4 research outputs found

    Specimens as research objects: reconciliation across distributed repositories to enable metadata propagation

    Full text link
    Botanical specimens are shared as long-term consultable research objects in a global network of specimen repositories. Multiple specimens are generated from a shared field collection event; generated specimens are then managed individually in separate repositories and independently augmented with research and management metadata which could be propagated to their duplicate peers. Establishing a data-derived network for metadata propagation will enable the reconciliation of closely related specimens which are currently dispersed, unconnected and managed independently. Following a data mining exercise applied to an aggregated dataset of 19,827,998 specimen records from 292 separate specimen repositories, 36% or 7,102,710 specimens are assessed to participate in duplication relationships, allowing the propagation of metadata among the participants in these relationships, totalling: 93,044 type citations, 1,121,865 georeferences, 1,097,168 images and 2,191,179 scientific name determinations. The results enable the creation of networks to identify which repositories could work in collaboration. Some classes of annotation (particularly those regarding scientific name determinations) represent units of scientific work: appropriate management of this data would allow the accumulation of scholarly credit to individual researchers: potential further work in this area is discussed.Comment: 9 pages, 1 table, 3 figure

    A critical review of the current global ex situ conservation system for plant agrobiodiversity. II. Strengths and weaknesses of the current system and recommendations for its improvement

    Get PDF
    In this paper, we review gene bank operations that have an influence on the global conservation system, with the intention to identify critical aspects that should be improved for optimum performance. We describe the role of active and base collections and the importance of linking germplasm conservation and use, also in view of new developments in genomics and phenomics that facilitate more effective and efficient conservation and use of plant agrobiodiversity. Strengths, limitations, and opportunities of the existing global ex situ conservation system are discussed, and measures are proposed to achieve a rational, more effective, and efficient global system for germplasm conservation and sustainable use. The proposed measures include filling genetic and geographic gaps in current ex situ collections; determining unique accessions at the global level for long-term conservation in virtual base collections; intensifying existing international collaborations among gene banks and forging collaborations with the botanic gardens community; increasing investment in conservation research and user-oriented supportive research; improved accession-level description of the genetic diversity of crop collections; improvements of the legal and policy framework; and oversight of the proposed network of global base collections
    corecore