19 research outputs found

    Mechatronic design & adaptive control of a lower limb prosthesis

    Get PDF
    Lower limb prostheses have undergone significant developments in the last decades. However, there are several areas that have a scope for improvement through simplifications in the mechatronic design as well as in the control architecture. This paper focuses on the mechatronic design of a powered transtibial prosthesis and on the implementation of a control architecture, which is based on an adaptive frequency oscillator method that makes use of one inertial measurement unit. The control is capable of providing a positive push-off power to the prosthesis during level-ground walking and of adapting the response of the prosthesis to different walking speeds. The control architecture has been implemented and validated on a 3D printed prototype of a transtibial prosthesis. The experimental results show that the ankle joint can mimic the angle of a healthy subject with a root mean square error of 2.9° and that the gait transitions are tracked within two gait cycles. </p

    Study of composite elastic elements for transfemoral prostheses: the MyLeg Project

    Get PDF
    In this thesis, the work on the design and realization of a semi-active foot prosthesis with variable stiffness system is presented. The final prosthesis was the result of a path started by the design of the elastic composite elements of an ESR prosthesis, a passive prosthetic device, generally prescribed to amputees with K3 and K4 of level of ambulation. The design of both the ESR prosthesis and the final variable stiffness prosthesis was carried out using a new systematic methodology of prosthesis design. This methodology has been developed and then presented in the same thesis by the author. Modelling and simulation techniques are illustrated step by step. With the variable stiffness prosthesis, the aim is to allow future users to perform more daily activities without being restricted by the conditions of the ground. It has been chosen to develop a semi-active prosthesis rather than a bionic foot for two main reasons: a bionic foot may be too expensive for most future users; and a bionic foot may be undesirable for too much weight; the much weight can be due to the motor and batteries, in addition to the structure that will certainly be much more complex than the structure of a semi-active prosthesis. To investigate the effectiveness of the variable stiffness, human subjects with amputees will be carried out

    The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation

    Get PDF
    The last decades, rehabilitation has become a challenging context for mechatronical engineering. From the state-of-the-art it is seen that the field of prosthetics offers very promising perspectives to roboticist. Today’s prosthetic feet tend to improve amputee walking experience by delivering the necessary push-off forces while walking. Therefore, several new types of (compliant) actuators are developed in order to fulfill the torque and power requirements of a sound ankle-foot complex with minimized power consumption. At the Vrije Universiteit Brussel, the Robotics and Multibody Mechanics research group puts a lot of effort in the design and development of new bionic feet. In 2013, the Ankle Mimicking Prosthetic (AMP-) Foot 2, as a proof-of-concept, showed the advantage of using the explosive elastic actuator capable of delivering the full ankle torques ( ±120\pm 120 ± 120  Nm) and power ( ±250\pm 250 ± 250 W) with only a 60 W motor. In this article, the authors present the AMP-Foot 3, using an improved actuation method and using two locking mechanisms for improved energy storage during walking. The article focusses on the mechanical design of the device and validation of its working principle.This work and the publication costs of this article have been funded by the European Commissions 7th Framework Program as part of the project Cyberlegs under grant no. 287894 and by the European Commission ERC Starting grant SPEAR under grant no. 337596.Peer reviewe

    Advancements in Prosthetics and Joint Mechanisms

    Get PDF
    abstract: Robotic joints can be either powered or passive. This work will discuss the creation of a passive and a powered joint system as well as the combination system being both powered and passive along with its benefits. A novel approach of analysis and control of the combination system is presented. A passive and a powered ankle joint system is developed and fit to the field of prosthetics, specifically ankle joint replacement for able bodied gait. The general 1 DOF robotic joint designs are examined and the results from testing are discussed. Achievements in this area include the able bodied gait like behavior of passive systems for slow walking speeds. For higher walking speeds the powered ankle system is capable of adding the necessary energy to propel the user forward and remain similar to able bodied gait, effectively replacing the calf muscle. While running has not fully been achieved through past powered ankle devices the full power necessary is reached in this work for running and sprinting while achieving 4x’s power amplification through the powered ankle mechanism. A theoretical approach to robotic joints is then analyzed in order to combine the advantages of both passive and powered systems. Energy methods are shown to provide a correct behavioral analysis of any robotic joint system. Manipulation of the energy curves and mechanism coupler curves allows real time joint behavioral adjustment. Such a powered joint can be adjusted to passively achieve desired behavior for different speeds and environmental needs. The effects on joint moment and stiffness from adjusting one type of mechanism is presented.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    An adaptive hybrid control architecture for an active transfemoral prosthesis

    Get PDF
    The daily usage of a prosthesis for people with an amputation consists of phases of intermittentand continuous walking patterns. Based on this observation, this paper introduces a novel hybrid architectureto control a transfemoral prosthesis, where separate algorithms are used depending on these two differenttypes of movement. For intermittent walking, an interpolation-based algorithm generates control signals forthe ankle and knee joints, whereas, for continuous walking, the control signals are generated utilizing anadaptive frequency oscillator. A switching strategy that allows for smooth transitioning from one controllerto another is also presented in the design of the architecture. The individual algorithms for the generation ofthe joints angles’ references, along with the switching strategy were experimentally validated on a pilottest with a healthy subject wearing an able-bodied adapter and a designed transfemoral prosthesis. Theresults demonstrate the capability of the individual algorithms to generate the required control signals whileundergoing smooth transitions when required. Through the use of a combination of interpolation and adaptivefrequency oscillator-based methods, the controller also demonstrates its response adaptation capability tovarious walking speeds

    An adaptive hybrid control architecture for an active transfemoral prosthesis

    Get PDF
    The daily usage of a prosthesis for people with an amputation consists of phases of intermittent and continuous walking patterns. Based on this observation, this paper introduces a novel hybrid architecture to control a transfemoral prosthesis, where separate algorithms are used depending on these two different types of movement. For intermittent walking, an interpolation-based algorithm generates control signals for the ankle and knee joints, whereas, for continuous walking, the control signals are generated utilizing an adaptive frequency oscillator. A switching strategy that allows for smooth transitioning from one controller to another is also presented in the design of the architecture. The individual algorithms for the generation of the joints angles’ references, along with the switching strategy were experimentally validated on a pilot test with a healthy subject wearing an able-bodied adapter and a designed transfemoral prosthesis. The results demonstrate the capability of the individual algorithms to generate the required control signals while undergoing smooth transitions when required. Through the use of a combination of interpolation and adaptive frequency oscillator-based methods, the controller also demonstrates its response adaptation capability to various walking speeds

    Bio-inspired design and validation of the Efficient Lockable Spring Ankle (ELSA) prosthesis

    Get PDF
    Over the last decade, active lower-limb prostheses demonstrated their ability to restore a physiological gait for transfemoral amputees by supplying the required positive energy balance during daily life locomotion activities. However, the added-value of such devices is significantly impacted by their limited energetic autonomy, excessive weight and cost, thus preventing their full appropriation by the users. There is thus a strong incentive to produce active yet affordable, lightweight and energy efficient devices. To address these issues, we developed the ELSA (Efficient Lockable Spring Ankle) prosthesis embedding both a lockable parallel spring and a series elastic actuator, tailored to the walking dynamics of a sound ankle. The first contribution of this paper concerns the developement of a bio-inspired, lightweight and stiffness-adjustable parallel spring, comprising an energy efficient ratchet and pawl mechanism with servo actuation. The second contribution is the addition of a complementary rope-driven series elastic actuator to generate the active push-off. The system produces a sound ankle torque pattern during flat ground walking. Up to 50% of the peak torque is generated passively at a negligible energetic cost (0.1 J/stride). By design, the total system is lightweight (1.2kg) and low cost
    corecore