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ABSTRACT

We present raytracing computations for light emitted from the surface of a rapidly-rotating neutron
star in order to construct light curves for X-ray pulsars and bursters. These calculations are for
realistic models of rapidly-rotating neutron stars which take into account both the correct exterior
metric and the oblate shape of the star. We find that the most important effect arising from rotation
comes from the oblate shape of the rotating star. We find that approximating a rotating neutron
star as a sphere introduces serious errors in fitted values of the star’s radius and mass if the rotation
rate is very large. However, in most cases acceptable fits to the ratio M/R can be obtained with the
spherical approximation.
Subject headings: stars: neutron — stars: rotation — relativity — pulsars: general

1. INTRODUCTION

One of the most fundamental problems in neutron star
astrophysics is the determination of the mass-radius re-
lation through observations. This would allow the obser-
vational determination of the equation of state (EOS) of
cold supernuclear density material. While the measure-
ment of mass is possible if the star is in a binary, neutron
stars are too small to allow a direct measurement of their
radii. One promising indirect method for inferring the ra-
dius is through observations and modeling of light curves
for X-rays emitted from X-ray pulsars and neutron stars
that exhibit type I X-ray bursts. This method requires
the raytracing of photons emitted from the star’s surface
in order to predict the signal detected by the observer. In
this paper we present the first raytracing calculations for
rapidly-rotating neutron stars that include the correct
metric and correct shapes of the star, as well as allowing
for arbitrary emission and detection directions.
Rapidly-rotating neutron stars are a promising target

for an effort to constrain the EOS since observations of
their light curves could potentially allow the determina-
tion of a star’s mass and radius. In the case of a slowly
rotating neutron star, the light curve characteristics are
controlled by the ratioM/R, but the value ofM or R for
the star is not observable through the light curve. How-
ever, if the star is rapidly-rotating, the Doppler boost
resulting when the star’s equatorial velocity is of the or-
der v/c ∼ 0.1 or larger creates an asymmetry in the light
curve which makes it possible to measure v. Since the
spin frequency is always known, the star’s radius can be
extracted. Knowledge of R and M/R could then poten-
tially be used to constrain the EOS. The purpose of this
paper is to determine how accurately these two parame-
ters can be determined through light curve fitting.
In this paper we investigate the effect of rapid rota-
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tion on pulse shapes. In order to isolate these effects,
we have chosen to simplify our treatment of the shape,
size, location and emissivity of the emitting region. It
should be understood that the effects due to rapid ro-
tation discussed in this paper are only one ingredient in
the modeling of pulse shapes and it will be necessary to
combine these effects with more realistic treatments of
the emitting regions in order to model real data.
In order to proceed with a program of fitting light

curves in order to infer the radius of a neutron star a
number of assumptions must be made. The most funda-
mental assumption made in this paper is that the light
originates from the surface of the star and that no mate-
rial lying between the star and observer causes scatter-
ing. We make this assumption so that we can focus on
the effects due to rotation on the pulse shape, but it is
possible that light is emitted from an extended region off
of the star’s surface and that the light interacts with the
matter surrounding the star. For example, in the case
of the slowly rotating X-ray pulsars complicated accre-
tion columns are needed in order to fit the observations
(Leahy 2004). Pulse shape models of real data should
allow for the possibility of extended emission regions.
Another important input to light curve models is the

spectrum and emissivity of the emitting region. In
the case of the 2.5 ms X-ray pulsar SAX J1808.4-3658,
Poutanen & Gierliński (2003) have shown that a hy-
brid spectrum including blackbody and Comptonized
emission is needed. In their models, thermal emission
is directed towards the normal to the surface and the
Comptonized emission is directed away from the nor-
mal, creating a strong anisotropy. Other models for
the pulse shapes observed in type I X-ray bursts sug-
gest anisotropic emission as well (Miller & Lamb (1998),
Bhattacharyya et al. (2005)). Any anisotropy in the
emission is known to have a strong effect on the light
curve, so realistic light curve models must include the
effects of anisotropy. In our present work, we have sim-
plified our models to only allow isotropic emission. We
expect that the magnitude of the rotational effects dis-
cussed in this paper are similar to the magnitude of the
effects caused by anisotropic emission.
The assumed shape of the emitting region also strongly

affects the pulse profile. Most studies have focused on
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either infinitesimal spots or simple Gaussian profiles.
Recently Kulkarni & Romanova (2005) have produced
MHD simulations of accretion flows onto neutron stars
that show the hot spots on X-ray pulsars could have
more complicated shapes, confirming predictions made
by Ghosh & Lamb (1978). For the case of type I X-ray
bursts it is possible for normal modes to be excited (Heyl
2004), which would produce patterns associated with the
modes (Heyl 2005; Lee & Strohmayer 2005). In our cal-
culations we have chosen the simplest possible pattern
(an infinitesimal uniform brightness spot) in order to fo-
cus on the effects due to rotation. Models of real data
must allow for more complicated emission shapes and
brightness patterns.
The gravitational field outside of the star is important,

for it gravitationally redshifts the photons and bends
their direction of propagation. For non-rotating stars
the Schwarzschild metric is all that is required to de-
scribe the photon trajectories (Pechenick, Ftaclas, & Co-
hen 1983). The Schwarzschild + Doppler (S+D) approx-
imation (Miller & Lamb 1998; Poutanen & Gierliński
2003) was introduced as a simple method for calculat-
ing the light curves of slowly rotating stars. In the
S+D approximation the gravitational field is modeled
by the static Schwarzschild solution and the rotational
effects are approximated by using the special relativis-
tic Doppler transformations. One of the goals of this
paper is to find the conditions under which the S+D ap-
proximation will fail. For rapidly-rotating neutron stars,
the metric must be computed numerically using one of
many known algorithms, such as that of Cook, Shapiro,
& Teukolsky (1994). The Kerr black hole metric can
be made to agree to first order in angular velocity with
the metric of a rotating neutron star metric by choos-
ing the Kerr parameter a to be J/M where J is neu-
tron star’s angular momentum. The Kerr black hole is
a poor approximation to a rotating neutron star for spin
frequencies above 400 Hz (for an example involving the
innermost stable circular orbit, see Miller et al 1998).
However, some calculations (Braje et al 2000) have sug-
gested that the Kerr metric may suffice for raytracing
applications. This motivates (Braje, Romani, & Rauch
2000; Bhattacharyya et al. 2005) the use of the Spherical
Kerr approximation (SK) where a spherical surface is em-
bedded in the Kerr spacetime. In this paper we will show
that when the S+D approximation fails, the SK approx-
imation also fails, so that the SK approximation is not
necessarily a better choice than S+D. In this paper we
compute the metric of rapidly-rotating neutron stars us-
ing realistic equations of state and perform raytracing on
the computed numerical spacetime. In a previous paper
(Cadeau, Leahy, & Morsink 2005) (CLM) we performed
similar calculations that were restricted to the equato-
rial plane. In this paper we generalize to allow arbitrary
initial spot locations and arbitrary observer locations.
The final important input to a raytracing program is

the shape of the star’s surface, which for a rotating fluid
star is an oblate spheroid. In almost all previous calcula-
tions it has been assumed that the surface of the star is a
sphere, irrespective if the exterior gravitational field was
assumed to be Schwarzschild or Kerr. We are aware of
only one previous calculation, by Braje & Romani (2001)
that takes the oblate surface into account. In that pa-
per they consider further scatterings of photons within

the magnetosphere, so that the effect of oblateness is not
clearly separated from other effects. In order to motivate
the choice of a spherical surface, it is often stated that the
ratio of polar axis to equatorial axis is very close to unity,
even for rapid rotation. However, this ratio is neither co-
ordinate invariant, nor directly observable. The oblate
shape of the star has two main effects. (I) The gravita-
tional field near the the poles is stronger than near the
equator, so the redshift and photon deflection are larger
for photons emitted near the poles. (II) Light is emit-
ted at different angles with respect to the normal to the
surface if the surface is an oblate spheroid instead of a
sphere. As a result some parts of a spherical star that
an observer can’t see will be visible if the star is actually
oblate (the converse is also true). Of these effects, the
second is the most important, and leads to failure of the
S+D and SK approximations for rapid rotation.
Another application which makes use of raytracing

is the calculation of absorption line profiles. Absorp-
tion line profiles have been computed in the past us-
ing the S+D approximation (Özel & Psaltis 2003; Vil-
larreal & Strohmayer 2004) and using the SK approxi-
mation (Bhattacharyya, Miller & Lamb 2006). Interest-
ingly, Bhattacharyya, Miller & Lamb (2006) have identi-
fied signs of frame-dragging in the line profiles computed
using the Kerr metric for very rapidly-rotating neutron
stars. Chang et al. (2006) compared line profiles us-
ing oblate stars (using the same type of method used
in this paper) with the line profiles calculated in the
spherical approximation and found that the differences
are insignificant for line profile calculations. However, it
should be noted that the calculations done by Chang et
al. (2006) assumed that light from all of the star con-
tributes to the line profile, which would tend to average
out differences arising from the shape of the star.
In this paper we wish to explore the rapid rotation ef-

fects of the metric and oblateness on the calculated light
curves of neutron stars and on the fitting of a star’s mass
and radius from the light curves. In order to isolate these
effects, we consider the simplest possible assumptions for
all other aspects. We assume isotropic emission from an
infinitesimal spot, but allow for spots and observers at
any location. As discussed in the previous paragraphs,
there is enormous uncertainty in the shape, size and emis-
sivity of the emitting regions which will have the effect of
making it difficult to discern the relativistic effects dis-
cussed in this paper. However, we will show that for very
rapidly rotating neutron stars, the relativistic rotational
effects are large and should be incorporated in models of
real data. In section 2 we describe the method used to
compute the light curves for rotating neutron stars. In
section 2.8 we outline the four types of approximation
schemes that could be used to produce light curves. In
section 3 we compare the light curves from the exact and
approximate methods. We show how programs that at-
tempt to fit light curves using either spherical approxima-
tion will converge to incorrect values of mass and radius
at spin frequencies larger than about 300 Hz, although
they may converge to the correct value of the ratioM/R.
We conclude with a discussion of these results in section
4.

2. LIGHT CURVE CALCULATIONS FOR RAPID ROTATION
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The metric of a rotating neutron star can be accurately
computed using a public-domain code rns

4 (Stergioulas
& Friedman 1995) based on the code by Cook, Shapiro,
& Teukolsky (1994). This code computes the four met-
ric potentials α, γ, ρ and ω, that appear in the general
stationary axisymmetric metric
ds2 = −eγ+ρdt2+e2α

(

dr̄2 + r̄2dθ2
)

+eγ−ρr̄2 sin2 θ(dφ−ωdt)2,
(1)

where the metric potentials are functions of only r̄ and
θ. The interpretation of these potentials and coordinates
has been discussed in more detail in CLM.
We have chosen two equations of state (EOS) from the

Arnett & Bowers (1977) catalog which span a realistic
range of stiffness (although we have not included quark
stars). EOS A is one of the softest EOS and EOS L
is one of the stiffest. While these EOS are rather old-
fashioned and the physical assumptions made in deriving
these EOS are now considered too simplistic, these EOS
do provide a wide span of properties that allow us to
illustrate the different levels that rotation can affect the
resulting light curves. Modern EOS, such as EOS APR
(Akmal et al. (1998)) have properties that are bracketed
by the older EOS A and L.
We have restricted our computations to stars with

masses of 1.4M⊙ and spin frequencies from 100 to 600
Hz in 100 Hz increments in order to explore the spin
dependent effects. The 1.4 M⊙ stars constructed from
EOS A have equatorial radii ranging from 9.5 to 9.8 km
(depending on the spin rate) allowing for compact stars.
The 1.4 M⊙ stars constructed with EOS L have equato-
rial radii ranging from 14.8 to 16.4 km allowing for larger
stars that are strongly affected by rotation. In contrast
to the extreme EOS used in our calculations, a 1.4M⊙

neutron star constructed from the modern EOS APR has
an equatorial radius ranging from 11.4 to 11.8 km as the
spin is increased from 0 Hz to 600 Hz. The properties
of the neutron star models used in this paper are sum-
marized in Table 1. In Table 1 we show the values of
the compactness M/R and the speed of the star v at the
equator. The stars constructed with EOS A are more
compact than the EOS L stars, so the effects of light-
bending and time-delays are most important in the EOS
A stars. The equatorial velocities are highest for the the
larger EOS L stars. As an alternative to the equatorial
velocity of the star, the dimensionless rotation parame-
ter j = J/M2 (where J is the star’s angular momentum)
is a useful measure of the importance of rotation for the
star. The effect of oblateness is quadratic in the param-
eter j, so the EOS L stars with high spin frequencies
are very oblate while the more compact stars are only
slightly oblate. In addition, if the neutron star has a
mass larger than 1.4M⊙ then it will be more compact
and less affected by rotation.
The fastest neutron stars in X-ray binaries have spin

frequencies near 600 Hz, motivating our range of spin
frequencies. The recent discovery (Hessels et al. 2006)
of a 716 Hz binary radio pulsar suggests that 700 Hz
X-ray pulsars may be discovered in the future, but for
the present purposes, stars spinning at 600 Hz serve to
illustrate the largest effects due to rotation.

2.1. Geodesic Equations

4 Code available at http://www.gravity.phys.uwm.edu/rns/

The geodesic equations for the coordinate positions of
a photon depend on the impact parameter b defined by
the ratio of the photon’s angular momentum to its en-
ergy. The equations are integrated with respect to an
affine parameter λ scaled so that photon propagation is
independent of the photon’s energy. We use an overdot
to denote differentiation with respect to λ. The form of
the geodesic equations used in our integration is

ṫ= e−(γ+ρ)(1− ωb) (2)

φ̇=ωe−(γ+ρ)(1− ωb) + eρ−γ b

r̄2 sin2 θ
(3)

¨̄r=−α,r̄

(

˙̄r
2 − r̄2θ̇2

)

− 2α,θ ˙̄rθ̇ + r̄θ̇2 +
1

2
e−2αB,r̄ (4)

θ̈=α,θ

(

˙̄r
2

r̄2
− θ̇2

)

− 2

(

α,r̄ +
1

r̄

)

˙̄rθ̇ +
1

2r̄2
e−2αB,θ(5)

B= e−(γ+ρ)(1− ωb)2 − b2eρ−γ

r̄2 sin2 θ
. (6)

These equations are overspecified, since the fact that
photon’s four-velocity vector has vanishing norm leads
to the momentum constraint

˙̄r
2
+ r̄2θ̇2= e−2αB(r̄, θ) ≡ A(r̄, θ) (7)

which provides an extra relation between ˙̄r and θ̇, and
defines the function A = e−2αB. While it would be pos-
sible to eliminate equation (5) using equation (7), this
would not allow us to evaluate the accuracy of the code.
We have chosen to integrate equations (2) - (5) and use
the momentum constraint equation as a test of the code’s
accuracy. Our code uses a Runge-Kutta algorithm with
adaptive step size.
The main addition to the existing rns code which we

made was a calculation of the derivatives of the metric
potentials which are required for the geodesic integration.
A simple finite differencing scheme will fail at the poles
of the star and also tends to unacceptably large errors
far from the star. Instead, we take advantage of the ex-
plicit sum formulae (Komatsu, Eriguchi & Hachisu 1989)
for the potentials and explicitly take their first deriva-
tives with respect to r̄ and θ as well as the mixed second
derivative. This provides a smooth set of potentials and
derivatives at discrete grid points which can be used in
a bicubic interpolation scheme (Press et al. 1992) to find
the values of the potentials and their derivatives at in-
termediate points.

2.2. Initial Conditions

The surface of the star is described by the function
r̄s(θ), which can be found numerically. Given an initial
value of co-latitude θ = θi, the initial value of the radial
coordinate is r̄i = r̄s(θi) for photons emitted from the
surface of the star. With these initial values of the co-
ordinates, the positivity of the right-hand side of equa-
tion (7) yields a constraint on the allowed values of b,
b− ≤ b ≤ b+, with

b± = ± e−ρr̄i sin θi
1± ωe−ρr̄i sin θi

, (8)

where the metric potentials are to be evaluated at the
initial coordinate.
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With an initial point and a value of b, we can carry
on to calculate the allowed values of θ̇i. Rewriting equa-
tion (7), we have that

θ̇2

[

(

dr̄

dθ

)2

+ r̄2

]

= A(r̄, θ), (9)

where ˙̄r/θ̇ = dr̄/dθ. The allowed values of θ̇i follow from
an analysis of the extreme values of the term in parenthe-
ses on the left-hand side of equation (9). For light rays
emitted tangent to the star’s surface, dr̄/dθ = dr̄s/dθ ≡
r̄′s(θ). For a spherical surface one expects ˙̄r ≥ 0 for out-
going rays, but since we are considering stars that are
(perhaps very slightly) oblate, there are “glancing” rays
with ˙̄ri < 0. Figure 1 shows the situation for points
above and below the equatorial plane in three separate
regions where outgoing rays can be defined. In each re-
gion, the sign of ± is chosen to match the sign of cos θi.
Evaluating all quantities at the initial point, we have the
following situations in Figure 1:

Region I. Rays with ˙̄ri < 0 and ±θ̇i < 0. In this region
we have

A(r̄i, θi)

r̄2i + (r̄′s(θi))
2 ≤ θ̇2i ≤ A(r̄i, θi)

r̄2i
. (10)

This region contains the rays that would be pro-
hibited if the surface of the star were a sphere with
radius r̄ = r̄i.

Region II. Rays with ˙̄ri > 0 and ±θ̇i < 0. In this
region,

0 ≤ θ̇2i ≤ A(r̄i, θi)

r̄2i
. (11)

Region III. Rays with ˙̄ri > 0 and ±θ̇i > 0. In this
region,

0 ≤ θ̇2i ≤ A(r̄i, θi)

r̄2i + (r̄′s(θi))
2 . (12)

Region IV. Rays with ˙̄ri > 0 and ±θ̇i > 0. In this
region,

A(r̄i, θi)

r̄2i + (r̄′s(θi))
2 ≤ θ̇2i ≤ A(r̄i, θi)

r̄2i
. (13)

This rays in this region would only be allowed if
the surface of the star were a sphere with radius
r̄ = r̄i.

Given an initial point on the star, only photons emit-
ted into regions I, II, or III are allowed if the surface is
oblate. If a spherical approximation to the surface is be-
ing made, only photons emitted into regions II, III, or IV
are allowed. Given a value of θ̇i, the corresponding value
of ˙̄ri is fixed by equation (7); if necessary, the sign of ˙̄ri
is disambiguated according to which region in Figure 1
is considered.
Integration of a single null ray proceeds by setting the

initial coordinates r̄i and θi, selecting an allowed value
of b, selecting an allowed value θ̇i according to the above

prescription of the geometric constraints, and fixing ˙̄r
2
i

and the sign of ˙̄ri by the momentum and geometric con-
straints. The differential equations (2), (3), (4), and (5)
are then integrated numerically until the radial coordi-
nate reaches a predetermined large value.

θ/dλ = 0

dr/dθ = 0

dθ/dλ = 0

θ

II
I

θ = π/2

II
I

III

IV

IV

III

spin axis

d

(equator)

Fig. 1.— Side view of a rotating neutron star (solid curve).
Photons emitted from a point on the star at an angle θ from the
spin axis can be emitted into regions I, II, or III if the star’s surface
is an oblate spheroid. If the star’s surface is spherical (shown as a
dashed curve), photons can only be emitted into regions II, III, or
IV. 2.3. Redshift and Zenith Angle

In CLM we presented equations for the photon’s red-
shift and initial zenith angle as measured in the frame
co-rotating with the fluid for the case of photons emitted
from and into the equatorial plane. The equations for ar-
bitrary initial conditions are derived in a similar manner.
The star’s fluid has four-velocity ua⋆ = (ta + Ω⋆φ

a)/N⋆

where the normalization function has the value

N2
⋆ = eγ+ρ

(

1− v2Z
)

. (14)

where
vZ = (Ω⋆ − ω)e−ρr̄ sin θ (15)

is the speed of the star’s fluid as measured by a zero
angular momentum observer.
Using ℓa to denote the photon’s four-velocity (as de-

fined in section 2.1), the photon’s redshift as measured
by an observer at infinity is given by 1+z = −u⋆·ℓ, where
we use a “dot” to denote the inner product with respect
to the full 3+1 spacetime metric given in equation (1).
The photon redshift is then

1 + z = e−
1

2
(γ+ρ) (1− Ω⋆b)

√

1− v2Z
. (16)

where all quantities are evaluated at the initial location
on the star,
An inertial observer at infinity measures time using

the t coordinate, so the star’s spin period is 2π/Ω⋆. An
inertial observer sitting at the star’s surface measures
time with the local proper time τ , where the proper and
coordinate times are related by

dτ

dt
= e

1

2
(γ+ρ)

√

1− v2Z . (17)

The observer at the star’s surface measures the spin
period to be gravitationally blue-shifted by the factor
dτ/dt.
Given a point on the surface of the star, the normal

vector na to the surface is defined by

nr̄ =1 (18)

nθ =− r̄
′
s(θ)

r̄2s
. (19)

The angle between the initial photon direction and this
normal, as measured in the star’s corotating frame is
given by

cosαe =
naℓbh⋆ab
n⋆ℓ⋆

(20)
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where hab⋆ = gab + ua⋆u
b
⋆ gives the projection of four-

vectors to the 3-space defined for an observer rotating
with the star, and n⋆ = h⋆abn

anb and ℓ⋆ = h⋆abℓ
aℓb.

With these definitions, the angle αe is

cosαe =
eα

(1 + z)

(

˙̄r − θ̇r̄′s(θ)
)

(

1 +

(

r̄′s(θ)

r̄s

)2
)−1/2

.

(21)

In this equation, ˙̄r and θ̇ are the initial values of the
photon’s velocity components subject to the constraints
given in section 2.2.

2.4. Doppler Factors

We expect that in the limit of slow rotation that the
full formalism presented in this paper should reduce to
the S+D approximation. In order to show that this is the
case, we require the calculation of the special relativistic
factors that enter into the Doppler shift formula. The
Lorentz “boost” factor η is defined by

η =

√
1− v2

1− v cos ξ
(22)

where v is the speed of the emitting area, as measured
by an inertial observer at the star, and ξ is the initial
angle between the fluid velocity and the initial photon
direction, as measured by the inertial observer.
The inertial observer has four-velocity uai = ta/Ni,

where the normalization factor is given by Ni =

e
1

2
(γ+ρ)

(

1− ω2e−2ρr̄2 sin2 θ
)1/2

. The spatial projection

operator for this observer is habi = gab + uai u
b
i , allowing

the speed of the emitting area to be defined through the
relation

v=
(hiabu

a
⋆u

b
⋆)

1/2

|ui · u⋆|
=Ω⋆e

−ρr̄ sin θ(1− ω(Ω⋆ − ω)e−2ρr̄2 sin2 θ)1/2 (23)

The angle ξ is defined by

cos ξ =
hiabu

a
⋆ℓ

b

(hiabua⋆u
b
⋆)

1/2(hiabℓaℓb)1/2
, (24)

which leads to the expression

1− v cos ξ =

(

1− e−2ρr̄2 sin2 θω2
)

(

1− e−2ρr̄2 sin2 θω(ω − Ω⋆)
) (1− Ω⋆b).

(25)
We wish to make contact with the S+D approxima-

tion, in which the exterior gravitational field of the star
is approximated by the Schwarzschild metric. The limit-
ing values of the metric potentials for zero rotation were
given by equations (3) - (5) of CLM. As discussed in
CLM, the S+D approximation can be found by taking
the limit of the frame-dragging potential ω to zero and
using the Schwarzschild limits for the potentials γ, ρ and
α. We will denote the S+D approximation of any ex-
pression with the limit ω → 0. In this limit, the values
of v and vZ are

lim
ω→0

v = lim
ω→0

vZ =
Ω⋆R sin θ
√

1− 2M/R
, (26)

and the Doppler Boost factor is

lim
ω→0

η =

√
1− v2

1− Ω⋆b
. (27)

¿From equation (16) it can be seen that the redshift
factor in the S+D approximation reduces to the expected
expression

lim
ω→0

(1 + z) = (1− 2M

R
)−1/2η−1. (28)

2.5. Time of Arrival and Azimuthal Deflection Angle

The coordinate time of arrival for each photon is de-
noted T and can be found by integrating equation (2)
and subtracting off the time of arrival for some arbitrarily
chosen reference photon. Similarly, the azimuthal deflec-
tion angle ψ (the change in φ coordinate) can be found
by integrating equation (3). Both the time of arrival and
the azimuthal deflection angle can be written as func-
tions of the photon’s initial latitude on the star θi, the
final latitude of the photon θf and the photon’s impact
parameter b.
Consider the family of photons all emitted from the

same latitude on the star, and all received by the same
observer at infinity. These photons all have different val-
ues of b, and their times of arrival will be written as
T (θi, θf , b) and their azimuthal deflection is ψ(θi, θf , b).
If θi and θf are fixed, two photons with impact parame-
ters b and b +∆b have times of arrival differing by

∆T =
dT

db
∆b. (29)

The deflection angles for the two photons differ by

∆ψ =
dψ

db
∆b. (30)

In the Appendix, we show that dT/db = bdψ/db. This
leads to the identity, for photons with identical initial
and final latitudes

∆T (θi, θf , b) = b∆ψ(θi, θf , b). (31)

Consider two points on the same latitude of the star
separated by an azimuthal angle ∆φ as shown in Fig-
ure 2. As the star rotates, the azimuthal locations of
the two points change, but the separation remains fixed.
Suppose that photons are emitted simultaneously from
the two points so that the leading photon (labeled “A”)
has impact parameter b and is emitted at some initial az-
imuthal angle φi, and the trailing photon (labeled “B”)
has impact parameter b+∆b and initial azimuthal angle
φi −∆φ. (In our sign convention the impact parameter
is positive on the blue side of the star, and the azimuthal
coordinate φ is negative on the blue side. With this sign
convention ∆φ is always positive.) Define the time of
arrival for the leading photon to be TA. Then the time
of arrival for the trailing photon is TB = TA + b∆φ since
∆φ = −∆ψ. With our sign convention, on the blue side
of the star TB > TA, so that the leading photon arrives
before the trailing photon. On the red side of the star
the opposite is true.
The location of the two emitting points at a coordinate

time ∆te later is shown in the second panel of Figure 2.
In this time interval each point has moved through an an-
gle ∆φ, so the lapse in coordinate time is ∆te = ∆φ/Ω⋆,
where the subscript e is used to denote the lapse in co-
ordinate time measured at the location of the emitting
points. The two photons emitted simultaneously at this
later time are now labeled “C” (for the leading photon)
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Fig. 2.— An emitting region with azimuthal width ∆φ which
moves across the star at constant latitude. Photons from locations
A and B are emitted simultaneously at time te1 and later, at time
te2, photons C and D are emitted.

and “D” (for the trailing photon). The trailing photon
arrives at time

TD =
∆φ

Ω⋆
+ TA (32)

and the leading photon arrives at time

TC = TD − b∆φ = TA +
∆φ

Ω⋆
(1− bΩ⋆) . (33)

The observer sees the photons move through the angle
∆φ in the time interval ∆T ,

∆T = TC − TA =
∆φ

Ω⋆
(1− bΩ⋆) = ∆te (1− bΩ⋆) . (34)

2.6. Solid Angle

The flux detected from an emitting area on the star is
directly proportional to the solid angle subtended by the
area, as measured by the observer. Consider any three
photons arriving at the detector. Since the observer is
located in a flat region of space, the solid angle can be
found by first calculating the three angles separating the
three photons. These three angles form a triangle whose
area can be computed using Euclidean geometry.
Consider two photons seen by the observer with four-

momenta ℓ and m which has components ℓt = mt = −1,
ℓφ = b,mφ = b+db,mθ = ℓθ+dℓθ andmr̄ = ℓr̄+dℓr̄. The
angle between these two photons, as measured by a static
observer at infinity can be found using a method similar
to the Appendix of CLM, except that we now allow for
photons detected and emitted off of the equator. After
some algebra, the angle ǫ is given by

cos(ǫ) = 1 + gtt
[

gφφ(db)2 + gr̄r̄(dℓ
r̄)2 + gθθ(dℓ

θ)2
]

.
(35)

For small angular separations, cos(ǫ) = 1− ǫ2/2+O(ǫ4),
so the angle separating the photons is

ǫ =
√−gtt

[

gφφ(db)2 + gr̄r̄(dℓ
r̄)2 + gθθ(dℓ

θ)2
]1/2

. (36)

Given the three angles ǫi (where i runs from 1 to 3)
separating the three photons, the solid angle subtended
by the photons can be found (assuming flat space at in-
finity) from a Euclidean formula such as

dΩ =
√

s(s− ǫ1)(s− ǫ2)(s− ǫ3), (37)

where s = (ǫ1 + ǫ2 + ǫ3)/2.
In our calculations, we must be careful about whether

the photons were emitted or detected simultaneously. We
use dΩe to denote the solid angle subtended by photons
that were emitted simultaneously, but detected at differ-
ent times. The solid angle subtended by photons that are
detected simultaneously but emitted at different times is
denoted dΩo.

2.7. Light Curves

In order to construct a light curve, the flux as a func-
tion of observed coordinate time must be calculated.
Consider two different instantaneous definitions of the
flux from a small spot on the star with width ∆φ. The
specific flux detected at time T is

Fo(T ) =
Iνe(αe)

(1 + z)3
dΩo, (38)

where the values of z and αe have been chosen so that
the photons arrive at the observer at the correct time.
The flux received in the detector over a time interval due
to photons emitted simultaneously at the same value of
coordinate time te is

Fe(te) =
Iνe(αe)

(1 + z)3
dΩe. (39)

However, neither definition of flux describes what is
truly measured in the detector, since the detector mea-
sures flux over a finite time interval ∆T . Light detected
during the interval ∆T is emitted over the coordinate
time interval ∆te, so the total energy per unit area that
arrives in the detector is

Total Energy = Fe(te)∆te, (40)

where we are now integrating the specific flux over all
energies. The flux in the detector is averaged over the
collection time interval ∆T , so the measured flux is

F (T,∆T ) =
Total Energy

∆T
= Fe(te)

∆te
∆T

. (41)

Making using of equation (34), the expression for the
flux reduces to F (T,∆T ) = Fe(te)/(1 − bΩ⋆). In the
S+D approximation (see equation (27)) this yields

lim
ω→0

F (T,∆T ) = Fe(te)η, (42)

as derived using other methods by Poutanen & Gierliński
(2003).
In CLM we erroneously omitted the extra boost fac-

tor derived in this section. As a result, the pulse shapes
shown in that paper are not correct. This means that
in CLM we underestimated the errors introduced by ne-
glecting time delays into the S+D fitting program. How-
ever, the conclusions made by CLM are unchanged: for
equatorial photons, the most important effect is the bin-
ning of photons by the correct arrival time.
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2.8. Approximation Schemes

The raytracing procedure discussed in this section is
time-consuming, so simpler approximations based on an-
alytic spacetime metrics are desirable. Two approxima-
tions are commonly used, the Schwarzschild + Doppler
(S+D), and the Spherical Kerr (SK) approximations. In
both of these approximations a black hole metric with
a mass identical to the neutron star’s mass is used in-
stead of the neutron star metric. In the case of the SK
approximation, a Kerr metric with angular momentum
identical to the neutron star’s is used. In both cases, pho-
ton trajectories are started from a spherical surface with
a radius equal to the neutron star’s equatorial radius.
Another type of approximation retains the oblate

shape of the rotating neutron star and embeds the oblate
surface in either a Schwarzschild or Kerr spacetime met-
ric. We will use the name Oblate Schwarzschild (OS) to
denote the use of a Schwarzschild metric and an oblate
surface, and Oblate Kerr (OK) for the use of the Kerr
metric and an oblate surface.

3. COMPARISON OF METHODS

We now turn to the question of how well the various ap-
proximations model the light curves produced by rapidly-
rotating neutron stars. We examine three aspects of this
question. First, we address the effect of the shape of the
star’s surface on the resulting light curve. Second, we
address how the effect of the choice of metric affects the
resulting light curve. Third, we examine the errors that
result when the commonly adopted S+D approximation
is used to extract the neutron star’s mass and radius val-
ues.

3.1. Oblate Shape of the Star

The most important factor affecting the light curve of
a very rapidly-rotating neutron star is the assumed shape
of the star’s surface. The reason for this can be seen in
Figure 1, which shows emission from a point at an angle
θ from the star’s spin axis. In Figure 1, the true shape
of the star (an oblate spheroid) is shown, along with a
spherical surface that intersects the point of emission. In
Figure 1, four regions I, II, III, and IV are shown. If
the star’s shape is either spherical or oblate, photons can
always be emitted into regions II and III. However, in the
case of a spherical star, region I is forbidden, and in the
case of an oblate star, region IV is forbidden. If the star
is very oblate, the differences in allowed initial directions
can have a very dramatic effect on the resulting light
curve.
In Figure 3 we show an example for the most oblate

star, corresponding to EOS L with a mass of 1.4M⊙ and
a spin frequency of 600 Hz. In Figure 3 we show the light
curves which result if the emission takes place at an angle
of 41◦ from the spin axis, and the observer’s inclination
angle is 20◦ from the spin axis. The curve labeled “Ex-
act” was computed using the exact numerical metric and
the correct, oblate shape of the star. The curves labeled
“OS” and “OK” were calculated by embedding the exact
oblate shape in either the Schwarzschild or Kerr metrics
respectively. These three curves are very close to each
other and are difficult to distinguish. The curves labeled
“S+D” and “SK” are computed by assuming a spheri-
cal shape for the star and evolving the photons in either
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Fig. 3.— Light curves for a 600 Hz, 1.4 M⊙ neutron star with
EOS L, emission from an angle of 41◦ from the North pole and an
observer at an inclination angle of 20◦ from the North pole. The
bold solid curve is the light curve that results if the exact shape
and gravitational field of the star is used. The four approximation
schemes discussed in the text are shown in various types of dashed
lines. Note that the OS and OK curves are very close to the exact
curve and may be difficult to distinguish from the exact case.

a Schwarzschild or Kerr spacetime. The S+D and SK
curves are very close to each other, and are very differ-
ent in shape from the curves computed using the oblate
surface. The curves computed in the spherical approxi-
mations are more modulated and have a higher harmonic
content than the curves computed using either the oblate
or exact methods. This is purely a geometric effect. Con-
sider the situation when the spot is on the opposite side
of the star from the observer. In the case of a spherical
star the light must be emitted close to tangent to the
surface in order to get to the observer. In the case of
an oblate star, the same initial light ray is emitted closer
to the normal to the surface. The solid angle subtended
by the spot is roughly proportional to cosαe. Since the
brightness of the spot at any time is roughly approxi-
mate to the solid angle subtended by the spot, the spot’s
brightness when it is on the far side of the star is larger
in the oblate case than in the spherical case. This leads
to less modulation in the case of an oblate star compared
to a spherical star.
In Figure 4 we show a similar set of curves for the same

star shown in Figure 3, but for emission from an angle
of 15◦ from the spin pole and an observer inclination
of 100◦. The differences between the curves for spherical
and oblate stellar surfaces are even more extreme than in
Figure 3. In Figure 4, the light curves assuming a spher-
ical surface show eclipses, while the oblate light curves
do not have eclipses. In the spherical cases, the eclipses
occur when light from the back of the star would need
to be emitted into region I (see Figure 1) in order to
go over the north end of the star to reach the observer.
Since region I is forbidden when the emission is from a
spherical surface, eclipses occur. In the case of an oblate
star, region I is allowed and light reaches the observer
and no eclipse occurs.
Neutron stars constructed with EOS L are very large,

so they are strongly affected by rotation and are very
oblate. We have chosen to focus on EOS L in order to
illustrate the largest changes to the waveforms caused
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Fig. 4.— Light curves for a 600 Hz, 1.4 M⊙ neutron star with
EOS L, emission from an angle of 15◦ from the North pole and an
observer at an inclination angle of 100◦ from the North pole.
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Fig. 5.— Light curves for a 600 Hz, 1.4 M⊙ neutron star with
EOS A, emission from an angle of 15◦ from the North pole and an
observer at an inclination angle of 100◦ from the North pole.

by rotation. In contrast, a softer EOS, such as EOS A
produces a smaller star that is less oblate. In Figure 5
we show the light curves for the same emission geom-
etry as in Figure 4 but for EOS A. Note that in the
case of the smaller EOS A star, there are no eclipses
when the spherical surface approximation is made. The
shapes of the light curves constructed with elliptical and
spherical models are similar to each other, but the curves
constructed with the spherical approximation are more
modulated (for the same reasons as given for the case
shown in Figure 3. The lack of eclipses for the spherical
star is due to the fact that the EOS A star is much more
compact than the EOS L star (with the same mass). A
more compact star has a stronger gravitational field and
the effect of light bending is much stronger than for a
large star, so that it is easier for light to travel from
the back side of the star to the observer. For the re-
maining figures we have chosen to focus on the larger
EOS L stars in order to show the largest possible effects
due to oblateness, but it should be remembered that if
the EOS is softer, then the differences between the wave-
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Fig. 6.— Light curves for 1.4 M⊙ neutron stars with EOS L,
emission from an angle of 15◦ from the North pole and an observer
at an inclination angle of 100◦ from the North pole. Light curves
for spin rates of 100, 300 and 500 Hz are shown. Exact light curves
are illustrated with bold curves. For comparison the approximate
Schwarzschild + Doppler (S+D) light curves are also shown. The
S+D and exact light curves for the 100 Hz star overlap, so the S+D
curve can’t be distinguished from the exact in this figure.

forms computed using the oblate and spherical models
will be smaller than shown.
In order to illustrate the effect of rotation rate on the

light curves, we plot in Figure 6 the light curves for emis-
sion from an angle of 15◦ and detection at 100◦ for stars
rotating at frequencies 100, 300 and 500 Hz. For the case
of the 100 Hz star (solid lines) the exact (bold) and ap-
proximate S+D (light) curves are almost identical and
are difficult to distinguish from each other in Figure 6.
Since 100 Hz is a relatively slow rotation rate and oblate-
ness is small, the S+D light curve is an excellent approx-
imation to the exact light curve. The light curves for 300
Hz stars (dot-dashed lines) show a significant difference
between the exact (bold) and S+D (light) curves. In
both cases (for 300 Hz) the spot is eclipsed, but for the
exact light curve the eclipse lasts for about 1/10 of the
spin period, while in the S+D approximation the eclipse
lasts for about 2/10 of the spin period. In the case of
500 Hz (dotted lines) the exact light curve (bold) has no
eclipse while the S+D approximation (light) does, as in
the case of 600 Hz.
When emission and detection takes place near the

star’s equatorial plane the differences in the light curves
resulting from the different calculation methods are not
as important, as shown in Figure 7. In Figure 7 emission
is from a point 85◦ from the spin pole and the observer
has an inclination angle of 100◦. While the fraction of
the time that the signal is “on” is different for the oblate
and spherical cases, the difference is not very important.
This lack of difference is due to the fact that near the
equator, there is not much difference between the nor-
mals to an oblate spheroid or a sphere. This agrees with
the earlier results in CLM for the case of exact equatorial
orbits.
When the observer and the emission region are on op-

posite sides of the star, as in the case of Figure 8), the
effect of oblateness is to increase the duration of eclipses
compared to an equivalent light curve computed with
a spherical surface. The reason for this can be under-
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Fig. 7.— Light curves for a 600 Hz, 1.4 M⊙ neutron star with
EOS L, emission from an angle of 85◦ from the North pole and an
observer at an inclination angle of 100◦ from the North pole.
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Fig. 8.— Light curves for a 600 Hz, 1.4 M⊙ neutron star with
EOS L, emission from an angle of 45◦ from the North pole and an
observer at an inclination angle of 135◦ from the North pole.

stood by considering the case of a spherical star. For
the spherical star, the eclipse begins at the moment that
the light is emitted tangent to the surface, into region IV
of Figure 1. But the oblate star is not allowed to emit
into region IV, so this photon never reaches the observer.
This analysis holds for all photons that would have to be
emitted into region IV, with the result that the eclipse
lasts for a longer time in the case of the oblate star. In
general, this leads to a higher asymmetry and harmonic
content for light curves for the oblate star (compared to
the spherical star) if the angles of emission and detection
are in opposite hemispheres.
Since neither the oblateness of the star nor the emission

and detection angles are typically known for any obser-
vation, the use of one of the spherical approximations for
a rapidly-rotating neutron star can lead to incorrect fits.

3.2. Metric Approximations

Given an initial photon direction, the most important
factor of affecting the propagation of a photon is the
strength of the gravitational potential at the location of
emission. To leading order in rotation, the gravitational

potential depends only on the ratio of M/R. Approx-
imations using the Schwarzschild metric to model the
neutron star’s gravitational field assume that the value
of M/R predicts the deflection and time delay of the
photons at a level sufficient for light-curve fitting.
The largest rotational correction to the star’s metric is

the frame-dragging term ω which is of order Ω⋆ ×M/R.
The use of the Kerr metric matches the neutron star’s
metric up to this first order rotational term, but does not
attempt to match the exact metric at quadratic order (or
higher) in the angular velocity.
In Figures 3, 4 and 7 we showed the light curves that

result when the Schwarzschild and Kerr approximations
are used. The differences between the choice of metric are
smaller than the differences caused by the shape of the
initial emission surface in the cases illustrated in Figures
3 and 4. In the case of Figure 7, all of the curves are
so close that the approximation scheme is unimportant.
The uncertainties in the shape and size of the emission
area, along with the uncertainty in the anisotropy of the
emission will produce uncertainties in the shapes of the
light curves which are much larger than the differences in
light curves caused by the choice of metric. However, the
errors caused by using the wrong shape of the surface are
competitive with the differences caused by uncertainties
in the emission shape, size and anisotropy.
As a result, we find no compelling reason to make use

of the Kerr metric over the Schwarzschild metric. An
approximation scheme such as the OS results in light
curves that approximate the exact curves about as well
as the OK approximation.

3.3. Errors in Fitted Masses and Radii for the S+D
Approximation

The main motivation for calculating light curves is to
extract the neutron star’s mass and radius. At present
the only methods for fitting the mass and radius from
light curves approximate the star’s surface as a sphere.
We now give results of a preliminary investigation of the
errors in fitted mass and radius resulting from the use of a
spherical approximation. First, light curves are created
using the exact (numerical) description of the neutron
star for a number of different stellar models, emission
latitudes and observer inclination angles. We then used
a S+D fitting program to deduce the mass and radius
of the stars as well as the emission-observer geometry
given the pulse shape and the star’s spin frequency. In
order to isolate the effects of oblateness on the errors, we
only used infinitesimal spot sizes and isotropic emission
in both the exact curve generating program and in the
S+D fitting program. This method provides a first clue
to the effects of oblateness, but in order to model real
data a fitting program should be allowed to explore a
larger parameter space including finite spot size, compli-
cated spot patterns and anisotropic emission.
The results of the fits are shown in Table 2. In all

cases the true value of the star’s mass is 1.4M⊙. In this
table, the term R(θe) is displayed. When the S+D fit-
ting program fits values, the light bending and Doppler
boosts depend on the value of the radius at latitude of
the spot, not at the equator. This means that when the
S+D fitting program fits the star’s radius, it is actually
predicting R(θe) the radial distance from the centre of
the star to the fitted location of the spot. In the column
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labeled “R(θe) true”, this is the distance from the centre
of the star to the actual location of the spot. Similarly,
the true and fitted values of the gravitational potential
at the location of emission M/R(θe) are shown in the
table.
The S+D fitting is done by selecting a value ofM/R at

the location of emission. This fixes the bending angles
and times of arrival in the Schwarzschild metric. Dif-
ferent values of R and the emission and observer angles
are tried, which fix the Doppler boosts, since the star’s
spin frequency is assumed to be known. A light curve is
calculated and compared to the light curve computed by
the exact method, and the χ2 value is calculated assum-
ing constant error per data point of 0.01, with the data
normalized so that the peak of the light curve equals 1.
In the S+D light curves 180 phase bins are used. The

mean counts per bin ranges from .15 to .7, with peak
normalized to 1.0. The error of 0.01 per phase bin is,
using Poisson errors, equivalent to a 220 to 500 counts
per bin or a total of 40,000 to 90,000 counts. These er-
rors are comparable to those that can be obtained on
ms pulsars using the Rossi X-ray Timing Explorer. For
example, one of the best statistics is for the light curves
shown in Papitto et al (2005). They show pulse shapes
(mean normalized to 1.0) of SAX J1808.4-3658 with 64
phase bins and errors per phase bin of 0.005, which im-
plies 40,000 counts per bin for a total of 2.6×106 counts.
The number of degrees of freedom in our fits is 180-NP
with NP=6 the number of fit parameters. Since the S+D
model light curve was fitted to exact light curve without
added Poisson errors, the expected χ2 for a perfect fit is
0 rather than 180-NP. Given the assumed errors of 0.01
per phase bin, χ2 values of 1, 2.71 and 4 roughly corre-
spond to inconsistency of model and input light curves
at the 1σ, 90%, and 2σ levels.
After the minimum χ2 value (χ2

min) is found, the best
values of the star’s radius at the point of emission and
the angles θe and θo given the value of M/R is known.
The process is then repeated for a new value of M/R.
By iterating this for many values of M/R, the best fit
model can be found. In Table 2, the best fit param-
eters are shown for each light curve, along with the
90% uncertainty in the fitted value of M/R and the
value of χ2

min for the best-fit model. The uncertainty
is computed by finding the values of M/R which yield
χ2=χ2

min+2.71. We allowed all other parameters to be
free in the fits to find the range of parameter of interest
which gave χ2=χ2

min+2.71. Thus there have been no as-
sumptions about correlations between parameters, and
we have found the correct 90% ranges. In some cases,
the minimum in χ2 is so shallow that no meaningful er-
ror bars can be computed. We denote these cases with
an asterisk in the uncertainty column. The cases marked
with an asterisk are degenerate, in that almost any values
of M/R provides an acceptable fit to the data. In some
other cases (see emission angle of 45◦, observation angle
of 135◦and EOS L) the error bars allowed an upper limit
on M/R to be made. In these cases the uncertainty col-
umn contains the symbol “<” and a number which is the
upper limit on M/R. Computing 90% uncertainties for
the other parameters than M/R is beyond the scope of
this paper. One might expect that in cases where the fits
are not degenerate the errors should be of roughly simi-
lar fractional amount as for M/R, however more work is

required to confirm this.
The fit value of M/R often agree closely (within 5%)

with the true M/R values. Eleven (8 degenerate, 3 non-
degenerate) of the fits had M/R fit different than M/R
true by 10% to 50%, another 3 had differences between 5
and 10%. If we discount the degenerate fits, that leaves
6 out of 30 cases with errors between 5% and 21%. Thus
the S+D approximation does have a small but significant
(20%) fraction of cases with significant errors in M/R.
For the remaining parameters (M , R and the angles θe,
θo) the differences between the true and fit values are
larger than for the ratio M/R, with usually larger differ-
ences for the angles than forM or R. For example the fit
values of M are different than the true values by by 10%
to 24% in 10 cases (out of 30 nondegenerate fits), and 11
cases had differences between 5 and 10%. For θe, fit val-
ues are different than the true values by by 10% to 98%
in 16 cases (out of 30 nondegenerate fits), and 6 cases had
differences between 5 and 10%. Generally, we find that
the errors in using the S+D approximation can be large
in some cases and small in some others. However, one
must be careful in interpreting the results of this work:
for real data, as previously mentioned, one would have
to generalize the study to include a finite spot size and
more realistic emissivity.
Table 2 illustrates a number of types of fitting prob-

lems that occur. For the slowest rotating stars with spin
frequencies νstar ≤ 200 Hz, the S+D fitting program ex-
tracted a value of M/R very close to the actual value,
as would be expected for slowly rotating stars. The indi-
vidual fitted values of mass and radius have some error,
but don’t deviate by more than 6% from the true values.
In order to fit the radius of the star, the equatorial ve-
locity is fit from the asymmetry in the light curve due to
Doppler boosting. At slow rotation rates the effects of
Doppler boosting is small and the exact light curves have
fairly symmetric rise and fall times. The result is that
due to this symmetry a range of radii will fit the data
equally well, leading to a high probability that some er-
ror will be introduced into the fitted value of radius. As
the spin rate is increased, the quality of the fits (as mea-
sured by χ2) decreases, but the resulting fits for M/R
are (within the error) of the correct values ofM/R when
the spin frequency is ≤ 500 Hz. However, the fits for the
masses (or radius) are quite poor in many of these cases.
In the case of emission from 41◦and observation at

20◦all fits at all spin frequencies were degenerate (al-
though we only chose to show a few of these in Table
2). This can be understood by looking at the light curve
(for the case of 600 Hz) shown in Figure 3. The true
light curve for this angle combination is very close to a
sine wave at all spin frequencies. Since almost any star
will have a number of emission/observation angle pairs
that produce a sine wave signal, a wide range of model
stars provide equally good fits to the data. As others
(eg. Bhattacharyya et al. (2005)) have remarked, any
data which does not contain any harmonics will not al-
low meaningful fits.
Some of the worst errors in extracting mass and radius

occur for the largest stars constructed with EOS L, one of
the stiffest EOS in the literature. Since the EOS L stars
are very large, they are most affected by rotation and
are highly oblate. If one is interested in ruling out very
stiff equations of state, using data from rapidly-rotating
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stars, it is necessary to take the oblateness of these stars
into account.

4. CONCLUSIONS

We have investigated the effect of rapid rotation on the
light curves produced by a small spot on a neutron star’s
surface. Our calculations are exact, in that we numeri-
cally compute the spacetime metric for the rotating star,
include the correct shape of the star and solve for the
geodesics in the numerical spacetime. We find that the
most important effect on the light curve arising from ro-
tation comes from the oblate shape of the star’s surface.
All past work involving fits of X-ray data have assumed

that the surface of the star is spherical. Our present com-
putations show that the assumption of a spherical sur-
face leads to large deviations from the correct light curve
for spin frequencies larger than 300 Hz. However, our
test runs show that the assumption of a spherical surface
can still fit the correct value of M/R at spin frequencies
≤ 500 Hz, even if the individually fitted values of mass
and radius are incorrect.
In our light curve calculations, we find that if the star’s

surface is assumed to be a sphere, the light curves result-
ing from the use of the Kerr metric are almost the same
as those resulting from the use of the Schwarzschild met-
ric. The difference in these light curves is smaller than

the size of the error bars in any present data, so it seems
that there is no significant advantage in the use of the
SK approximation over the S+D approximation.
We calculated light curves in an approximation where

an oblate surface is embedded in either the Schwarzschild
(OS) or Kerr (OK) spacetime. In both cases, the result-
ing light curves are very close to the exact light curves
computed using the numerical spacetime of the rotat-
ing neutron star. This suggests that an approximation
similar to the Schwarzschild + Doppler approximation
that includes an oblate surface could be a useful way to
fit data. The construction of a fitting program that ex-
tracts the mass and radius of a star from a light curve
using an oblate surface is non-trivial. In future work, we
plan to develop a code that will allow an oblate shape to
be incorporated into a S+D fitting program that includes
finite spot sizes and anisotropic emission. We anticipate
that such a program will allow the accurate extraction
of the masses and radii of very rapidly-rotating neutron
stars.

We thank the referee for comments that helped us clar-
ify the presentation of our results. This research was
supported by grants from NSERC.
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APPENDIX

RELATION BETWEEN TIMES-OF-ARRIVAL AND DEFLECTION ANGLES

In order to compute the coordinate time elapsed during the photon’s flight from the star to the observer, equation
(2) must be integrated from the initial to final values of the affine parameter λ. This is complicated by the fact that
the metric potentials γ, ρ and ω appearing in equation (2) depend on the values of the coordinates r̄(λ) and θ(λ)
describing the location of the photon at every point along the geodesic.
It is useful to introduce a flat, spacelike two-dimensional space perpendicular to the full 3 + 1 spacetime’s Killing

vectors. As the photon moves through the real spacetime it also traces out a curve in the two-space. The arc-length
along the curve in the two-space is denoted ζ and is given by the usual flat space formula

dζ2 = dr̄2 + r̄2dθ2. (A1)

Since the arc-length depends on the value of the affine parameter λ, equation (7) can be used to write an equation for

ζ̇ ≡ dζ/dλ,

ζ̇2 = A(r̄(ζ), θ(ζ)). (A2)

The elapsed coordinate time can now be written as the integral

T (θi, θf , b)=

∫

dt

dζ
dζ =

∫

ṫ

ζ̇
dζ =

∫

A−1/2e−(γ+ρ)(1− ωb)dζ. (A3)



12

TABLE 1
Neutron Star Parameters for 1.4 M⊙ Stars

EOS ν∗ Ra GM/Rc2 Jc/M2G v/cb νB
c

Hz km Hz

A 0 9.57 0.216 0 0 1390
100 9.57 0.216 0.04 0.03
200 9.59 0.216 0.07 0.05
300 9.62 0.215 0.11 0.08
400 9.66 0.214 0.15 0.11
500 9.71 0.213 0.19 0.13
600 9.78 0.211 0.22 0.16

L 0 14.8 0.139 0 0 740
100 14.9 0.139 0.08 0.04
200 14.9 0.138 0.15 0.07
300 15.1 0.137 0.23 0.11
400 15.4 0.135 0.32 0.15
500 15.7 0.131 0.41 0.19
600 16.4 0.126 0.51 0.24

aEquatorial radius
bEquatorial speed measured by a static observer at the
star’s surface
cBreak-up spin frequency for a star with the given mass

and EOS

Similarly, the azimuthal deflection can be written as

ψ(θi, θf , b) =

∫

A−1/2

(

ωe−(γ+ρ)(1− ωb) + eρ−γ b

r̄2 sin2 θ

)

dζ. (A4)

Neither equation (A3) nor (A4) is in a form useful for directly calculating either the elapsed time or the azimuthal
deflection. However, note that both of these equations are of the form of exact line integrals. If the value of the impact
parameter is kept fixed, the values of the two integrals depend only on the endpoints. If the endpoints of the geodesic
are kept fixed, the changes in the arrival time and in the azimuthal deflection angles can easily be calculated for small
changes in the impact parameter. Making use of equations (6) and (7), the derivative of the coordinate arrival time
with respect to the impact parameter is found to have the value

dT

db
=

∫

A−3/2e−2α−2γ b

r2 sin2 θ
dζ. (A5)

Similarly, we find

dψ

db
=

∫

A−3/2e−2α−2γ 1

r2 sin2 θ
dζ. (A6)

Comparing equations (A5) and (A6) we are led to the identity

dT

db
(θi, θf , b) = b

dψ

db
(θi, θf , b). (A7)

As a result, if two photons are emitted from the same latitude θi on the star and are detected by the same observer,
the difference in arrival times is related to the difference in the azimuthal deflection by the simple formula given by
equation (A7).
As a quick check, we note that in the limit of zero rotation the metric potentials are given by equations (3 - 5) of

Cadeau et al (2005), and the integrals for the time delay and azimuthal deflection reduce to simple integrals over the
radial coordinate. It is easy to explicitly check that the identity (A7) holds in the case of the Schwarzschild metric, as
it must since our proof holds for any axisymmetric stationary spacetime.
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TABLE 2
Comparison of True and Fitted Parameters of Neutron Stars. All neutron stars have a mass of

1.4M⊙.

θe θo EOS Ω⋆ (Hz) M/M⊙ R(θe) (km) θe (deg) θo (deg) GM/c2R(θe) χ2

true fit true fit fit fit true fit unc.

41◦ 100◦ A 100 1.48 9.57 10.2 80.5 139.2 0.216 0.215 0.011 0.1
L 1.32 14.83 13.8 80.5 133.0 0.140 0.142 0.027 0.02
A 300 1.49 9.58 10.0 79.8 138.0 0.216 0.220 0.005 1
L 1.09 14.82 11.1 67.0 95.6 0.140 0.145 0.024 0.3
A 400 1.45 9.58 9.55 80.8 134.9 0.216 0.225 0.006 2
L 1.17 14.80 11.9 58.0 96.3 0.140 0.145 0.023 0.4
A 500 1.51 9.59 9.89 80.2 136.9 0.216 0.225 0.005 3
L 1.29 14.78 12.7 52.7 98.1 0.140 0.15 0.02 0.8
A 600 1.58 9.60 10.2 41.9 102.2 0.215 0.230 0.007 4
L 1.30 14.74 12.0 57.9 97.5 0.140 0.160 0.015 2

85◦ 100◦ A 100 1.48 9.57 10.4 87.4 110.8 0.216 0.210 0.008 1
L 1.45 14.86 15.3 84.0 103.7 0.139 0.140 0.027 0.05
A 200 1.46 9.59 10.1 84.4 103.9 0.216 0.215 0.006 2
L 1.43 14.95 15.6 86.7 107.6 0.138 0.135 0.029 0.4
A 300 1.48 9.62 10.2 83.1 103.5 0.215 0.215 0.025 4
L 1.70 15.10 17.9 80.0 123.3 0.137 0.140 0.015 0.4
A 400 1.49 9.66 10.3 77.2 99.7 0.214 0.215 0.003 7
L 1.40 15.35 16.0 85.0 105.5 0.135 0.130 0.009 4
A 500 1.68 9.71 11.3 67.7 111.0 0.213 0.220 0.004 5
L 1.51 15.73 17.9 61.7 97.7 0.131 0.125 0.009 6
A 600 1.62 9.78 11.1 72.5 113.6 0.211 0.215 0.003 0.1
L 1.40 16.35 17.3 77.8 102.6 0.127 0.120 0.007 0.2

45◦ 135◦ A 100 1.51 9.57 10.4 47.4 137.8 0.216 0.216 0.005 0.1
L 1.46 14.83 15.4 44.8 135.4 0.139 0.140 < 0.155 0.06
A 200 1.60 9.58 10.9 45.5 138.5 0.216 0.218 0.004 1
L 1.48 14.84 15.7 44.3 136.0 0.139 0.140 < 0.145 0.1
A 300 1.57 9.58 10.7 45.1 137.6 0.216 0.217 0.006 0.5
L 1.45 14.85 15.9 44.0 136.0 0.139 0.135 < 0.155 0.1
A 400 1.73 9.59 11.6 41.6 139.0 0.216 0.220 0.005 8
L 1.44 14.87 16.3 43.0 136.4 0.139 0.130 < 0.145 0.1
A 500 1.61 9.61 11.0 44.5 138.6 0.215 0.216 0.005 1
L 1.22 14.81 18.0 32.0 123.4 0.139 0.100 < 0.135 0.8
A 600 1.63 9.63 11.2 42.5 137.7 0.215 0.215 0.005 1
L 1.34 14.90 18.0 40.0 137.5 0.139 0.110 < 0.145 0.6

41◦ 20◦ A 100 1.41 9.57 9.23 29.8 28.9 0.216 0.225 * 0.005
A 500 1.40 9.59 10.4 20.6 35.3 0.216 0.2 * 0.05
L 1.99 14.78 16.8 33.2 21.5 0.140 0.175 * 0.03
A 600 1.40 9.60 10.9 20.2 34.0 0.215 0.19 * 0.07
L 2.53 14.74 17.8 28.8 23.2 0.140 0.21 * 0.06

15◦ 100◦ A 100 1.08 9.57 6.35 30.1 80.9 0.216 0.25 * 4
A 500 0.59 9.51 8.76 54.7 21.8 0.217 0.1 * 1
L 0.85 14.25 8.41 30.2 78.1 0.145 0.15 * 0.8
A 600 0.68 9.49 9.10 56.9 20.3 0.218 0.11 * 0.8
L 0.92 13.98 7.98 34.1 69.5 0.148 0.17 * 2


