156 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Applying Deep Learning Techniques to the Analysis of Android APKs

    Get PDF
    Malware targeting mobile devices is a pervasive problem in modern life and as such tools to detect and classify malware are of great value. This paper seeks to demonstrate the effectiveness of Deep Learning Techniques, specifically Convolutional Neural Networks, in detecting and classifying malware targeting the Android operating system. Unlike many current detection techniques, which require the use of relatively rigid features to aid in detection, deep neural networks are capable of automatically learning flexible features which may be more resilient to obfuscation. We present a parsing for extracting sequences of API calls which can be used to describe a hypothetical execution of a given application. We then show how to use this sequence of API calls to successfully classify Android malware using a Convolutional Neural Network

    Robust Mobile Malware Detection

    Get PDF
    The increasing popularity and use of smartphones and hand-held devices have made them the most popular target for malware attackers. Researchers have proposed machine learning-based models to automatically detect malware attacks on these devices. Since these models learn application behaviors solely from the extracted features, choosing an appropriate and meaningful feature set is one of the most crucial steps for designing an effective mobile malware detection system. There are four categories of features for mobile applications. Previous works have taken arbitrary combinations of these categories to design models, resulting in sub-optimal performance. This thesis systematically investigates the individual impact of these feature categories on mobile malware detection systems. Feature categories that complement each other are investigated and categories that add redundancy to the feature space (thereby degrading the performance) are analyzed. In the process, the combination of feature categories that provides the best detection results is identified. Ensuring reliability and robustness of the above-mentioned malware detection systems is of utmost importance as newer techniques to break down such systems continue to surface. Adversarial attack is one such evasive attack that can bypass a detection system by carefully morphing a malicious sample even though the sample was originally correctly identified by the same system. Self-crafted adversarial samples can be used to retrain a model to defend against such attacks. However, randomly using too many such samples, as is currently done in the literature, can further degrade detection performance. This work proposed two intelligent approaches to retrain a classifier through the intelligent selection of adversarial samples. The first approach adopts a distance-based scheme where the samples are chosen based on their distance from malware and benign cluster centers while the second selects the samples based on a probability measure derived from a kernel-based learning method. The second method achieved a 6% improvement in terms of accuracy. To ensure practical deployment of malware detection systems, it is necessary to keep the real-world data characteristics in mind. For example, the benign applications deployed in the market greatly outnumber malware applications. However, most studies have assumed a balanced data distribution. Also, techniques to handle imbalanced data in other domains cannot be applied directly to mobile malware detection since they generate synthetic samples with broken functionality, making them invalid. In this regard, this thesis introduces a novel synthetic over-sampling technique that ensures valid sample generation. This technique is subsequently combined with a dynamic cost function in the learning scheme that automatically adjusts minority class weight during model training which counters the bias towards the majority class and stabilizes the model. This hybrid method provided a 9% improvement in terms of F1-score. Aiming to design a robust malware detection system, this thesis extensively studies machine learning-based mobile malware detection in terms of best feature category combination, resilience against evasive attacks, and practical deployment of detection models. Given the increasing technological advancements in mobile and hand-held devices, this study will be very useful for designing robust cybersecurity systems to ensure safe usage of these devices.Doctor of Philosoph
    • …
    corecore