment

    Get PDF
    In this technical report, we present the results of the first milestone phase of the Corporate Smart Content sub-project "Smart Content Enrichment". We present analyses of the state of the art in the fields concerning the three working packages defined in the sub-project, which are aspect-oriented ontology development, complex entity recognition, and semantic event pattern mining. We compare the research approaches related to our three research subjects and outline briefly our future work plan

    Preprocessing Techniques to Support Event Detection Data Fusion on Social Media Data

    Get PDF
    This thesis focuses on collection and preprocessing of streaming social media feeds for metadata as well as the visual and textual information. Today, news media has been the main source of immediate news events, large and small. However, the information conveyed on these news sources is delayed due to the lack of proximity and general knowledge of the event. Such news have started relying on social media sources for initial knowledge of these events. Previous works focused on captured textual data from social media as a data source to detect events. This preprocessing framework postures to facilitate the data fusion of images and text for event detection. Results from the preprocessing techniques explained in this work show the textual and visual data collected are able to be proceeded into a workable format for further processing. Moreover, the textual and visual data collected are transformed into bag-of-words vectors for future data fusion and event detection

    Mesoscale convective vortex formation in a weakly sheared moist neutral environment

    Get PDF
    J. Atmos. Sci., 64, 1443-1466The article of record as published may be located at http://dx.doi.org/10.1175/JAS3898.

    A Multi Agent System for Flow-Based Intrusion Detection

    Get PDF
    The detection and elimination of threats to cyber security is essential for system functionality, protection of valuable information, and preventing costly destruction of assets. This thesis presents a Mobile Multi-Agent Flow-Based IDS called MFIREv3 that provides network anomaly detection of intrusions and automated defense. This version of the MFIRE system includes the development and testing of a Multi-Objective Evolutionary Algorithm (MOEA) for feature selection that provides agents with the optimal set of features for classifying the state of the network. Feature selection provides separable data points for the selected attacks: Worm, Distributed Denial of Service, Man-in-the-Middle, Scan, and Trojan. This investigation develops three techniques of self-organization for multiple distributed agents in an intrusion detection system: Reputation, Stochastic, and Maximum Cover. These three movement models are tested for effectiveness in locating good agent vantage points within the network to classify the state of the network. MFIREv3 also introduces the design of defensive measures to limit the effects of network attacks. Defensive measures included in this research are rate-limiting and elimination of infected nodes. The results of this research provide an optimistic outlook for flow-based multi-agent systems for cyber security. The impact of this research illustrates how feature selection in cooperation with movement models for multi agent systems provides excellent attack detection and classification

    AVOIDIT IRS: An Issue Resolution System To Resolve Cyber Attacks

    Get PDF
    Cyber attacks have greatly increased over the years and the attackers have progressively improved in devising attacks against specific targets. Cyber attacks are considered a malicious activity launched against networks to gain unauthorized access causing modification, destruction, or even deletion of data. This dissertation highlights the need to assist defenders with identifying and defending against cyber attacks. In this dissertation an attack issue resolution system is developed called AVOIDIT IRS (AIRS). AVOIDIT IRS is based on the attack taxonomy AVOIDIT (Attack Vector, Operational Impact, Defense, Information Impact, and Target). Attacks are collected by AIRS and classified into their respective category using AVOIDIT.Accordingly, an organizational cyber attack ontology was developed using feedback from security professionals to improve the communication and reusability amongst cyber security stakeholders. AIRS is developed as a semi-autonomous application that extracts unstructured external and internal attack data to classify attacks in sequential form. In doing so, we designed and implemented a frequent pattern and sequential classification algorithm associated with the five classifications in AVOIDIT. The issue resolution approach uses inference to educate the defender on the plausible cyber attacks. The AIRS can work in conjunction with an intrusion detection system (IDS) to provide a heuristic to cyber security breaches within an organization. AVOIDIT provides a framework for classifying appropriate attack information, which is fundamental in devising defense strategies against such cyber attacks. The AIRS is further used as a knowledge base in a game inspired defense architecture to promote game model selection upon attack identification. Future work will incorporate honeypot attack information to improve attack identification, classification, and defense propagation.In this dissertation, 1,025 common vulnerabilities and exposures (CVEs) and over 5,000 lines of log files instances were captured in the AIRS for analysis. Security experts were consulted to create rules to extract pertinent information and algorithms to correlate identified data for notification. The AIRS was developed using the Codeigniter [74] framework to provide a seamless visualization tool for data mining regarding potential cyber attacks relative to web applications. Testing of the AVOIDIT IRS revealed a recall of 88%, precision of 93%, and a 66% correlation metric

    ASPIE: A Framework for Active Sensing and Processing of Complex Events in the Internet of Manufacturing Things

    Get PDF
    Rapid perception and processing of critical monitoring events are essential to ensure healthy operation of Internet of Manufacturing Things (IoMT)-based manufacturing processes. In this paper, we proposed a framework (active sensing and processing architecture (ASPIE)) for active sensing and processing of critical events in IoMT-based manufacturing based on the characteristics of IoMT architecture as well as its perception model. A relation model of complex events in manufacturing processes, together with related operators and unified XML-based semantic definitions, are developed to effectively process the complex event big data. A template based processing method for complex events is further introduced to conduct complex event matching using the Apriori frequent item mining algorithm. To evaluate the proposed models and methods, we developed a software platform based on ASPIE for a local chili sauce manufacturing company, which demonstrated the feasibility and effectiveness of the proposed methods for active perception and processing of complex events in IoMT-based manufacturing

    Online Novelty Detection System: One-Class Classification of Systemic Operation

    Get PDF
    Presented is an Online Novelty Detection System (ONDS) that uses Gaussian Mixture Models (GMMs) and one-class classification techniques to identify novel information from multivariate times-series data. Multiple data preprocessing methods are explored and features vectors formed from frequency components obtained by the Fast Fourier Transform (FFT) and Welch\u27s method of estimating Power Spectral Density (PSD). The number of features are reduced by using bandpower schemes and Principal Component Analysis (PCA). The Expectation Maximization (EM) algorithm is used to learn parameters for GMMs on feature vectors collected from only normal operational conditions. One-class classification is achieved by thresholding likelihood values relative to statistical limits. The ONDS is applied to two different applications from different application domains. The first application uses the ONDS to evaluate systemic health of Radio Frequency (RF) power generators. Four different models of RF power generators and over 400 unique units are tested, and the average robust true positive rate of 94.76% is achieved and the best specificity reported as 86.56%. The second application uses the ONDS to identify novel events from equine motion data and assess equine distress. The ONDS correctly identifies target behaviors as novel events with 97.5% accuracy. Algorithm implementation for both methods is evaluated within embedded systems and demonstrates execution times appropriate for online use
    • …
    corecore