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Abstract

This thesis focuses on collection and preprocessing of streaming social media feeds

for metadata as well as the visual and textual information. Today, news media has

been the main source of immediate news events, large and small. However, the

information conveyed on these news sources is delayed due to the lack of proximity

and general knowledge of the event. Such news have started relying on social media

sources for initial knowledge of these events. Previous works focused on captured

textual data from social media as a data source to detect events. This preprocessing

framework postures to facilitate the data fusion of images and text for event detection.

Results from the preprocessing techniques explained in this work show the textual

and visual data collected are able to be proceeded into a workable format for further

processing. Moreover, the textual and visual data collected are transformed into

bag-of-words vectors for future data fusion and event detection.
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PREPROCESSING TECHNIQUES TO SUPPORT

EVENT DETECTION DATA FUSION ON SOCIAL MEDIA DATA

I. Introduction

For decades, television news media has been the main source of immediate news

worthy events. However, the information conveyed on these news sources is sometimes

delayed and vague on details due to lack of proximity to the event. In the last decade,

social media users have started to bridge this delay of information by transmitting

first hand information from the scene of the event. Many news outlets initially rely on

information transmitted on social media sources like Twitter and Facebook to acquire

this information early in the event’s progress.

Social media has become a mainstay of mass communication in many peoples’

lives. Over 2.5 quintillion (1018) bytes of data is generated by society online each

day [50]. A large portion of this data is generated on such social media services

like Facebook, Twitter, Instagram, and Google+. Most social media services allow

users to perform actions like upload a message, upload images, upload videos, tag

other users in messagse, hashtags, make use of current location and many others.

These actions allow users to upload information by a touch of their mobile devices or

personal computers. This ease of access to social media information has spurred the

use of data mining algorithms and techniques to utilize the information in these Big

Data entities.

Big Data, generated by these large scale social media networks, has been used in

a wide range of domains to model and predict real world phenomenon. However, the

majority of research on mining large scale data streams from social media networks has
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focused primarily on textual data streams that suffer from the following challenges:

limited resource mining such as specific website forums [3], relying solely on extracting

data from one aspect of a piece of data like geo-location [20], and poor assumptions

about unbiased social media users [33].

Twitter offers a robust venue to detect and discover knowledge relating to any

on-going threats. Twitter users generate more than 500 million tweets per day 1.

Any given tweet may contain useful information such as textual content, geo-location

of the tweet, images, videos, etc. Other authors have researched the accuracy and

truthfulness of social media networks ranging from predicting product demand [47]

to online medical diagnoses [9].

When referring to threat detection on social media outlets, it is not as simple

as “Search all messages that contain thread word of interest X.”. There are several

issues with social media from this aspect. Not all messages communicated through

social media are related to news worthy event. An example is “Person X was shot

at location Y”, while another social media user may be more indirect such as: “Why

would someone shoot such a great person, such a loss for the world.” Another issue

with social media users is an individual’s ability to assess if the information being

relayed is real or fake. The speed in which information disseminates through a social

media network may influence how a social media user responds. An example is how

fast the 2013 hoax “White House Bombing” spread across social media to cause a 140

point drop in the Dow Jones (DOW) in five minutes. This was approximately] 1% of

the DOW at the time [8]. Another challenge specifically for image data mining is that

not all users tag or properly address an image in a given message. An example of a

vague message such as “How Cute!” gives little context outside of the two words.Lack

of accurate context for a given image discredits the message or can cause the image

1https://about.twitter.com/company
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to be filtered out from any meaningful analysis processes.

This thesis presents a preprocessing method for utilization on collected live social

media data, specifically Twitter. This preprocessing method is developed to support

an effort to combine textual and visual data for event detection over social media.

This method is tested on three selected, widely covered news events. This method is

validated by the creation of parsed data files along with acquired images. The data

is also analyzed from the time of the events occurrence to the proceeding hour.

3



II. Literature Review

2.1 Social Media Networks

Social media networks have become globally-recognized domains to gather large

amounts of information for various usage. A study conducted by Parker et al. involved

the use of Facebook and Twitter to track and model health epidemics in a given area

or worldwide [37]. Social media users leveraged their connections across the many

social mediums in January 2010 to raise eight million dollars to aid those affected by

the Haiti earthquake [16]. Abbasi et al. focused on the analysis of the specific social

media source of web forums[1]. Abbasi wanted to correlate the usage of a certain lung

cancer drug to side effects and moods through the collection and analysis of these

forum posts. Data gathered through social media networks has also been utilized by

Sakaki et al. to detect anomalous activities in social media usage (such as Twitter)

during natural disasters such as earthquakes in a specific area [44]. Liang et al. also

completed a study involving pinpointing an earthquake by utilizing geo-tagged tweets

in two earthquake prone areas [30].

Political-driven research has prompted the use of social media to determine what

politicians and political topics are trending amongst social media users [46]. Bukhari

et al. monitored Facebook, Twitter and blogs for any visual information pertaining

to Super Bowl XLVI and analyzed for future marketing studies [10]. There have even

been studies to determine if there is a supply chain risk for a given market utilizing

data from social media [15]. Work conducted by Li et al. proposed the use of a batch

mode called HybridSeg to split tweets into meaningful tweets [29]. This splitting of

the tweets helped identify the local and global context of a batch of tweets. X.Liu et

al. proposed the use of a textual data cube to analyze and represent many overlapping

features found in a given piece of textual information [32]. He accomplished this work

4



through the use of linguistic extraction algorithms along with several machine learning

algorithms. Yanai et al. utilized the Twitter API to mine all food related images

based on the textual data and classify the images based on color with a Histogram

of oriented Gradients (HoG) and Support Vector Machines (SVM) [52]. This data

was trained on a food dataset that classified each image into one of several food data

classes. Liu et al. conducted a study involving the mining of Flickr images for use

in cross-referencing major disasters such as Hurricane Katrina [31]. Liu concluded

images uploaded by what he called ”citizen journalists” provide a significant, first-

hand account of these events of interest. Though many of these works utilize the

numerous aspects of social media, this research focuses on gathering images and text

for preprocessing for event detection. This analysis requirement makes the previous

methods mentioned insufficient for the preprocessing and mining research.

2.2 Event and Anomaly Detection

The detection of anomalies (events) helps aid in discovering patterns that do not

occur in normal data streams. The purpose of these anomalies is they provide a

high amount of information about the potential peaking event from what is usually

expected from a given event. Early needs for cyber event and anomaly detection de-

tected fraud [36] along with detection of network intrusion [53]. Guille et al. proposed

the use of Mention-Anomaly-Based Event Detection (MABED) to discover peaks of

anomalous Twitter tweet patterns based on tweets alone [17]. A method proposed by

Anantharam et al. aimed to detect and correlate tweets from Twitter to an anomalous

event by evaluating URLs (Universal Resource Locator) provided in a given tweet for

related information [6]. Becker et al. proposed several methods and algorithms to

identify and classify occurring events based off of mined information from multiple

social media sources like Facebook, Youtube, etc [7]. Event and anomaly detection

5



has also been considered for manufacturing processes and control systems. Allen et

al. designed a new anomaly detection solution for event-based systems [4]. Allen’s

solution generates models of the system, detect faults, and utilizes the models to

detect anomalies in the new event streams. Chae et al. created an interactive visual

analytics system based on automated message evaluation to detect abnormal events

[11]. Chae utilized Latent Dirichlet Allocation (LDA) to extract and rank major top-

ics contained in the textual parts of his social media data. Reuter et al. designed a

system to classify incoming social media streaming into already known events or, if

needed, create a new event class [40]. Reuter showed this method worked effectively

with large amounts of data and scaled accordingly. Li et al. utilized known his-

toric events from Wikipedia to detect events in their collection of 4.3 million tweets.

Li created a segment-based event detection system that employed the use of Term

Frequency - Inverse Document Frequency (TF-IDF) to transform the tweets into a

more meaningful form [28]. Watanabe et al. proposed the use of their local event

detection system called Jasmine, to better geo-locate Twitter users from the context

of their tweets. Watanabe’s study also found only 0.7% of tweets are geo-tagged

[48]. Inclusion of such a system could prove valuable for most research in this area

as most social media users disable geo tracking on their account. While the research

on anomaly and event detection is extensive, the different methodologies proposed

are mostly centered around textual analysis. The addition of image analysis adds a

new level of complexity which requires either the creation of classes of images or the

utilization of already existing classes from elsewhere.

2.3 Textual Analysis Algorithms

In 2012, IBM claimed around 2.5 exabytes of data are created each day [21].

Because of this large amount of information, researchers are trying to create and op-

6



timize algorithms to efficiently process and collect this data for various usage. Zhao

et al. developed an improved depression detection model based on sentiment anal-

ysis algorithm due to the performance and accuracy of their currently developed

algorithm being somewhat inefficient [54]. Chen et al. proposed an index-based rank-

ing estimation algorithm to improve query processing performance as well extending

the several involved query processing algorithms to include and support the missing

objects of interest [12]. Wu et al. created a hybrid algorithm called Text Segmen-

tation algorithm based on Hierarchical Aggolomerative Clustering - Discrete Particle

Swarm Optimization (TSHAC-DPSO) to improve linear text segmentation’s accu-

racy and lower the computational complexity [49]. Jiang et al. aimed to develop a

fuzzy self-constructing feature clustering algorithm that would categorize text with a

higher accuracy, precision, and recall compared to other feature reduction methods

by reducing the dimensionality of the features in the text classification [22]. Previous

work completed by Bodnar et al. utilized the textual information of Twitter data to

increase the veracity of event detection on social media networks [8]. This data was

first mined based on if users had geo-location enabled. Then a keyword search was

utilized on the collected data for approximate time frames and locations to acquire

all tweets about a known threat event. This work utilizes several of the concepts

introduced in work completed by Bodnar et al. by including the collection of the

image data along with the textual data.

2.4 Image Analysis Algorithms

In the past several years, the volume of images uploaded to social media outlets

has increased drastically [34]. Several other areas of research have utilized this in-

flux of image data for analysis. Xu et al. presented the Multi-entry Coupled Object

Similarity (MeCOS) algorithm to analyze the relationships been social media images

7



on their coupling attributes [51]. Xu measured the similarity between non-IID (In-

dependent and Identically Distributed) data objects which he describes in several

inter-related attributes. Work completed by Gupta et al. designed an algorithm to

detect reported known fake Hurricane Sandy images that had propagated through

Twitter. This work is based on the known existence of the fake images from media

sources and other people. Gupta also observed in the case of the fake images, Twitter

users tended to retweet trending topics whether they follow the person tweeting the

information or not [18]. For image comparison and processing, Hare et al. created

a tool called PicSlurper that processes images over a given time to detect trending

images. Hare accomplishes this through a combination of Locality Sensitive Hashing

(LSH), Hamming distance calculations, and Euclidean distance between each image

feature [19].

However, up until the last few years, much of the research that analyzed these

mass amounts of images utilized many of the same methods such as creating HoG

(Histogram of Gradients) for classifiers and trained SVMs (State Vector Machines)

[7] [42] [52] . More recent work approaches the use of Convolutional Neural Networks

(CNNs) and Deep Learning to conduct mass image and video recognition [26] [43].

The utilization of these CNNs have proven to be more robust and accurate compared

to previous image recognition methods. CNNs must be trained on vast amounts of

data in order to avoid overfitting. CNNs are used in large scale challenges such as

the Pascal Visual Object Classification Challenge (PVOCC) and the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) [43]. These two challenges provide

venues to test and train the participants’ image recognition networks. The PVOCC

requires the recognition of 20 classes while the ILSVRC contains up to 1000 different

classes. Though other methods were utilized in these competitions, CNNs have been

consistent winners.

8



Though these competitions provide a novel venue to test a CNN, these compe-

titions provide a select group of classes that represent a wide range of images for

testing. This is not the case for social media network images. The quality and pro-

fessionalism of the photos in the existing challenge classes are not likely to exist on

social media networks.

2.5 Online Trust Metrics and Frameworks

One challenge when studying social media data is the trustworthiness of a given

user and their provided information. Online information seekers must validate this

social media data themselves. They accomplish this through personal judgment of the

reliability and quality of the content that is provided. Several previous works designed

frameworks around distinguishing these reliability issues. Kim et al. designed a

trust prediction framework that distinguishes online experiences as being trustful or

distrustful [25]. Kietzmann et al. created a honeycomb framework describing how

seven functional blocks of social media are the foundations for building trust between

users [24].

Another factor to consider when utilizing social media data for trustworthiness is

the physical location of the source from a given event. Croitoru et al. argued that

if an individual is closer to a given event then they are more likely to be accurate

on reporting the event [13]. This make sense because if individuals are further way

from the event, they likely did not get a first-hand view or directly interact with

the event. This same idea can be applied to time metrics. Sakaki et al. designed

earthquake detection model which required a threshold number of messages before

the model considered the reports to be true [44]. This poses the issue with non-

earthquake events. A relevant event may not have many messages due to a low

number of participants. This poses the loss of such messages could be detrimental

9



for discovering the existence of events whether they are large or small. Ruan et al.

conducted a trust measurement study on the effects of Twitter followers for the group

FinancialTimes. By using the tweets from these followers, the study focused on giving

each user a weight based on their connectivity to other users as well as weighting each

tweet as positive, neutral or negative. This approach is biased to only the followers

of a specific group and seems inadequate to directly relate tweets in this group to the

fluctuation in the stock market [41].

One study completed by Gupta et al. discovered during Hurricane Sandy three

malicious fake images were being disseminated and retweeted on Twitter to suppos-

edly increase government response to the incident. The study discovered 86 percent

of the fake images were retweets from bot accounts attempting to propagate the fake

images [18]. Though this research does not directly determine the trustworthiness

of a user or information, scoring trustworthiness offers another metric for evaluating

collected messages.

2.6 Data Fusion

In the sections, several of the proposed text and image systems work efficiently.

However, these works ignore other associated media content within the data like

audio, video and image data. This is where the concept of data fusion comes into

play. Most of the current research in regards to data fusion is focused on fusing data,

like images and other graphics, in the medical field [2] [23] [39]. Most of these studies,

however, focus more on combining information from other medical instruments into

existing data plots and graphs in an attempt to reduce the number of sources needed

to read critical health information.

Other studies, specifically geared towards available information on the Internet,

pose more viable sources of data fusion techniques. A study conducted by Alqhtani et
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al. focused on event detection through social media, specifically, Twitter. Alqhtani

utilized Histogram of Gradient (HoG) descriptors for tweeted images and bag-of-

words models with Term Frequency-Inverse Document Frequency (TF-IDF) methods

for the text. Alqhtani aimed to fuse these two different data types to show higher

accuracy for their event detection model when image data is fused with the text data.

Alqhtani fails to explain how the data becomes fused as well as lack of explanation

on many steps in the entire method of the research [5].

Work completed by Moulin et al. corresponds closely to the aim of this work

[35]. Moulin utilized the bag-of-words model to represent both textual and image

data. Moulin focused on determining the proper weight for a modality whether the

modality is the text, audio, video, or image data. Lee et al. aimed to correlate

available online images to geographical locations by fusing images and text [27]. Lee’s

experimental results showed the proposed method enhanced the task of location-

based knowledge discovery given multiple images with associated text information to a

known geographic location. Poslad et al. designed an ontology model that fused visual

word vectors from images along with textual properties extracted from the images

[38]. This research was an effort to create a more accurate Image Retrieval System

(IMR) which returns more relevant results given a certain image. The overarching

goal of this work is to fuse the textual and visual data collected from social media.

This research designs a basic methodology step similar to Moulin et al. for proposed

completion of the data fusion in future work.
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III. Methodology

3.1 Methodology Overview

This section describes the methodology for preprocessing data from social media

for event detection. This preprocessing feeds into work amenable to data fusion once

complete. This work defines an event to be an occurrence during a particular span

of time t and location l. Some events during this time span may be uninteresting,

but some may be anomalous to the known steady state. This research gathers the

anomalous information through the use of local nodes. These local nodes are social

media users who communicate their perception and understanding of the event based

on their approximation to the location l at time t. These nodes communicate whether

the nodes are close to the epicenter or further away.

First, the interaction between social media users is described in Section 3.2. Sec-

tion 3.3 describes the framework for data collection, processing, feature extraction

and event detection. Section 3.4 explains the choice of Twitter as the platform for

data collection for this work. In Section 3.5, the tools utilized to collect Twitter data

as well as the parameters set to collect the target data are discussed. Section 3.6

describes how the data is preprocessed and parsed for further analysis. Section 3.7

describes the methods for extracting features from both the textual and image data

collected from Twitter. Finally, Section 3.8 briefly discusses the overarching concept

for this work which involves the data fusion of the textual and visual data. This

concept will be taken into consideration for future work to determine whether or not

event detection is improved through the inclusion of visual data fused with the textual

data versus just the textual data alone.
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Figure 1. Shannon Model in Social Media. [45]

3.2 Social Media Communication

In order to better understand social media network communication, this research

considers a social media model of Shannon’s information theory in Figure 1 [45].

Figure 1 depicts a typical message sent from Social Media User A to Social Media User

B. For the purposes of this research, encoding and decoding is the transformation of

the intended message from typed text or other information into digitized information.

This information is ”decoded” or recompiled into the original format intended for

viewing from the source so the recipient may view the information. Social Media

User B gives feedback to Social Media User A by either accepting the transmitted

information as real or a hoax based on their believed/perceived legitimacy of the

information. User B has the option to pass the information to others in the social

network or in real life. Figure 1 depicts a general case of a social media network. A

given user (or node in this case) can have one or many intended recipients of a given

message. This same message has the potential to be propagated through the same

social network given the recipient (User B) believes the contents of the message. These
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Figure 2. Proposed Framework.

messages potentially contain data such as text and images. This research focuses on

capturing these messages for preprocessing and analysis. The overarching hypothesis

is to determine whether or not the fusion of the text and image data further indicate

the occurrence of an event versus the just textual analysis. The hypothesis for this

work consists of designing a method for preprocessing captured social media data for

event detection with fused data.

3.3 Methodology Framework

Figure 2 depicts the overview of the methodology for this research. This framework

is based on a similar design for the Knowledge Discovery in Database (KDD) process

[14]. The first step of the research involves choosing the source from which the data

will be collected for analysis. In reference to this framework, social media networks

are the main consideration for this research. For the second step, a combination of

code and scripts must be established to actively collect streaming data for analysis. In
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the third step, the data must be processed in order to remove extraneous information

or to make the data compatible with the methods described in the fourth step. This

is because some data comes in a JavaScript Object Notation (JSON) or other formats

that have the potential to make further processing more difficult than necessary. This

difficulty is caused by large file sizes accumulated by the streaming collection program.

The fourth step aims to extract features from the processed data that was collected

over a period of time. This textual and visual data will be extracted and vectorized

using the bag-of-words and bag-of-visual words methods. The final step describes a

brief data fusion process which will be explored in future work. The goal of this step

is to calculate (detect) the chance of an event occurring during over a given time

period in a set of collected data stream by combining textual and visual data. This

method will be compared to the analysis of just the text alone.

3.4 Selection of Social Media Source

There are many popular social media networks like Facebook, Flickr, Foursquare,

Google+, Instagram, LinkedIn, MySpace, Weibo, and Tumblr. These networks have

millions of users around the world. However, in order to gather data from these

networks, many connections with the other network members (to be “friends” in most

cases) must already exist. Gathering data solely on existing connections would limit

the scope of collectible data to only those members within an established “friend”

group. Also, several of the larger social media networks limit or completely restrict the

amount of data that can be collected from their network. Because of these limitations,

social media networks like Facebook and MySpace become unrealistic choices.

One social media network, in particular, caters to application developers to make

use of the data that comes across their social media platform. Twitter offers devel-
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Figure 3. Example of a Tweet.

opers the tools and access to their data streams to build new applications1. Several

APIs (Application Program Interface) already exist that allow developers to access

Twitter streams to develop new software and applications. The developers only need

to contact Twitter to acquire developer unique keys. These unique keys allow the

developer to access Twitter streams and historical data. When a message is posted

on Twitter it is called a tweet. A tweet can contain up to 140 characters. Figure

3 depicts an example tweet seen on Twitter2. The user can upload images, embed

links to other websites, and even retweet another user’s tweet onto their Twitter feed.

Users can mention other users in a tweet which links that user to that tweet. Based

on Twitter’s encouragement for developers to work with their platform along with the

various piece of metadata collectible from a single given tweet (discussed in Section

3.5), Twitter was chosen as the social media platform for data collection.

1https://dev.twitter.com
2http://mcphee.com/shop/horse-head-squirrel-feeder.html
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Figure 4. Example Raw Captured Tweet.

3.5 Data Collection

The reason this research utilizes tweets is due to the availability of already devel-

oped Application Program Interfaces (APIs) (with the proper developer keys from

Twitter) that interact with Twitter streams. Each message uploaded onto Twitter

is called a tweet. Each tweet is stored in the form of a JSON (JavaScript Object

Notation) objects on Twitter servers. These JSON objects contain many types of

metadata about the each individual tweet such as date of creation, if the user has

geolocation enabled , where the user is located, etc. Figure 4 depicts a tweet with

notable pieces of metadata. Below lists some example fields of metadata/data that

exist in a raw JSON object tweet.

1. The unique identification number for the tweet. Actual tweet number since first

tweet.
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2. The textual information entered by the user. This field can contain links and

hashtags as well.

3. The unique URL (Uniform Resource Locater) for the tweet. This link allows

access to the original posted tweet.

4. The screen name of the user who posted the tweet.

5. The geo enabled field indicated if the user had geo-location enabled during the

time of posting. If enabled, this field is populated with latitude and longitude

numbers from where the tweet was made/uploaded.

6. Indicates what time zone the user is in when the tweet is made.

In order to collect these raw JSON objects (tweets), the Twitter4J API was uti-

lized. The application utilized by this research was originally utilized by Bodnar et

al. to specifically grab any tweets that contained geo-location information [8]. Since

this application also enabled the collection of tweets by keywords in the textual com-

munications, this research utilized the same application to pull streamed tweets based

on keyword stream collection.

3.6 Preprocessing the Data

The Boston Bombing event tweets were provided in a CSV (Comma Separated

Value) file with all of the tweet IDs from previous work [8]. Following the concept

of the CSV file structure, future data stream collections are taken; then the tweet

ID numbers are collected into a CSV file. These event CSV files are provided to an

API called Twython. With Twython, a user can perform various tasks with Twitter

data. In the case of this research, Twython provides the function to query older

tweets if the tweet ID is provided. With the provided ID, a user can query various
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fields associated with the tweet ID. For this research, six fields of data are identified

as important metadata to collect. These fields are:

1. “id str” This provides the tweet ID number.

2. “created at” This field provides the day and time the user created the tweet.

This time is different from a retweet.

3. “followers count” This field provides the number of followers the user of the

tweet currently has. This data is collected for future use in weighing the validity

and/or trustworthiness of a tweet based on the follower count.

4. “user” Retrieves the user name of the tweet. This metadata is collect for future

efforts to remove user tweets that originate from ”spam accounts”. An example

of these spam accounts are gun control lobbyist accounts that constantly tweet

anti-gun messages which can be collected from keyword searches.

5. “text” This field provides the actual content uploaded uniquely for a user’s

tweet. This field contains a variety of data from text, to links to websites, to

hashtags.

6. “media url” If present, this field provides the URL to a media image.

With the selected fields of interest, a Twython script is ran to collect this metadata

into a text file. Due to special characters, like the hyphen, comma, and quotes being

commonly used in text messages, the plus sign ”+” was utilized to delineate between

each field. Figure 5 shows a small snippet of a few tweets that were collected through

this script.

Another part to this script also collects the image URLs into a separate text file.

Python contains libraries that allow the parsing and downloading of images from

URLs. These libraries were utilized to download the images into multiple folders.
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Figure 5. Example snippet of queried tweet fields.

There was one caveat to downloading images in Python. Due to an internal limita-

tion of the Python software, Python crashed initially when attempts were made to

download all images from one event, which was around 50,000 image URLs at once.

In order to get around this issue, the images were broken up into ten minute chunks

according to their timestamps and downloaded into separate folders. Python is also

utilized to get a binary return if each keyword is contained within each tweet. These

binary results for each tweet are stored in a Microsoft Excel spreadsheet for further

analysis.

3.7 Feature Extraction - The Science

Now that the text and images from the tweets have been collected, the data must

be broken down further to understand the corpus as a whole. From background

studies on data fusion along with text and image analysis, the concept of bag-of-X

model for feature extraction appeared in several previous works [35] [5] [38].

For the textual information on each event, the bag-of-words representation is

utilized to further parse the text into meaningful features. Since algorithms cannot

understand the textual symbols directly, they must be transformed into numerical

feature vectors. For this, the scikit-learn module in Python provides several built-in

functions to perform these tasks. This step utilizes the following bag-of-word functions

to transform the textual data:

1. Tokenize - This converts each string from the event into a list of tokens. This
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Figure 6. Two Example Tweets Utilizing Proposed Text Feature Extraction (no N-
grams).

tokenization treats white-spaces and punctuation as token separators. Token

are stored as a contiguous set of characters/numbers

2. Stop word filtering - Identify common use words which add no value if identified

such as “the”, “and”, “for” etc.

3. Counting - Counts the occurrences of each token (word in most cases).

4. Stem Filtering - This reduces each word to its stem, removing suffixes and

prefixes.

5. N-grams - Bag-of-words cannot capture phrases and dependent words (like San

Bernardino). Bag-of-words also does not catch misspellings or word derivations.

N-grams provides to ability to build a collection of n-grams where the occur-

rences of pair of words are counted. This work utilized the bi-gram collection

(n=2). An example use of bi-gram collection is the word “Golden Gate Bridge”.

This results in the tokens “Golden Gate” and “Gate Bridge”.

Figure 6 depicts an example bag-of-words feature extraction on two differently for-
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Figure 7. Image Grid Feature Extraction Example.

matted tweets without n-gram vectorizing. The first tweet depicts a readable sentence

which is reduced to stemmed words and stop words removed. The second tweet de-

picts a retweet of a retweet containing two trending hashtags, a target person to

include in the tweet, and the link to the retweeted tweet. After running the pro-

posed bag-of-words model, the remaining tokens consist of several non-english words.

Though this tweet’s content is related to the event, scoring these types of tweets

proves a challenge.

Also the associated text, this work utilizes the method of TF-IDF (Term Frequency

- Inverse Term Frequency) to statistically determine the importance of a word in a

given text corpus. In this research, all tweets from a given event are considered

the corpus of words for the document. The scikit-learn package in Python offers a

function to perform the TF-IDF transformation of the tweets.

In order to process the images, the images must also be vectorized. Due to the com-

plex nature of image processing and analysis, this research utilizes a simple NumPy

function to turn each image into a 1-D array. Figure 7 depicts and example grid
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Figure 8. Proposed Data Fusion Model.

dissection of the image. Each grid section is transformed using the bag-of-visual

words method. Each section is numerically interpreted and stored into a vector. This

provides the data fusion step initial vectorized images.

3.8 Data Fusion

The overall goal of this work is to show the fusion of both textual and visual media

in social media messages lead to a higher likelihood of event detection. Even though

this research does not focus on data fusion, this concept is explored to show proper

preprocessing is accomplished to facilitate meeting this goal. This research considers

a similar data fusion model proposed by Moulin et al. [35]. Moulin proposes the

transformation of both the image and textual data into a bag-of-X model where both

the textual and visual data are broken down into vector space. Moulin proposed a

linear combination of both the textual and visual vectors through scoring. Figure 8

illustrates the different steps the proposed data fusion model would utilize:
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1. This step indexes the collected social media data, both textual and visual, with

the bag-of-words modeling proposed in Section 3.7. The text and images are

processed independently in this step.

2. The user provides a set query of text, and possibly in future design, images, to

the system. This step also utilized the same bag-of-words modeling.

3. This step calculates a ranking score (V for visual, T for textual) between the

user’s query and every tweet provided from the collection.

4. This step combines the scored data in order to collect a group of tweets that

are relevant to the user’s query. Both the textual and the visual are weighed

differently by a given value α.

5. This step determines, based on the results from the last step, if an event oc-

curring based on a calculated threshold. The exact threshold parameter will be

determined in future work.

24



IV. Results and Analysis

4.1 Event Selection

For this work, three security-related events were chosen. Two events occurred in

the United States: the Boston Bombing in 2013 and the San Bernardino shooting in

2015 [8]. The other event considered was a terrorist attack that occurred in Paris in

2015. These three events were extensively covered by the news media. In the Boston

Bombing, 6 people were killed and 280 people were injured due to a terrorist attack.

In Paris, 130 people were killed in a terrorist attack in multiple nearby locations

and 368 people were injured. In San Bernardino, 14 people were killed in a terrorist

related event and 22 people were seriously injured.

These events were collected using the live tweet mining program (API) discussed

in Section 3.6. Since Twitter requires specific parameters in order to collect streaming

data, certain collection parameters were selected during mining. This work utilized

keywords, along with specific times and days, to limit and mine specific event-related

tweets. The Boston Bombing tweets were previously gathered for work completed

by Bodnar et al. These tweets were provided in a CSV tweet ID file. [8]. These

tweets were first gathered from geo-location enabled tweets during the event time

period. Then the tweets were further filtered to keep tweets that contained the word

“Boston”. For the Paris terrorist attack, the keywords “terrorist”, “bomb”, “explo-

sions”, “Hollande”, “#PrayforParis”, “Paris”, and “Bataclan” were used to mine the

related tweets. For the San Bernardino shooting the keywords “San Bernardino”,

“shooting”, “shooters”, “SanBernardino” were used.

Due to the period of time that had passed since each of the events, a certain

percentage of the tweet IDs could not be queried. This is due to a number of factors

such as: the user deleted the tweet, Twitter removed the tweet, and erroneous return
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Table 1. Initial Collected Event Data.

due to API connection issues. Table 1 shows the number of original tweets IDs

collected for each event. This table depicts that each event returned less tweets as

event occurrences proceeded back in time, with the Boston Bombing being almost

three years ago at 74% recall of the information. The most notable statistic here

showed that the Boston Bombing contained 46% “original” images links. This number

was not a good indication of actual original images. Users can retweet images from

different platforms and programs other than Twitter These alternate platforms caused

the collected image URLs to change to a unique name even though the image already

exists in the tweet corpus under a different name. Early examinations of the unique

image links also showed many users used enhancement programs or cropped trending

event images just to re-upload them to Twitter. Certain applications also changed

resolutions of the image as well which resulted in a new URL link for the same image.

The next three sections will discuss the results from the data collection for each

of the previously mentioned events. For each event, approximately an hour of data

was collected with given keywords to the Twitter API. The Boston Bombing differed

in collection through collection by geo-location enabled tweets first, then a keyword

search for the word “Boston”. A data analysis of ten minute periods was chosen for a

few reasons. First, several previous works generally analyzed a few hours of work at

a time in similar intervals [8] [10] [44]. During collection, it was observed that during

the studied events, conservatively, 15,000 to 20,000 tweets were collected every 10

minutes. This provided plenty of data for processing as downloading the images from

the URLs in a tweet corpus this large takes several minutes. This work is intended to

26



Table 2. Boston Bombing Keyword Search Breakdown per 10 Minute Interval.

assist in the detection of an event on social media in a certain period of time. Each

event is analyzed in 10 minute intervals. This is based on the likelihood the event will

be known to the main new sources within minutes, assuming a national level event.

Each event was analyzed for text and image density over a one hour interval in

ten minute slices. The top three most tweeted images were included to show example

Twitter images that had high retweetability. The image density was also broken down

into unique URL tweets per ten minutes, removing duplicates of the same image link.

Keyword counts were collected as a binary value for each tweet that contained the

keyword in Python and stored in Microsoft Excel.

4.2 Boston Bombing

For the Boston Bombing event, the CSV containing the tweet IDs from Todd Bod-

nar’s work were collected (recalled) for the information fields indicated in Section 3.6

with the Twitter API [8]. Tweets collected between the times 18:49:00 and 19:48:59

(Twitter stamped times) were preprocessed and organized in Microsoft Excel. Table

2 shows the frequency of the keyword ”Boston” and “explosion”. Though “explo-

sion” was not an initial keyword search term, the word was included due to the noted

frequency of use in the tweet corpus as another data point. This table shows the

tweet count rate for each keyword over an one hour time period. Each ten minutes a

keyword count was taken from each collected tweet to determine how often the words

“Boston” and “explosion” occurred in the tweet corpus.
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Figure 9. Boston Bombing Keyword Frequencies Over 1 Hour Period.

Another major difference between this event and the other two collected events

was the number of tweet IDs collected during stream collection. The initial motivation

for searching by keyword over geo-location was due to the lack of Twitter users who

enable geo-location[18]. The previous work completed by Bodnar et al. included

3 other geo-located events; but these events had only a couple of hundred tweets

each [8]. Luckily, this event was already being televised to some extent on major

media outlets and had a high number of people either participating or viewing the

marathon. The propagation of this event knowledge was fairly quick from the initial

explosion over social media. Another caveat to this collection was Bodnar mentioned

he performed “filtering by hand to remove irrelevant tweets”. This was not a realistic

action to consider for the other two events since any ten-minute-collection interval

for both of those events was double the size of the Boston Marathon tweet collection.

With this stated, the approximate 10,000 tweets for this event were enough to consider

for study.
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Table 3. Boston Bombing Unique Images and Image count per 10 Minute Interval.

Figure 9 depicts the occurrence of the keywords “Boston” and “explosion” from

the start of the Boston Bombing over a one hour period. In the first twenty minutes,

only a few hundred people tweeted about the explosion in the area. Almost every

ten minutes preceding this point the tweets relating to Boston doubled in reference

to the attack that had occurred. By the thirty minute mark the word “explosion”

was mentioned in the Boston geographical area almost 500 times every ten minutes.

Table 3 shows a breakdown of the image collection over the one hour event in

ten minute intervals. Though not depicted here, most of the first twenty minutes of

images from this event were of Boston Marathon runners participating or finishing the

event. The first images of the attack did not appear until near the end of the twenty

minute collection. Most of the images occurred between the thirty to fifty minute

marks. Figure 10 shows the same increase in tweeted images occurring around after

the twenty minute mark. The significant rise in images compared to unique image

count conveyed many Twitter users were retweeting the same messages involving the

same image.

[t]

Figure 11 depicts the top three images retweeted across Twitter. The numbers

below the images are the counts of how many times the image was retweeted in the

Boston area. The first two images originated from a gentleman who lived in a second

story window right above the area of attack. The first image was right after the

explosion which depicts people helping the injured. The second picture depicts the
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Figure 10. Boston Bombing Unique Images and Image Frequencies per 10 Minute
Interval.

bloodied sidewalk minutes later. The third picture was taken by a marathon supporter

on the sidewalk a few blocks down from the explosion. This picture shows the cloud

of fire and smoke right as the explosive triggers. These three pictures accounted

for 41.8% of the total pictures collected in one hour. This 41.8% does not include

cropped or different resolution versions that existed under different URL media links.

The depiction of blood and explosions appeared to convince social media users an

event was likely occurring, which lead to the retweeting of the same images over the

time span of one hour.

4.3 San Bernardino Attack

The San Bernardino attack tweets were collected with the keywords mentioned

in Section 4.1 in the Twitter API parameters. From this collection of tweets, tweet

IDs between the times of 21:00:00 and 21:59:55 are collected into a CSV. From there,

the CSV is processed as explained in Section 3.6. The resulting file is loaded into

Microsoft Excel with the delimiter symbol removed.

30



Figure 11. Top 3 Tweeted Images During the Boston Bombing.

Table 4. San Bernardino Attack Keyword Search Breakdown per 10 Minute Interval.

Figure 12 and Table 4 depict the results of the keyword collection performed

on streaming Twitter feeds. Upon collection, the keywords “San Bernardino” and

“SanBernardino” were expected to result in the most tweets collected. However,

”shooting” resulted in almost double of both “SanBernardino” and “San Bernardino”

combined. After investigating a small sample of the text and images, there appeared

to be many spam, or noisy tweets involving gun control. An initial consideration

after collection was the use of the location “San Bernardino” as a keyword may have

biased the collection. However, the data collection showed the action word “shooting”

surpassed the unique location by a good margin. This indicated the word “shooting’

was trending far more frequently over the one hour time span then the attack location.
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Figure 12. San Bernardino Keyword Frequencies over 1 hour period.

As for the interpretation of the tweets over the ten-minute intervals, the results

were not as expected compared to the Boston Bombing keyword collection. Almost

all four keywords maintain an even number of tweets that contain the keywords. The

collection for this event data started only minutes after the confirmed start of the

attack. The only noticeable spike in tweets was during the forty minute mark. This

was likely due to the police department officially increasing the announced number of

killed people from 4 to 12. For the first half of the hour the only known information

was many were wounded and a few people were killed. Upon close inspection of the

first few minutes of tweets, most people were tweeting or retweeting the shooting took

place in San Bernardino.

Figure 13 depicts the top three images tweeted during the first hour of the San

Bernardino shooting. Notice the two most tweeted images are of the geographic area

of the United States. The first two images accounted for approximately a sixth of

the total images collected for the San Bernardino attack. These tweets generally
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Figure 13. Top 3 Tweeted Images during the San Bernardino Attack.

involved a very brief mention of the, at the time, San Bernardino shooting that was

occurring at that moment followed by advocating for more gun control. The red and

pink dots indicated the location of a “mass shooting” in the last 20 years. The third

picture depicts a father communicating with his daughter located in the social service

building as the gunman continued their assault. The frequency of the gun control

images and tweets implied the need to develop a user filter function. This function

would be utilized to remove tweets from the collected tweets of Twitter users that are

known bot or spam accounts.

For the images, Figure 14 and Table 5 depict the spread of images over the one

hour collection of tweets. Similarly to the keyword search, the images and unique

images held similar levels across the entire hour of collection. Unlike the Boston

Bombing images, there were more than three times as many retweeted images as
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Table 5. San Bernardino Attack Unique Images and Image count per 10 Minute Inter-
val.

Figure 14. San Bernardino Attack Unique Images and Image Frequencies per 10 Minute
Interval.

there are unique images throughout the hour. At no point in the Boston Bombing

collection is this ratio this high. This is likely due to ease of retweeting a message

over conducting a search to ensure the event was actually occurring.

4.4 Paris Terrorist Attack

One important caveat for the collection of the Paris Terrorist Attack was the data

were collected almost four hours after the event occurred. Efforts to utilize other

APIs to retrieve older tweets only resulted in the ability to grab a handful of random
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tweets from the event day. These random collections included the other twenty-three

hours of the event day which were irrelevant data. The “*” indicated on the figures

and tables indicate that the data were taken well after the actual event start time.

This data consisted of a one hour slice several hours later.

The collection for the Paris Terrorist Attack started roughly four hours after

the event with the seven keywords indicated in Section 4.1. One hour of tweets

were collected which resulted in approximately 180,000 tweets. Figure 15 and Table

6 show the collection of tweets based on keyword collection over the hour period.

Based on the number of people killed, and the multiple locations in Paris attacked,

both Paris-based keyword were the top two collected tweets. Since these tweets

were collected almost four hours after the collection, the almost steady count of

keyword tweets was an expected result. One noticeable data point about this graph

was, although “terrorist” was the third highest collected keyword, the tweet collector

only found around 1,200 tweets every ten minutes with this word. Since this was

claimed as a terrorist attack fairly early into the event, the expected value of tweets to

contain this word were much higher. Bataclan and Hollande were target venues where

these attacked occurred. These two keywords resulted in significantly lower counts of

tweets over the one hour collection in comparison to other keywords like “terrorist”

and “prayforparis” This unwavering data collection was due the event attack ending

several hours before collection. The event was globally televised by the time collection

started. Most Twitter users focused their tweet content on grieving and praying over

conveying the occurrence of the event by the time collection occurred.

The image analysis is depicted in Table 7 and Figure 16. Similarly to the keyword

analysis, the image collection was constant throughout. However, in comparison to

the San Bernardino image analysis, the Paris collection is almost double the number of

images. In comparison of the unique image links, the Paris image collection contained
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Table 6. Paris Terrorist Attack Keyword Search Breakdown per 10 Minute Interval.

Table 7. Paris Terrorist Attack Unique Images and Image count per 10 Minute Interval.

almost triple the number of unique image links. This proves interesting due to the

corpus of the Paris tweets per hour are comparable to the San Bernardino tweet

corpus: both contain approximately 180,000 tweets. Section 4.1 Table 1 shows the

Paris event contained almost double the number of collect image URLs.

Figure 17 depicts the top three most tweeted images during the hour collection of

the Paris Terrorist Attack. After browsing the collected images for the Paris Terrorist

Attack, a majority of the images contained a significant portion of grieving or praying

for the victims of the attack. The three images in Figure 17 depict various groups

of people showing resilience to the attack that occurred. Most of the other collected

images from the Paris attack included images of various buildings with the France

flag colors and images of the Eiffel Tower.

This event collection presented a harder task of data filtering and manipulating

as the event occurred so long after the collection. The filtering of sympathy/griev-
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Figure 15. Paris Terrorist Attack Keyword Frequencies over 1 hour period.

ing/resiliency tweets costs extra time and effort. This prove problematic as the desired

system for this work requires the ability to detect the event in a small amount of time.

Another advocation for early collection was several users uploaded nice, high reso-

lution images to show their support for what happened in Paris. This caused the

image downloading for each ten minute collection to take longer than ten minutes

since other Twitter users also retweeted these high resolution images.

37



Figure 16. Paris Terrorist Attack Unique Images and Image Frequencies per 10 Minute
Interval.

Figure 17. Top 3 Tweeted Images during the Paris Terrorist Attack.
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V. Conclusion

5.1 Parameter-based Selection

This research employed a preprocessing methodology to collect, parse, preprocess,

and extract features from the collected text and image data. Three historic events

were selected for collection. The data for these events were collected through an API

utilizing a keyword collection function. The JSON objects collected from these events

were parsed for desired metadata and data such as text, images URLs and time of

submission. The textual and image data from these events were vectorized using the

bag-of-words model as well as the TF-IDF method for the text to support scoring of

the collected tweet corpus. These features were extracted to facilitate future work for

event detection through data fusion.

Analysis of the three events revealed the keyword-based collection of Twitter data

gathered a large amount of data with both textual and visual information. The Boston

Bombing showed a significant increase in tweet count over the one hour collection from

the initial attack time. A similar trend was observed with the associated images from

the collected tweets. 41% of the images for this event consisted of the site of explosion.

Total image count versus unique image count was explored to enumerate how many

tweets contained retweeted images. This preprocessing method offers a backbone for

future metadata collection given a set of parameters such as keywords or geo-location.

The San Bernardino Terrorist Attack collection yielded approximately 180,000

tweets and approximately 30,000 images. Though collected within minutes of the

known event start time, the trend of the keyword collection remained level across

the collection hour. A similar trend was observed for the images. Approximately a

ratio of 3:1 images were retweeted during the event collection hour. One-sixth of the

images pertained to a particular gun control image though a majority of the tweets
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still referenced the event.

The Paris Terrorist Attack yielded approximately 180,000 tweets. These tweets

were collected four hours after the event occurrence. The keyword count for this

event produced a steady number of tweets for all collected keywords. This collection

yielded almost double the number of images collected from the San Bernardino event.

A majority of the images collected from this event related to grieving or supporting

the attack victims.

5.2 Implications and Recommendations

This preprocessing method, along with available API also open the possibilities

to fuse or analyze other metadata. An example would be weighing the importance

or trustworthiness of a tweet based on the user’s follower count. The same concept

could be considered if the user has a website linked to their Twitter account (like a

business website link).

One flaw in the method of data collection was the reactive approach versus proac-

tive. Future collections should run two versions of the collection API. One constantly

collects general keywords like “shoot” and “bomb” utilizing the same methodology.

There should be a script that stops the API and saves a ten minute file named after

the time and day. A second similar script should be employed to collect tweets with

geo-location enabled. This script could run for an hour before stopping, saving, and

running again due to the lack of users who enable geo-location.

5.3 Future Work

One piece of metadata that would greatly improve this work is the geo-location

of the user where the actual tweet is created. Though Twitter has a geo-location

option, most Twitter users by default have this option disabled. Work completed by
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Watanabe et al. could be incorporated into each tweet to better locate the users by

unique keywords like “Paris” and “Bataclan Hall” [48].

Since the addition of images for tweet analysis is one of the main additions to

tweet analysis beyond the text data, the work completed by Gupta et al. should be

considered as a future edition of functionality for this system [18]. The propagation

of false information and images on Twitter came up during the background research

for this work. This work discovered several of the same images were retweeted from

other users or the same image was uploaded as a new instance of the image.

Initially the parsing work focused on utilizing built in functions of parsing libraries

to pull the desired fields from the raw JSON objects. However, depending on the pro-

gram or method a Twitter user tweeted their message, initial attempts at parsing out

certain information, such as the image URL, proved difficult. If a user uses a platform

other than Twitter to tweet, this caused some fields to be repeated multiple times in

a tweet. The use of special characters in textual information like “+” and multiple

quotes in the same line would stop any further parsing for the text field. Though the

use of the Twython API in Python successfully pulled the correct information, this

incurred unnecessary re-querying from Twitter and cost a good bit of time. The use of

the original JSON files is proposed for future preprocessing versus direct re-querying

of the Twitter servers.

Another related issue to fake image identification is the recognition of bot, or fake

accounts. During the parsing of the Paris tweet data, several images and accounts

constantly tweeted scenic pictures of Paris or were attempting to sell a product.

Identification of these accounts or some type of initial filter for these kinds of tweets

could keep the quality of the data analysis much higher. In order to really judge

whether or not a tweet is related to an event, each tweet would need to be read

by a person to catch undertone like sarcastic posts and ironic posts. Many of the
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reviewed works contained the caveat that their tweets were hand rated and tagged

for relevance.

A future implementation to help detect or ignore these kinds of troublesome tweets

would be to try to automate classification of simple tweets and prompt input from

the system administrator. The administrator could train the system on the more

questionable tweets so less person interaction would be required. Originally this work

hinged on the utilization of geodesic object proposals on images that would be then be

fed into a Convolutional Neural Network (CNN) utilized in work completed by Matt

Dering. However, after feeding the Boston Bombing images through this system, it

was determined the CNN needed more classes of images like blood, bombs, guns, etc.

The system proved fairly accurate at determining if a person or dog was present in an

image but these are basic objects in most tweeted images so there was little to infer

from these types of object detections. Setting up the Twitter4J API to constantly

collect both keyword based tweets and geo-location enabled tweets should be the

future goal for this work. This work demonstrated the feasibility of the setup but not

the full setup of this detection system. Creating a batch file or another module to

work with the Twitter4J API would be the first step. Having the collection terminate

every hour and saving the file name to be the time and day would make the event

detection on the data more true to the research as specific location names cannot

realistically be used to collect the data.
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