2,422 research outputs found

    Converged digital TV services: the role of middleware and future directions of interactive television

    Get PDF
    The subject of the future of the interactive Television medium has become a topic of great interest to the academic and industrial communities particularly since in the recent years there has been a dramatic increase in the pace of innovation of convergence of digital TV systems and services. The purpose of this paper is to provide a brief overview of what we know as digital TV converged services, to present and categorise the digital Television middleware technologies that contributed to it, and to present possible future trends and directions. A new Television era of converged wireless and mobile content delivery, user-authored content, multimodal interaction, intelligent personalisation, smart space awareness, and 3D content sensations is foreseen, creating ambient and immersive experiences

    Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    Get PDF
    This major component of the research described in this thesis is 3D computer graphics, specifically the realistic physics-based softbody simulation and haptic responsive environments. Minor components include advanced human-computer interaction environments, non-linear documentary storytelling, and theatre performance. The journey of this research has been unusual because it requires a researcher with solid knowledge and background in multiple disciplines; who also has to be creative and sensitive in order to combine the possible areas into a new research direction. [...] It focuses on the advanced computer graphics and emerges from experimental cinematic works and theatrical artistic practices. Some development content and installations are completed to prove and evaluate the described concepts and to be convincing. [...] To summarize, the resulting work involves not only artistic creativity, but solving or combining technological hurdles in motion tracking, pattern recognition, force feedback control, etc., with the available documentary footage on film, video, or images, and text via a variety of devices [....] and programming, and installing all the needed interfaces such that it all works in real-time. Thus, the contribution to the knowledge advancement is in solving these interfacing problems and the real-time aspects of the interaction that have uses in film industry, fashion industry, new age interactive theatre, computer games, and web-based technologies and services for entertainment and education. It also includes building up on this experience to integrate Kinect- and haptic-based interaction, artistic scenery rendering, and other forms of control. This research work connects all the research disciplines, seemingly disjoint fields of research, such as computer graphics, documentary film, interactive media, and theatre performance together.Comment: PhD thesis copy; 272 pages, 83 figures, 6 algorithm

    Some experiments in man-machine interaction relevant to computer assisted learning

    Get PDF
    Various techniques for the communication of instructional material are outlined. Some experiments relevant to the design of multi-media computer assisted learning systems are then described

    Multimedia as Persuasive Agent: Using Visual Metaphors to Establish the Rhetorical Agenda in a Communication Department Video

    Get PDF
    This article emphasizes the significance of computer-mediated communication technologies to communication studies based on a video document made by the communication department of North Carolina State University. The goals for the production of a video included promoting the Communication Department within and outside the university, educating viewers\u27 as to the study of communication and its role in an information society, and advocating implicitly for the benefits of umbrella departments. The development of visual metaphors came as an unexpected by-product of grappling with those three challenges. Making the video highlighted the tension that exists between technological demand and communication imperatives

    Toward hyper-realistic and interactive social VR experiences in live TV scenarios

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Social Virtual Reality (VR) allows multiple distributed users getting together in shared virtual environments to socially interact and/or collaborate. This article explores the applicability and potential of Social VR in the broadcast sector, focusing on a live TV show use case. For such a purpose, a novel and lightweight Social VR platform is introduced. The platform provides three key outstanding features compared to state-of-the-art solutions. First, it allows a real-time integration of remote users in shared virtual environments, using realistic volumetric representations and affordable capturing systems, thus not relying on the use of synthetic avatars. Second, it supports a seamless and rich integration of heterogeneous media formats, including 3D scenarios, dynamic volumetric representation of users and (live/stored) stereoscopic 2D and 180º/360º videos. Third, it enables low-latency interaction between the volumetric users and a video-based presenter (Chroma keying), and a dynamic control of the media playout to adapt to the session’s evolution. The production process of an immersive TV show to be able to evaluate the experience is also described. On the one hand, the results from objective tests show the satisfactory performance of the platform. On the other hand, the promising results from user tests support the potential impact of the presented platform, opening up new opportunities in the broadcast sector, among others.This work has been partially funded by the European Union’s Horizon 2020 program, under agreement nº 762111 (VRTogether project), and partially by ACCIÓ, under agreement COMRDI18-1-0008 (ViVIM project). Work by Mario Montagud has been additionally funded by the Spanish Ministry of Science, Innovation and Universities with a Juan de la Cierva – Incorporación grant (reference IJCI-2017-34611). The authors would also like to thank the EU H2020 VRTogether project consortium for their relevant and valuable contributions.Peer ReviewedPostprint (author's final draft

    Towards achieving convincing live interaction in a mixed reality environment for television studios

    Get PDF
    The virtual studio is a form of Mixed Reality environment for creating television programmes, where the (real) actor appears to exist within an entirely virtual set. The work presented in this thesis evaluates the routes required towards developing a virtual studio that extends from current architectures in allowing realistic interactions between the actor and the virtual set in real-time. The methodologies and framework presented in this thesis is intended to support future work in this domain. Heuristic investigation is offered as a framework to analyse and provide the requirements for developing interaction within a virtual studio. In this framework a group of experts participate in case study scenarios to generate a list of requirements that guide future development of the technology. It is also concluded that this method could be used in a cyclical manner to further refine systems postdevelopment. This leads to the development of three key areas. Firstly a feedback system is presented, which tracks actor head motion within the studio and provides dynamic visual feedback relative to their current gaze location. Secondly a real-time actor/virtual set occlusion system that uses skeletal tracking data and depth information to change the relative location of virtual set elements dynamically is developed. Finally an interaction system is presented that facilitates real-time interaction between an actor and the virtual set objects, providing both single handed and bimanual interactions. Evaluation of this system highlights some common errors in mixed reality interaction, notably those arising from inaccurate hand placement when actors perform bimanual interactions. A novel two stage framework is presented that measures the magnitude of the errors in actor hand placement, and also, the perceived fidelity of the interaction from a third person viewer. The first stage of this framework quantifies the actor motion errors while completing a series of interaction tasks under varying controls. The second stage uses examples of these errors to measure the perceptual tolerance of a third person when viewing interaction errors in the end broadcast. The results from this two stage evaluation lead to the development of three methods for mitigating the actor errors, with each evaluated against its ability to aid in the visual fidelity of the interaction. It was discovered that the adapting the size of the virtual object was effective in improving the quality of the interaction, whereas adapting the colour of any exposed background did not have any apparent effects. Finally a set of guidelines based on these findings is provided to recommend appropriate solutions that can be applied for allowing interaction within live virtual studio environments that can easily be adapted for other mixed reality systems

    Development of a Quality of Service Framework for Multimedia Streaming Applications

    Get PDF
    By the year 2012, it is expected that the majority of all Internet traffic will be video content. Coupled with this is the increasing availability of Wireless Local Area Networks (WLANs) due to their ease of deployment, flexibility and reducing roll out costs. Unfortunately the contention based access mechanism utilised by IEEE 802.11 WLANs does not suit the non-uniform or bursty bandwidth profile of a video stream which can lead to a reduced quality of service (QoS) being experienced by the end-user. In 2005, the IEEE 802.11e protocol was ratified in an attempt to solve this emerging problem. It provides for an access prioritization mechanism based upon four separate traffic classes or access categories (ACs). Each AC is characterised by a set of access parameters that determine its level of access priority which is turn determines the amount of bandwidth available to it. Computer simulation studies have shown that AC prioritisation can yield significant improvements in the QoS delivered over a WLAN. However, these studies have been based upon the use of static access parameters for the ACs. In practice, this is not a viable solution owing to the dynamic and unpredictable nature of the operating conditions on WLANs. In this thesis, an experimental study of AC prioritisation based upon adaptive tuning of the access parameters is presented. This new approach to bandwidth provisioning for video streaming is shown to yield significant improvements in the QoS under a wide range of different operating conditions. For example, it is shown that by adaptively tuning the access control parameters in response to the network conditions, the number of video frames delivered that satisfy QoS requirements is more than doubled

    Text books untuk mata kuliah pemrograman web

    Get PDF
    .HTML.And.Web.Design.Tips.And.Techniques.Jan.2002.ISBN.0072228253.pd
    • …
    corecore