1,287 research outputs found

    On the Geometric Modeling of the Uplink Channel in a Cellular System

    Get PDF
    To meet the challenges of present and future wireless communications realistic propagation models that consider both spatial and temporal channel characteristics are used. However, the complexity of the complete characterization of the wireless medium has pointed out the importance of approximate but simple approaches. The geometrically based methods are typical examples of low–complexity but adequate solutions. Geometric modeling idealizes the aforementioned wireless propagation environment via a geometric abstraction of the spatial relationships among the transmitter, the receiver, and the scatterers. The paper tries to present an efficient way to simulate mobile channels using geometrical–based stochastic scattering models. In parallel with an overview of the most commonly used propagation models, the basic principles of the method as well the main assumptions made are presented. The study is focused on three well–known proposals used for the description of the Angle–of –Arrival and Time–of–Arrival statistics of the incoming multipaths in the uplink of a cellular communication system. In order to demonstrate the characteristics of these models illustrative examples are given. The physical mechanism and motivations behind them are also included providing us with a better understanding of the physical insight of the propagation medium

    Light Curves for Rapidly-Rotating Neutron Stars

    Get PDF
    We present raytracing computations for light emitted from the surface of a rapidly-rotating neutron star in order to construct light curves for X-ray pulsars and bursters. These calculations are for realistic models of rapidly-rotating neutron stars which take into account both the correct exterior metric and the oblate shape of the star. We find that the most important effect arising from rotation comes from the oblate shape of the rotating star. We find that approximating a rotating neutron star as a sphere introduces serious errors in fitted values of the star's radius and mass if the rotation rate is very large. However, in most cases acceptable fits to the ratio M/R can be obtained with the spherical approximation.Comment: Accepted by the Astrophysical Journal. 13 pages & 7 figure

    Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries

    Get PDF
    We calculate the expected nHz--ÎŒ\muHz gravitational wave (GW) spectrum from coalescing Massive Black Hole (MBH) binaries resulting from mergers of their host galaxies. We consider detection of this spectrum by precision pulsar timing and a future Pulsar Timing Array. The spectrum depends on the merger rate of massive galaxies, the demographics of MBHs at low and high redshift, and the dynamics of MBH binaries. We apply recent theoretical and observational work on all of these fronts. The spectrum has a characteristic strain hc(f) 10−15(f/yr−1)−2/3h_c(f)~10^{-15} (f/yr^{-1})^{-2/3}, just below the detection limit from recent analysis of precision pulsar timing measurements. However, the amplitude of the spectrum is still very uncertain owing to approximations in the theoretical formulation of the model, to our lack of knowledge of the merger rate and MBH population at high redshift, and to the dynamical problem of removing enough angular momentum from the MBH binary to reach a GW-dominated regime.Comment: 31 Pages, 8 Figures, small changes to match the published versio

    Simulation of large photomultipliers for experiments in astroparticle physics

    Full text link
    We have developed an accurate simulation model of the large 9 inch photomultiplier tubes (PMT) used in water-Cherenkov detectors of cosmic-ray induced extensive air-showers. This work was carried out as part of the development of the Offline simulation software for the Pierre Auger Observatory surface array, but our findings may be relevant also for other astrophysics experiments that employ similar large PMTs. The implementation is realistic in terms of geometrical dimensions, optical processes at various surfaces, thin-film treatment of the photocathode, and photon reflections on the inner structure of the PMT. With the quantum efficiency obtained for this advanced model we have calibrated a much simpler and a more rudimentary model of the PMT which is more practical for massive simulation productions. We show that the quantum efficiency declared by manufactures of the PMTs is usually determined under conditions substantially different from those relevant for the particular experiment and thus requires careful (re)interpretation when applied to the experimental data or when used in simulations. In principle, the effective quantum efficiency could vary depending on the optical characteristics of individual events.Comment: 8 pages, 11 figure

    High-fidelity state detection and tomography of a single ion Zeeman qubit

    Full text link
    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr+ ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error-threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography

    MoCA: A Monte Carlo code for Comptonisation in Astrophysics. I. Description of the code and first results

    Full text link
    We present a new Monte Carlo code for Comptonisation in Astrophysics (MoCA). To our knowledge MoCA is the first code that uses a single photon approach in a full special relativity scenario, and including also Klein-Nishina effects as well as polarisation. In this paper we describe in detail how the code works, and show first results from the case of extended coronae in accreting sources Comptonising the accretion disc thermal emission. We explored both a slab and a spherical geometry, to make comparison with public analytical codes more easy. Our spectra are in good agreement with those from analytical codes for low/moderate optical depths, but differ significantly, as expected, for optical depths larger than a few. Klein-Nishina effects become relevant above 100 keV depending on the optical thickness and thermal energy of the corona. We also calculated the polarisation properties for the two geometries, which show that X-ray polarimetry is a very useful tool to discriminate between them.Comment: 16 pages, 20 figure

    The supermassive black hole mass - S\'ersic index relations for bulges and elliptical galaxies

    Full text link
    Scaling relations between supermassive black hole mass, M_BH, and host galaxy properties are a powerful instrument for studying their coevolution. A complete picture involving all of the black hole scaling relations, in which each relation is consistent with the others, is necessary to fully understand the black hole-galaxy connection. The relation between M_BH and the central light concentration of the surrounding bulge, quantified by the S\'ersic index n, may be one of the simplest and strongest such relations, requiring only uncalibrated galaxy images. We have conducted a census of literature S\'ersic index measurements for a sample of 54 local galaxies with directly measured M_BH values. We find a clear M_BH - n relation, despite an appreciable level of scatter due to the heterogeneity of the data. Given the current M_BH - L_sph and the L_sph - n relations, we have additionally derived the expected M_BH - n relations, which are marginally consistent at the 2 sigma level with the observed relations. Elliptical galaxies and the bulges of disc galaxies are each expected to follow two distinct bent M_BH - n relations due to the S\'ersic/core-S\'ersic divide. For the same central light concentration, we predict that M_BH in the S\'ersic bulges of disc galaxies are an order magnitude higher than in S\'ersic elliptical galaxies if they follow the same M_BH - L_sph relation.Comment: 12 pages, 6 figures, 5 tables, accepted for publication in MNRA

    3-D Spatial Modeling of Network Interference in Two-Tier Heterogeneous Networks

    Get PDF

    Sensitivity of orbiting JEM-EUSO to large-scale cosmic-ray anisotropies

    Full text link
    The two main advantages of space-based observation of extreme-energy (≳1019\gtrsim 10^{19}~eV) cosmic-rays (EECRs) over ground-based observatories are the increased field of view, and the all-sky coverage with nearly uniform systematics of an orbiting observatory. The former guarantees increased statistics, whereas the latter enables a partitioning of the sky into spherical harmonics. We have begun an investigation, using the spherical harmonic technique, of the reach of \J\ into potential anisotropies in the extreme-energy cosmic-ray sky-map. The technique is explained here, and simulations are presented. The discovery of anisotropies would help to identify the long-sought origin of EECRs.Comment: 7 pages, 6 figures. To appear in the proceedings of the Cosmic Ray Anisotropy Workshop, Madison Wisconsin, September 201
    • 

    corecore