29 research outputs found

    Learning Residual Finite-State Automata Using Observation Tables

    Full text link
    We define a two-step learner for RFSAs based on an observation table by using an algorithm for minimal DFAs to build a table for the reversal of the language in question and showing that we can derive the minimal RFSA from it after some simple modifications. We compare the algorithm to two other table-based ones of which one (by Bollig et al. 2009) infers a RFSA directly, and the other is another two-step learner proposed by the author. We focus on the criterion of query complexity.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Learning to Prove Safety over Parameterised Concurrent Systems (Full Version)

    Full text link
    We revisit the classic problem of proving safety over parameterised concurrent systems, i.e., an infinite family of finite-state concurrent systems that are represented by some finite (symbolic) means. An example of such an infinite family is a dining philosopher protocol with any number n of processes (n being the parameter that defines the infinite family). Regular model checking is a well-known generic framework for modelling parameterised concurrent systems, where an infinite set of configurations (resp. transitions) is represented by a regular set (resp. regular transducer). Although verifying safety properties in the regular model checking framework is undecidable in general, many sophisticated semi-algorithms have been developed in the past fifteen years that can successfully prove safety in many practical instances. In this paper, we propose a simple solution to synthesise regular inductive invariants that makes use of Angluin's classic L* algorithm (and its variants). We provide a termination guarantee when the set of configurations reachable from a given set of initial configurations is regular. We have tested L* algorithm on standard (as well as new) examples in regular model checking including the dining philosopher protocol, the dining cryptographer protocol, and several mutual exclusion protocols (e.g. Bakery, Burns, Szymanski, and German). Our experiments show that, despite the simplicity of our solution, it can perform at least as well as existing semi-algorithms.Comment: Full version of FMCAD'17 pape

    LIFTS: Learning Featured Transition Systems

    Get PDF

    Optimizing Automata Learning via Monads

    Get PDF
    Automata learning has been successfully applied in the verification of hardware and software. The size of the automaton model learned is a bottleneck for scalability, and hence optimizations that enable learning of compact representations are important. This paper exploits monads, both as a mathematical structure and a programming construct, to design, prove correct, and implement a wide class of such optimizations. The former perspective on monads allows us to develop a new algorithm and accompanying correctness proofs, building upon a general framework for automata learning based on category theory. The new algorithm is parametric on a monad, which provides a rich algebraic structure to capture non-determinism and other side-effects. We show that our approach allows us to uniformly capture existing algorithms, develop new ones, and add optimizations. The latter perspective allows us to effortlessly translate the theory into practice: we provide a Haskell library implementing our general framework, and we show experimental results for two specific instances: non-deterministic and weighted automata

    Coalgebra Learning via Duality

    Full text link
    Automata learning is a popular technique for inferring minimal automata through membership and equivalence queries. In this paper, we generalise learning to the theory of coalgebras. The approach relies on the use of logical formulas as tests, based on a dual adjunction between states and logical theories. This allows us to learn, e.g., labelled transition systems, using Hennessy-Milner logic. Our main contribution is an abstract learning algorithm, together with a proof of correctness and termination

    Learning Quantum Finite Automata with Queries

    Full text link
    {\it Learning finite automata} (termed as {\it model learning}) has become an important field in machine learning and has been useful realistic applications. Quantum finite automata (QFA) are simple models of quantum computers with finite memory. Due to their simplicity, QFA have well physical realizability, but one-way QFA still have essential advantages over classical finite automata with regard to state complexity (two-way QFA are more powerful than classical finite automata in computation ability as well). As a different problem in {\it quantum learning theory} and {\it quantum machine learning}, in this paper, our purpose is to initiate the study of {\it learning QFA with queries} (naturally it may be termed as {\it quantum model learning}), and the main results are regarding learning two basic one-way QFA: (1) We propose a learning algorithm for measure-once one-way QFA (MO-1QFA) with query complexity of polynomial time; (2) We propose a learning algorithm for measure-many one-way QFA (MM-1QFA) with query complexity of polynomial-time, as well.Comment: 18pages; comments are welcom

    Minimal Synthesis of String To String Functions From Examples

    Full text link
    We study the problem of synthesizing string to string transformations from a set of input/output examples. The transformations we consider are expressed using deterministic finite automata (DFA) that read pairs of letters, one letter from the input and one from the output. The DFA corresponding to these transformations have additional constraints, ensuring that each input string is mapped to exactly one output string. We suggest that, given a set of input/output examples, the smallest DFA consistent with the examples is a good candidate for the transformation the user was expecting. We therefore study the problem of, given a set of examples, finding a minimal DFA consistent with the examples and satisfying the functionality and totality constraints mentioned above. We prove that, in general, this problem (the corresponding decision problem) is NP-complete. This is unlike the standard DFA minimization problem which can be solved in polynomial time. We provide several NP-hardness proofs that show the hardness of multiple (independent) variants of the problem. Finally, we propose an algorithm for finding the minimal DFA consistent with input/output examples, that uses a reduction to SMT solvers. We implemented the algorithm, and used it to evaluate the likelihood that the minimal DFA indeed corresponds to the DFA expected by the user.Comment: SYNT 201

    Residual Nominal Automata

    Get PDF
    Nominal automata are models for accepting languages over infinite alphabets. In this paper we refine the hierarchy of nondeterministic nominal automata, by developing the theory of residual nominal automata. In particular, we show that they admit canonical minimal representatives, and that the universality problem becomes decidable. We also study exact learning of these automata, and settle questions that were left open about their learnability via observations
    corecore