13,292 research outputs found

    Measurement of Anomalous Diffusion Using Recurrent Neural Networks

    Full text link
    Anomalous diffusion occurs in many physical and biological phenomena, when the growth of the mean squared displacement (MSD) with time has an exponent different from one. We show that recurrent neural networks (RNN) can efficiently characterize anomalous diffusion by determining the exponent from a single short trajectory, outperforming the standard estimation based on the MSD when the available data points are limited, as is often the case in experiments. Furthermore, the RNN can handle more complex tasks where there are no standard approaches, such as determining the anomalous diffusion exponent from a trajectory sampled at irregular times, and estimating the switching time and anomalous diffusion exponents of an intermittent system that switches between different kinds of anomalous diffusion. We validate our method on experimental data obtained from sub-diffusive colloids trapped in speckle light fields and super-diffusive microswimmers.Comment: 6 pages, 4 figures. Supplemental material available as separate file in the Ancillary Files sectio

    Subordinated Langevin Equations for Anomalous Diffusion in External Potentials - Biasing and Decoupled Forces

    Full text link
    The role of external forces in systems exhibiting anomalous diffusion is discussed on the basis of the describing Langevin equations. Since there exist different possibilities to include the effect of an external field the concept of {\it biasing} and {\it decoupled} external fields is introduced. Complementary to the recently established Langevin equations for anomalous diffusion in a time-dependent external force-field [{\it Magdziarz et al., Phys. Rev. Lett. {\bf 101}, 210601 (2008)}] the Langevin formulation of anomalous diffusion in a decoupled time-dependent force-field is derived

    On the strong anomalous diffusion

    Full text link
    The superdiffusion behavior, i.e. t2ν \sim t^{2 \nu}, with ν>1/2\nu > 1/2, in general is not completely characherized by a unique exponent. We study some systems exhibiting strong anomalous diffusion, i.e. tqν(q) \sim t^{q \nu(q)} where ν(2)>1/2\nu(2)>1/2 and qν(q)q \nu(q) is not a linear function of qq. This feature is different from the weak superdiffusion regime, i.e. ν(q)=const>1/2\nu(q)=const > 1/2, as in random shear flows. The strong anomalous diffusion can be generated by nontrivial chaotic dynamics, e.g. Lagrangian motion in 2d2d time-dependent incompressible velocity fields, 2d2d symplectic maps and 1d1d intermittent maps. Typically the function qν(q)q \nu(q) is piecewise linear. This corresponds to two mechanisms: a weak anomalous diffusion for the typical events and a ballistic transport for the rare excursions. In order to have strong anomalous diffusion one needs a violation of the hypothesis of the central limit theorem, this happens only in a very narrow region of the control parameters space.Comment: 27 pages, 14 figure

    Anomalous Diffusion at Edge and Core of a Magnetized Cold Plasma

    Full text link
    Progress in the theory of anomalous diffusion in weakly turbulent cold magnetized plasmas is explained. Several proposed models advanced in the literature are discussed. Emphasis is put on a new proposed mechanism for anomalous diffusion transport mechanism based on the coupled action of conductive walls (excluding electrodes) bounding the plasma drain current (edge diffusion) together with the magnetic field flux "cutting" the area traced by the charged particles in their orbital motion. The same reasoning is shown to apply to the plasma core anomalous diffusion. The proposed mechanism is expected to be valid in regimes when plasma diffusion scales as Bohm diffusion and at high B/NB/N, when collisions are of secondary importance.Comment: 9 pages, 4 figure

    Anomalous diffusion in the dynamics of complex processes

    Full text link
    Anomalous diffusion, process in which the mean-squared displacement of system states is a non-linear function of time, is usually identified in real stochastic processes by comparing experimental and theoretical displacements at relatively small time intervals. This paper proposes an interpolation expression for the identification of anomalous diffusion in complex signals for the cases when the dynamics of the system under study reaches a steady state (large time intervals). This interpolation expression uses the chaotic difference moment (transient structural function) of the second order as an average characteristic of displacements. A general procedure for identifying anomalous diffusion and calculating its parameters in real stochastic signals, which includes the removal of the regular (low-frequency) components from the source signal and the fitting of the chaotic part of the experimental difference moment of the second order to the interpolation expression, is presented. The procedure was applied to the analysis of the dynamics of magnetoencephalograms, blinking fluorescence of quantum dots, and X-ray emission from accreting objects. For all three applications, the interpolation was able to adequately describe the chaotic part of the experimental difference moment, which implies that anomalous diffusion manifests itself in these natural signals. The results of this study make it possible to broaden the range of complex natural processes in which anomalous diffusion can be identified. The relation between the interpolation expression and a diffusion model, which is derived in the paper, allows one to simulate the chaotic processes in the open complex systems with anomalous diffusion.Comment: 47 pages, 15 figures; Submitted to Physical Review
    corecore