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ABSTRACT

The increasing popularity and use of smartphones and hand-held devices have made
them the most popular target for malware attackers. Researchers have proposed
machine learning-based models to automatically detect malware attacks on these
devices. Since these models learn application behaviors solely from the extracted
features, choosing an appropriate and meaningful feature set is one of the most cru-
cial steps for designing an effective mobile malware detection system. There are four
categories of features for mobile applications. Previous works have taken arbitrary
combinations of these categories to design models, resulting in sub-optimal perfor-
mance. This thesis systematically investigates the individual impact of these feature
categories on mobile malware detection systems. Feature categories that complement
each other are investigated and categories that add redundancy to the feature space
(thereby degrading the performance) are analyzed. In the process, the combination
of feature categories that provides the best detection results is identified.

Ensuring reliability and robustness of the above-mentioned malware detection systems
is of utmost importance as newer techniques to break down such systems continue
to surface. Adversarial attack is one such evasive attack that can bypass a detection
system by carefully morphing a malicious sample even though the sample was orig-
inally correctly identified by the same system. Self-crafted adversarial samples can
be used to retrain a model to defend against such attacks. However, randomly using
too many such samples, as is currently done in the literature, can further degrade
detection performance. This work proposed two intelligent approaches to retrain a
classifier through the intelligent selection of adversarial samples. The first approach
adopts a distance-based scheme where the samples are chosen based on their distance
from malware and benign cluster centers while the second selects the samples based
on a probability measure derived from a kernel-based learning method. The second
method achieved a 6% improvement in terms of accuracy.

To ensure practical deployment of malware detection systems, it is necessary to keep
the real-world data characteristics in mind. For example, the benign applications de-
ployed in the market greatly outnumber malware applications. However, most studies
have assumed a balanced data distribution. Also, techniques to handle imbalanced
data in other domains cannot be applied directly to mobile malware detection since



they generate synthetic samples with broken functionality, making them invalid. In
this regard, this thesis introduces a novel synthetic over-sampling technique that
ensures valid sample generation. This technique is subsequently combined with a dy-
namic cost function in the learning scheme that automatically adjusts minority class
weight during model training which counters the bias towards the majority class and
stabilizes the model. This hybrid method provided a 9% improvement in terms of
F1-score.

Aiming to design a robust malware detection system, this thesis extensively studies
machine learning-based mobile malware detection in terms of best feature category
combination, resilience against evasive attacks, and practical deployment of detection
models. Given the increasing technological advancements in mobile and hand-held
devices, this study will be very useful for designing robust cybersecurity systems to
ensure safe usage of these devices.
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Chapter One

Introduction

Smartphones, tablets, and other hand-held mobile devices are being increasingly used

in mobile commerce, online transactions, and sharing of personal data due to their ease

of use, continuous connectivity, and convenience [1–4]. Statista [5] reports that the

number of smartphone users worldwide surpassed 3.5 billion in 2020. This widespread

use has made mobile devices an inevitable target of cyber-crime through dissemina-

tion of malware [6]. In 2019, Cyber Emergency Response Team (CERT) Australia

reported responding to more than 13,672 cyber-attacks that amounted to an esti-

mated annual loss of US$328 million [7]. Such attacks are shifting more towards

mobile and handheld devices [8, 9]. Malware developers target these devices to steal

information and gain privileged access, which is then used for criminal activities.

Therefore, detecting malware in these platforms is becoming increasingly important.

Malware detection in such platforms offers some unique challenges. A significant

amount of work has been conducted in the field of malware detection for desktop

and wired environments, but, some key differences between the desktop and mobile

environments necessitate addressing this issue separately for mobile platforms. For

example, the application structure, techniques, and execution methods are very dif-

ferent in mobile devices, and the operating systems for mobile devices are optimized

for particular execution environments. As a result, the applications (apps) developed

1



for these systems are fundamentally different. Thus, specific techniques for malware

detection tailored to suit these environments is essential. The structure and organi-

zation of such a system (Android) and its applications are described in detail in Sec.

2.1 and 2.2. Device location is another point of difference between wired and mobile

platforms. By their nature mobile devices connect to various networks including pub-

lic, private, personal, and work networks. Naturally, security settings vary in such

networks, making mobile devices vulnerable to various novel exploits and attacks that

differ from the wired devices where change of location is usually not an issue.

Researchers have proposed several mobile malware detection systems based on ma-

chine learning models. Considering the requirements of an effective and robust mobile

malware detection system and our study on the current literature, we have identified

a number of important research challenges. These are discussed below.

1.1 Research Challenges and Motivation

For designing a machine learning-based malware detection system, analyzing the ap-

plications and extracting meaningful and effectual features from them is a crucial

step. Features are properties of applications used to train a machine learning model.

From a security point of view, an application is analyzed in two different ways namely,

static analysis and dynamic analysis. Static analysis decodes the application file and

parses them to extract features while dynamic analysis executes the application in a

suitable environment and records its run-time behavior. Static features of an applica-

tion have three sub-categories: permissions, Inter Component Communication (ICC),

and Application Programming Interface (API) calls. Additional information can also

be associated with some of the feature categories, for example, an API call can be

initiated by user interaction or by a system-generated event. These are known as

contextual information about features and can provide additional assistance for an-

alyzing application behavior. A detailed description of feature categories and, static

2



and dynamic analysis is presented in Sec. 2.9.

A number of works in the literature have proposed malware detection systems using

these feature categories. For example, some works considered the permission features

[10–12], some considered API features [13, 14], and a few considered ICC features

[15] that exposed application collusion attacks (detailed in Sec.3.2). However, these

works chose the feature categories in a randomized fashion without paying attention

to the individual effect of these categories. Since these feature categories represent

different characteristics of mobile applications, it is necessary to undertake a sys-

tematic investigation of the behaviors of these feature categories regarding malware

detection. Previous works have not considered this. Also, an attempt to find the best

combination is necessary because a blind combination of all the feature categories

may not lead to good performance. For example, dynamic features complement the

permission features very well, whereas, our experiments showed that some feature

categories introduce redundancy when combined with others.

Despite the promising performance of machine learning-based malware detection sys-

tems, ensuring the reliability and robustness of these systems remains an important

issue. Specifically, the recent discovery of sophisticated evasive techniques to break

detection systems makes this an attractive research topic. For example, a machine

learning-based system can be evaded through adversarial samples crafted by carefully

modifying a previously developed malware. A successful adversarial sample is able to

go undetected by a detection system even though the original version was correctly

identified by the same system. Though adversarial retraining is proposed as a defense

mechanism against these attacks, using an excessive number of arbitrary samples

for retraining can further lead to performance degradation since the model starts to

over-fit. Existing works choose the samples in a random manner, which often leads

to a sub-optimal choice of the samples for retraining. Selecting an appropriate set

of samples that will make a system resilient and significantly enhance the detection

performance is a major research challenge here.
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Moreover, class-balanced datasets used in most prior studies reflect an unrealistic as-

sumption since in the real world benign applications outnumber malware samples by

a significant margin making the actual data distribution highly imbalanced. As a re-

sult, imbalanced data handling ability is one of the primary requirements for a robust

detection system. Existing techniques in the literature cannot be applied here since

they modify features randomly and generate invalid samples with broken functionality

[16, 17]. Therefore, a customized data balancing technique for generating synthetic

malware samples preserving valid functionality is required. Additionally, combining

algorithm-level techniques with the data balancing for improved performance needs

to be investigated.

1.2 Research Objectives

The principal aim of this research is to design a robust mobile malware detection

system. Considering the various research opportunities outlined in previous sections,

the following major research objectives were identified:

1. Systematic investigation of the characteristics of individual feature categories

and their impact on mobile malware detection. Additionally, extract the con-

textual information, embed it in the feature space, and examine its effect on

classification performance. This objective leads to the following research ques-

tions:

RQ-1: How does combining different categories of features affect classifier per-

formance, and which combination provides the best performance?

RQ-2: Does embedding contextual information into the feature space improve

classifier performance?

2. Addressing the vulnerability of malware detection systems to adversarial attacks

and formulating strategies to make a malware detection system robust against
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such attacks. The corresponding research questions addressed this objective:

RQ-3: What are the adverse effects of adversarial samples on a malware de-

tection system?

RQ-4: How to selectively choose samples for adversarial retraining to make

classifier robust against adversarial attacks?

3. Handling imbalanced data problem while avoiding generation of invalid syn-

thetic samples. The research questions pertaining to this objective are:

RQ-5: How to balance the data with valid synthetic malware samples that

preserve code functionality?

RQ-6: Can the performance be improved by a hybrid method combining the

novel synthetic sampling in training set preparation and a dynamic cost schema

in model training?

1.3 Research Methodology

This section describes the overall research methodology that will be undertaken in

this work to address the above-mentioned objectives.

1.3.1 Dataset Collection

To validate our proposed approaches through experiments, publicly available datasets

will be used and for completeness, more recent and newer samples will be collected.

For this purpose, the most prominent datasets used in mobile malware detection

research (i.e., Malgenome and Drebin [14, 18]) will be used and processed to make

them usable for machine learning models. However, these datasets contain only a

small portion of recent malware. Hence, the Androzoo [19] tool will be used to obtain

a more recent set of samples and they will be processed accordingly. Section 2.6

describes the characteristics of the datasets in detail.
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1.3.2 Feature Extraction

Since our first research objective addresses the impact of different feature categories

on mobile malware detection, an exhaustive list of static and dynamic features from

different categories will be extracted in our work. Section 3.1 discusses the feature

extraction process and the characteristics of different feature categories in detail.

1.3.3 Innovative Model Design and Evaluation

Our research will adopt innovative approaches to achieve the research objectives.

For example, to tackle adversarial attacks, we will explore the possibility of using

a selective sampling mechanism that finds out the best possible set of adversarial

samples which will be used to retrain a machine learning model to make it robust.

Additionally, we will explore designing an innovative over-sampling method and/or

modification of machine learning algorithms to better handle imbalanced data prob-

lem. The well-known stratified 10-fold cross-validation [20] approach will be used

for performance evaluation. A range of widely used performance measures including

accuracy, recall, F1-score, and G-mean will be used for quantitative analysis. Section

2.8 defines the performance measures used in this thesis. Additionally, the Wilcoxon

Signed-Rank Test [21] will be used to verify the statistical significance of the improve-

ments achieved by our proposed approaches compared to recent competing methods.

1.4 Overview of Contributions

To accomplish the major research objectives mentioned in Sec. 1.2, this work presents

a number of original contributions as illustrated in Fig. 1.1. The individual contri-

butions are divided into blocks that work towards a robust mobile malware detection

system. Block 1 in Fig. 1.1 represents the works for Objective 1 which investigates

the individual feature categories and identifies the combination that provides the

best detection performance. Knowledge from this contribution provides the baseline
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Figure 1.1 An illustration of the overall contribution of this thesis.

for later works. Block 2 represents our contribution to making a mobile malware

detection system robust against adversarial attacks. Block 3 outlines the works for

Objective 3 which addresses the imbalanced data problem. The overall contribution

of this thesis is elaborated on below:

1. A comprehensive investigation of the impact of various feature categories in

mobile malware detection is presented. The best combination of feature cate-

gories the is, the combination that best enhances the performance of a machine

learning-based malware detection system is identified in the process. Addition-

ally, we incorporated contextual information of API call feature into this work.

Contextual information can provide additional knowledge regarding the usage of

certain features and application behavior. Existing works use contextual infor-
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mation in an isolated manner which is not suitable for use in combination with

other features. We formulated a mechanism that embeds this contextual infor-

mation into the feature space. This facilitates the usage of this information in

combination with other feature categories, further improving the performance of

a malware detection system. We found ICC feature category adds redundancy

to the feature space and degrades classification performance when compared

with other feature categories. Findings from this work have been published in

[22] and [23].

2. An improved selective adversarial retraining strategy is proposed to achieve

resilience against adversarial attacks. It is shown that if too many adversarial

samples are used for retraining, as has been done in the prior works, the model

starts to over-fit and performance degrades. Hence, careful selection of the

samples used for retraining is required. To address this issue, two different

approaches are proposed. First, a sample selection strategy is proposed based on

their distance from malware and benign cluster center. Second, a kernel-based

selective sampling technique is proposed to identify the adversarial samples that

have a higher probability of being incorrectly classified. Experiments show that

using the kernel-based samples for retraining improve detection accuracy by

6% compared to the existing random selection-based techniques and makes the

classification system robust against such attacks. This work has been published

in [24] and [25].

3. With a view to handling imbalanced data for mobile malware detection, a hy-

brid of data-level and algorithm-level method is proposed. For data balancing,

a novel malware over-sampling technique is formulated that generates synthetic

malware samples with valid functionality, thereby mitigating the issues of prior

works. This technique improves the fuzzy set theory-based over-sampling tech-

nique as it does not generate invalid samples as in [16]. Further, we devised a

cost schema that dynamically assigns weight to the minority class samples (i.e.,
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malware) which simultaneously counters the bias of the classifier towards the

majority class and reduces model instability. This technique provided a 9% im-

provement in terms of F1-score compared to existing techniques. The findings

from this work have been published in [26].

1.5 Organization of the Thesis

The overall organization of this thesis is outlined below.

Chapter 2 presents an overview of the relevant research works in mobile malware

detection. The operating system and application structure of the most popular

mobile platform (Android) is presented to demonstrate the particular character-

istics of this domain. Different machine learning tools used for mobile malware

detection models are discussed. A detailed study of the feature categories is

presented. Related research works associated with these feature categories are

also presented and their limitations identified. Advanced evasive techniques that

break down malware detection systems are discussed and the scarcity of relevant

works in this domain is highlighted. The inapplicability of existing techniques is

evidenced and the necessity of domain-specific research is established.

Chapter 3 shows the characteristics of individual feature categories for mobile mal-

ware detection. It investigates classification performance using all possible com-

binations of the feature categories and identifies the combination that provides

the best results. It also details our proposed technique for embedding the con-

textual information into the feature space. Performance improvement is verified

through extensive experimentation. This achieves our first objective and provides

the baseline for subsequent works.

Chapter 4 presents the works related to our second research objective. It illus-

trates a robust defense technique against adversarial attacks through intelligent

adversarial retraining. We proposed two novel sample selection strategies in this
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chapter to find the best possible subset of adversarial samples for retraining. De-

tails of these strategies are described in this chapter. The increased robustness of

the resulting detection model compared to the random selection used in previous

work is demonstrated through experimental results.

Chapter 5 presents the works for our third research objective. It investigates the

imbalanced data problem for mobile malware detection systems and proposes

a hybrid of data-level and algorithm-level technique. The detail of our novel

synthetic malware over-sampling strategy is presented here. At the algorithm

level, a dynamic cost schema is proposed and how it automatically adjusts the

minority class weight based on validation class performance is presented. The

results of extensive experiments with different levels of data imbalance are shown

to validate the performance improvements.

Chapter 6 concludes the thesis by summarizing the overall contributions and dis-

cusses new research directions based on the findings from this work.
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Chapter Two

Literature Review

As highlighted in Chapter 1, designing a robust malware detection system for mobile

platforms is the primary research goal of this thesis. The mobile platforms include

smartphones, tablets, and other hand-held devices which are increasingly being used

for work purpose as well as personal use. [27–32]. Among different mobile operating

systems including Windows and iOS, Android is currently the most popular oper-

ating system for smartphones and hand-held devices [33–37]. Research in [38] and

[39] showed that there are two billion Android devices active monthly and this has

allowed the Android system to capture more than 80% of the mobile operating system

market. Hence, this work focuses on the Android platform. However, the techniques

proposed in this work are equally applicable to other platforms. The following section

describes Android operating system and its application structure. This is followed

by a discussion on mobile malware, their types, and their propagation techniques.

Thereafter, a detailed review of the existing works on mobile malware detection is

presented and their limitations discussed.
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2.1 Android Operating System

Figure 2.1 shows the architecture of the Android operating system. Android OS is

written in Java and C/C++. It has five major sections:

Linux Kernel: The bottom-most layer of the Android OS is a modified Linux kernel.

It provides a level of abstraction between the device hardware and contains all the

necessary device drivers.

Libraries: This section sits on top of the Linux kernel and consists of a set of

libraries including WebKit for web browsing, SSL for internet security, and SQLite

for database management.

Android Runtime: This section provides a key component called Dalvik Virtual

Machine, which is a modified java virtual machine specifically designed and optimized

for Android applications. This enables every Android application to run in its own

process sandbox. This section also provides some core Android libraries that are used

by developers to write Android applications.

Application Framework: The application framework section provides many high-

level services to Android applications in the form of java classes. Application devel-

opers can use these services in their applications.

Applications: All the applications that are used by the user sit in this layer. When

a new application is installed it gets added to this layer.

An Android application is generally written in Java code which is then compiled

to Java bytecode. This bytecode is further converted to Dalvik executable that is

optimized for Android platforms and can be executed in the Dalvik Virtual Machine.

In the following section, we present the structure of an Android application (app)

which will be useful to understand the feature extraction process for malware detec-

tion.
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CHAPTER 2

Background

2.1 Overview of Android OS

In the Figure 2 [5], the Android software stack items in green are the written

in C/C++ and the blue ones are written in Java which executed using the Dalvik

VM [5]. Here the Android Linux Kernel is a modified Linux Kernel which includes

features like wake locks (memory management for optimizing the memory consump-

tion), Binder IPC Drivers and other features which play a key role in mobile embed-

ded platform [21]. The libraries item plays a vital role in optimizing CPU, memory

consumption as well as the audio and video codecs for the device.

Figure 2: Android architecture

Android runtime is the managed runtime that is capable to compiling Android

applications during the installation time. This component comprises of Dalvik vir-

tual machine and core libraries of Java. During an Android application compilation,

the Java bytecode is converted into Dalvik bytecode (Dalvik executable code) using

dx tool, which is executed on Dalvik virtual machine. The classes.dex file consists

4

Figure 2.1 Android OS architecture [40]

2.2 Android Application Structure

Figure 2.2 shows the structure of an Android application. These applications are

stored in a compressed format known as Android PacKage (APK) file. This is a zip

file consisting of Dalvik bytecodes (classes.dex files), compiled and plain resources,

assets (e.g., music, texts), and XML manifest file. Dalvik bytecodes is the source

code of the app compiled and optimized for Android systems. The resources folder

contains graphics, strings, and screen layouts. The complied resources folder contains

the compiled binary version of the files in the resources folder. The native libraries

folder contains the outer libraries required for the app and the assets folder contains

other files required in their raw format. Signatures and certificates are also included
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Figure 2.2 Android Application Structure

in the application package to verify the application and the developer. Finally, the

androidmanifest.xml, also known as the manifest file, specifies the meta information

such as, requested permission and application components.

Android applications are made of four kinds of components that serve different pur-

poses. These components must be declared in the manifest file before they can be

used in the code. Following is a brief description of these components.

Activity: Activity is the component that interacts with the application users. It

presents the user interface and takes different commands through the interface.

Service: Services are used to perform tasks in the background. Generally, computation-

intensive tasks are performed through the services.

Content Providers: Content providers are used for sharing data among the appli-

cations. This data can be application-specific or system generated.

Broadcast Receivers: Broadcast receiver of an application is the component used to
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receive broadcast message objects from other components. An application can register

broadcast receivers to listen to various events including the battery level change, the

screen shut off, and change in the network level. These events are broadcast through

objects known as intents.

2.3 Mobile Malware Types

The first malware attack for mobile systems was reported in 2004 for Symbian OS [41].

However, due to the ever-increasing popularity of Android system since its launch

in 2007, it has become the most popular target operating system among malware

attackers, with new attacks being launched every few weeks [41–47]. Below we briefly

describe the types of malware targeting Android systems.

Trojans and viruses. Trojans are malicious applications that appear like legitimate

apps. When executed, they can cause severe damage to the system [48]. Trojans are

one of the major threats to the Android system since they take control of the system

and steal critical information such as banking information, credit card numbers, and

contacts. Some versions of Trojans can take root control (elevated access) of the

system and gain unauthorized access to sensitive files and memory.

Spyware and adware. Spyware applications secretly steal user information and

upload them to the attacker that may later be exploited for financial gain or future

attacks [49]. This user information is also used by adware: a form of malware that

shows intrusive advertisements and notifications on the screen [50]. These malware

applications cause privacy leaks and often get installed by disguising themselves as

legitimate apps.

Phishing apps. Phishing apps use the same principles as web phishing and uses

them on mobile websites and apps [51]. These apps covertly steal user information

such as account passwords and credit card details. Some Trojanized apps also use

phishing schemes disguising as system updates or gaming applications.
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Botnets. Botnets are networks of devices infected with malicious apps known as bots

[52]. Through bots, attackers can take control of many infected mobile devices over

a network. This network of devices can be used to launch powerful and sophisticated

attacks to commit digital crimes.

2.4 Propagation of Malware

Android malware uses various sophisticated methods to propagate through mobile

devices [53]. Below we list the most commonly used Android malware propagation

techniques.

Infected apps and websites. The most common way to spread mobile malware is

through infected apps and malicious websites. Malware developers repackage popular

apps with hidden malicious activities. Additionally, malicious websites exploit system

vulnerabilities for malware propagation.

Third party app store. Third-party app stores have less security as compared

to the official ones. These third-party app stores are one of the main platforms for

malware developers to distribute malicious apps. Most of the repackaged apps are

found in these app stores with appealing offers (e.g., paid functionalities unlocked) to

lure users into installing them.

Spams. Spams are another widely used technique for malware propagation. An

attacker sends emails to users with attractive offers that contain malicious links. A

device gets infected once an unsuspecting user clicks such links.

Adware. Adware applications display appealing on-screen ads to mobile users.

Sometimes these ads are targeted based on user’s information collected by other

malicious software. When clicked, these ads can take a user to a malicious site or can

exploit other vulnerabilities.

Worms. Worms have self-propagating functionality. Once a device is infected, a
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worm can propagate to other devices through different vulnerability-exploits.

Dynamic loading and fake update. Some malware apps keep their malicious

functionality hidden before installation. When installed, it loads the malicious codes

through dynamic loading. Fake update is another way to load malicious codes. The

application appears to perform a necessary update while the device gets infected in

the background.

2.5 Machine Learning Techniques in Mobile Malware

Detection

As mentioned previously machine learning models have been widely deployed for

automated malware detection systems due to the infeasibility of manual inspection

for various reasons. Also, we have seen from the current literature that researchers

have adopted a variety of machine learning models for malware detection systems.

Most notable among them are Support Vector Machine (SVM), K-nearest neighbors

(KNN), Decision Tree, and Random Forest. Additionally, Deep Neural Networks

(DNN) based detection systems have gained recent popularity among the malware

researchers due to their promising performance in different fields such as voice recog-

nition, image classification, object detection, and pattern matching [25, 54–79]. We

have also used the deep neural network-based classifier in our experiments along with

other classifiers. Below we describe the various machine learning models most com-

monly used for malware detection systems.

Deep Neural Network (DNN)

A neural network is a machine learning architecture that is structured with layers

of neurons which are the primary computing units of the network. Multiple hidden

layers between the output and input layers make a neural network deep allowing more

complex relationships among the features to be modeled. The input layer takes the
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Figure 2.3 RBM with n hidden and m visible units in two layers (b = biases
for visible units, c = biases for hidden units, w = connection weights)

feature vectors as input. Each subsequent layer of the network takes input from the

previous layer and transforms it into some abstract representation which is fed as the

input for the next layer. The network hierarchically extracts complex relationships

among the features through the learning process. Deep neural networks were popu-

larized by Hinton et al. who showed the fundamentals of the training process of a

Deep Belief Network (DBN) in [80]. DBN architecture is constructed from multiple

layers of Restricted Boltzman Machines (RBMs) [81]. An RBM consists of a visible

layer and a hidden layer where each node in the visible layer is connected to every

node in the hidden layer. The energy function of the network is given by

E = −hTWv − cTv − bTh (2.1)

where W is the matrix representing the weights of connections between visible and

hidden layer, v and h are vectors representing data on the visible unit and the hidden

unit respectively, b and c are the bias vectors for two the layers. The activation

probability of visible and hidden units are given by
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p(hj = 1|v) = sig(bj +Wjv) (2.2)

p(vi = 1|h) = sig(ci + hTWi) (2.3)

where i is the index of a visible unit and j is the index of a hidden unit. Here, sigmoid

function (sig()) is shown as example of the activation function for the nodes. Several

other activation functions are also used, REctified Linear Unit [82] (RELU) is another

popular activation function in this regard.

Figure 2.3 shows an RBM structure with n hidden and m visible units. Multiple

RBMs are stacked on top of one another to construct a DBN where the hidden

layer of the first RBM serves as the visible layer of the second RBM and so on. After

training each of the RBMs individually DBN fine-tunes the parameters through k-step

Constructive Divergence (CD-k) method [83] where the gradient θ of the log-likelihood

of one training pattern v0 is approximated by the following equation

CDk(θ,v
0) =

∑
h

p(h|vk)δE(vk,h)

δθ
− p(h|v0)

δE(v0,h)

δθ
(2.4)

To update the connection weights, first, the positive gradient denoted by vhT is com-

puted. Afterward, using the previous activation h, subsequent visible and hidden

layer activation is computed denoted by v′ and h′ respectively. Thereafter, the neg-

ative gradient v′h′T is computed and the weights of the network are updated using

the following equation

∆Wij = α(vhT − v′h′
T

) (2.5)

here α denotes the learning rate.
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Figure 2.4 Illustration of an SVM classifier. Dashed line represents a can-
didate hyper-plane while the solid line represents the optimal hyper-plane.

Support Vector Machine (SVM)

Support vector machine is based on the statistical learning theory developed by Vap-

nik [84]. It is a supervised learning algorithm that categorizes samples by calculating

a separating hyper-plane.

A hyper plane in an n-D feature space can be represented by the following equation:

f(x) = xTw + b =
n∑
i=1

xiwi + b = 0 (2.6)

where x and w are n-dimensional vectors and b represents intercepts of the vertical

axes. Dividing by ||w||, we get

xTw

||w||
= − b

||w||
(2.7)

indicating that the projection of any point x on the plane onto the vector w is always

−b/||w||, i.e., w is the normal direction of the plane, and |b|/||w|| is the distance from

the origin to the plane. Note that the equation of the hyper plane is not unique.

The n-D space is partitioned into two regions by the plane. Specifically, we define a

mapping function y = sign(f(x)) ∈ {1,−1},

f(x) = xTw + b =

 > 0, y = sign(f(x)) = 1, x ∈M

< 0, y = sign(f(x)) = −1, x ∈ B
(2.8)
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Any point x ∈ M on the positive side of the plane is mapped to 1 (i.e., malware),

while any point x ∈ B on the negative side is mapped to -1 (i.e., benign). A point x

of unknown class will be classified to M if f(x) > 0, or B if f(x) < 0.

Non-linear Separability

Figure 2.4 shows a simple classification scenario for SVM where the samples are

linearly separable. The dashed line represents a candidate hyper-plane whereas the

solid line optimizes the separation margin between the two classes. In case of a more

complex scenario where samples are not linearly separable, SVM maps the data into

a higher dimensional feature space where constructing a separating hyper-plane is

more feasible. Table 2.1 shows some popular kernels used for this purpose.

Table 2.1 Popular support vector machine kernels

Kernel Expression Comment
Polynomial K(x, z) = (xTz + 1)d Maps the original

n-dimensional samples to
nd dimension

Gaussian K(x, z) = exp(−‖x−z‖
2)

2σ2 σ demotes the standard
deviation of the sample
points.

RBF K(x, z) = exp(γ‖x− z‖2) , γ > 0 ‖x− z‖ denotes euclidean
distance and γ is a free
parameter used to control
over-fitting

K-Nearest Neighbors (KNN)

KNN [85] is a very popular classification technique for its simplicity and its highly

competitive performance. KNN is a non-parametric and lazy algorithm in that, it

does not make any assumption about the structure of the data rather the structure is

derived from the data itself, and also, it does not do any kind of generalization using

the training data. KNN works based on a majority voting scheme for classification.

To classify a new sample KNN will inspect the class label of its k nearest neighbors
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Figure 2.5 K-Nearest Neighbors classifier. Yellow dot represents an un-
known sample which is classified as malware based on the majority voting
from its nearest k(=5) neighbors.

based on some distance measure (i.e., Manhattan, Euclidean, Minkowski). The new

sample will be assigned to the class which is most common among those nearest

neighbors. Figure 2.5 illustrates the working principle of a KNN classifier. Here, the

algorithm considers 5 nearest neighbors of a sample for the majority voting scheme.

In Fig. 2.5, red dots represent malware samples and green dots represent benign

samples. The yellow dot is an unknown sample that is classified as malware since 3

of its 5 nearest neighbors are malware.

Decision Tree

A decision tree is a data structure that looks like a tree consisting of nodes and leaves

representing attributes and class labels respectively. Each node in the tree selects an

attribute to split the data into two subsets that become two branches of the node.

To classify an unknown sample the tree is traversed according to the feature value to

the samples until a leaf node is reached. The sample is classified as per the label of

the leaf node.

Random Forest

Random forest (RF) [86] is an extension of decision tree classifiers that fits many

classification trees to a dataset and combines them to predict an outcome in response
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Figure 2.6 Decision tree classifier. Each node subdivides the tree based on
a particular feature until a leaf node (decision) is reached.

to an input. The RF algorithm starts off by choosing many bootstrap samples from

the data. Approximately 63% of typical bootstrap of the original observations occurs

at least once [87]. However, those observations in the original data that do not occur

in the bootstrap sample are called out-of-bag observations. A classification tree is

mapped to each bootstrap sample. However, each considers only a small number

of randomly chosen variables for the binary partitioning. Lastly, the trees will be

fully grown and each will be utilized to predict the out-of-bag observations. The

calculation of the predicted class of an observation is based on the majority vote of

the out-of-bag predictions for that observation, with the ties split randomly.

2.6 Dataset

Malicious application sets for research and experimental purpose is mainly obtained

through research communities such as Contagio database and Virustotal [88, 89].

Some researchers also collect and share datasets on request such as the Malgenome

dataset [18]. However, the most prominently used dataset in Android malware re-

search is the Drebin dataset [14] which is available to the researchers upon request

and used by most of the major works in Android malware detection [54, 56, 90–98].

The key characteristics of this dataset are listed below.
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Figure 2.7 Random forest classifier. The final outcome of the classifier is
based on majority voting from a collection (forest) of trees.

• The dataset comprises of 5,560 malware and over 120,000 benign applications.

• The samples in the dataset have been collected from August 2010 to October

2012.

• It provides the static features extracted from the samples including permission,

API calls, and Android activities.

Due to its prominence in the research community, we also used this dataset for our

work. Additionally, samples from Androzoo [19] were included to account for more

recent malware techniques that are developed between 2016 and 2019. Further pro-

cessing for specific experiments was conducted which are described in their due course.

2.6.1 Data Pre-processing and Cleanup

Even though the Drebin dataset provides the extracted features along with the mal-

ware application files, we have noticed a lot of noisy data in the feature vectors. For
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example, some applications record an API call feature with the name of ’;’ (a single

semicolon). Since these features are extracted by parsing outputs from older versions

of third party static analysis tools, it is possible that these noises were generated

during the analysis or the parsing phase. To mitigate this, we extracted features for

these files with more recent and advanced analysis tools. However, the dataset con-

tains some very old application files which became obsolete since none of the current

execution environments (mobile or emulator) will accept them. These applications

either raised exception during the analysis phase or resulted in empty feature files

and were consequently removed from the dataset. A similar process was conducted

for Androzoo dataset for double-checking however, it did not create much of an issue

since most of the files are very recent. We extracted both static and dynamic features

for all the files and the specifics of feature extraction and vector creation are described

in the next Chapter.

2.7 Tools for Extracting Features from Applications

Several tools are available for extracting static and dynamic features from a mobile

application. These are commonly known as reverse engineering tools. In the following,

we describe some of most popular reverse engineering tools for Android applications.

2.7.1 Static Feature Extraction Tools

Apktool [99] is one of the most popular tools for extracting static features from

an Android application. It is a Java programming language-based tool that can

decompile an APK file and decode its resources. As the APK files are nothing but

a compressed zip file, traditional software can be used to unzip its resource files

such as AndroidManifest.xml, classes.dex and META-INF files. However, the files

are encoded and cannot directly be used for analysis. Apktool can decode these

files and make them readable. The decoded AndroidManifest.xml file can be used to
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extract various features such as permission, Android activities, Intents, and Broadcast

receivers while the classes.dex files can be used to extract API calls and call graphs.

Androguard [100] is another reverse engineering tool for static analysis developed by

Google and gaining more popularity for its sophistication and ease of use. While

the files decoded by Apktool needs to be manually parsed, Androguard does this

automatically for feature extraction.

2.7.2 Dynamic Feature Extraction Tools

For dynamic feature extraction, the application needs to be executed either on an

actual device or an emulated environment. Cuckoodroid [101] is one of such tools for

automatic dynamic analysis of Android apps. It executes an Android application on

a sandboxed environment and monitors its dynamic behavior. However, in our work,

we implement our own dynamic analysis system for greater flexibility. We executed

the apps on an emulator [102] and logged the system calls while random events were

generated using the Monkey Tool [103] during the execution.

2.8 Performance Metrics for Malware Detection Sys-

tems

Several performance metrics are used for machine learning-based malware detection

systems. Below we describe the most widely used performance measures along with

their formulae. In the following equations, TP is the number of true positives, i.e.,

malware accurately predicted; FP is the number of false positives, i.e., benign apps

that were predicted as malware; TN is the number of true negatives, i.e., benign apps

accurately predicted and FN is the number of false negatives, i.e., malware that were

predicted as benign apps.
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Accuracy: Accuracy is the measure of how accurately a classifier can detect malware

and benign applications:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (2.9)

Precision: Precision indicates the percentage of actual malware among the apps

that are classified as malware:

Precision =
TP

TP + FP
× 100% (2.10)

Recall: It indicates the percentage of malware that were correctly classified. It is

also known as sensitivity or true positive rate:

Recall =
TP

TP + FN
× 100% (2.11)

Specificity: It is also known as true negative rate. It indicates the portion of actual

benign apps that are correctly identified.

Specificity =
TN

TN + FP
× 100% (2.12)

G-mean: The geometric mean (G-mean) is the square root of the product of class-

wise sensitivity. This measure tries to maximize the accuracy of each of the classes

while maintaining a balance.

G-mean =
√
specificity × sensitivity (2.13)

F-score: F-score is a measure of accuracy that tries to balance the precision and

recall by calculating their harmonic mean.

F1-score = 2.
P recision×Recall
Precision+Recall

(2.14)

ROC curve and AUC: Receiver Operating Characteristic (ROC) curve and Area

Under the Curve (AUC) are two of the most commonly used performance measures for
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Figure 2.8 Example of an ROC curve and AUC.

machine learning models [104–106]. These two measures give a visual description of

the model’s performance. Figure 2.8 shows an example of an ROC curve and AUC.

ROC is a probability curve that illustrates the classifier’s capability to distinguish

between the samples of different classes while AUC is a probability measure that

represents the area under the ROC curve. For example, an AUC value of 0.8 means

that the area under the ROC curve is 0.8 and there is an 80% probability that the

model will be able to distinguish between benign and malware samples.

2.9 Mobile Malware Detection Systems Based on Fea-

ture Categories

The analysis techniques of machine learning-based malware detection can be classi-

fied into two types: static and dynamic, dealing with static and dynamic features

respectively [107]. The static features can further be divided into three categories

which will be described in Sec. 2.9.1. There is another approach known as hybrid

analysis that combines static and dynamic analysis techniques. Table 2.2 summarizes

the properties, advantages, and disadvantages of these analysis techniques. Below we
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Table 2.2 Summary of Android malware detection techniques based on fea-
ture types.

Analysis technique Properties Advantage Disadvantage
Static analysis Requires to

disassemble and
decode the files from
the application
package. The decoded
files are then parsed to
extract static features.

Does not require
the application to
be executed. It is
computationally
less expensive and
relatively faster.

Vulnerable to several
attacks including
code obfuscation and
dynamic code
loading.

Dynamic analysis Requires an
application to be
executed in a real or
emulated environment.
Different events are
generated to emulate
run-time behavior
which is dynamically
logged for extracting
the features.

Suitable for
detecting attacks
such as code
obfuscation and
dynamic code
loading.

Requires the
application to be
executed. Sometimes
can fail to detect
dynamic attacks due
to the corresponding
events not being
generated during the
analysis phase.

Hybrid analysis Combines the features
extracted from static
and dynamic analysis
in an intelligent
manner.

Can cover a wide
range of attacks in
both static and
dynamic
situations.

The process is
complex and it is the
most
computationally
expensive analysis
method.

present the most notable works in the literature based on these techniques.

2.9.1 Static Analysis

Static analysis methods find malicious activities in an application by analyzing the

application binary and code without actually running the application [108–110]. For

static analysis, the Android Application Package (APK) file (described in Sec. 2.2) is

disassembled and its different components are parsed to extract the features. Static

features of an Android application can be divided into three categories: permission,

Application Programming Interface (API) calls, and Inter Component Communica-

tion (ICC) features. These features are extracted from the androidmanifest.xml and

classes.dex files included in the APK package.

Different works have considered different categories of features to develop static mal-
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ware detection systems. In [10] Aiman et al. introduced a basic categorization system

for Android applications. The work extracted the permission of the applications and

studied two categories of application: business and tools. The work classified the

applications by applying the k-means clustering algorithm and achieved 71% recall

rate.

In [11] Suleiman et al. proposed a Bayesian classifier based mobile malware detection

system. The work extracted permission features from a dataset of 2000 samples and

achieved an overall accuracy of 93%. Veelasha et al [12] proposed a technique that,

in addition to the requested permissions in the manifest file, analyzed the application

code to extract the permissions that were actually used in the code. Applying a

data mining approach, the work found contrasting properties between the patterns

of requested and used permission. The work concludes that these contrasts among

benign and malware applications can be useful for malware detection. However, the

major drawback of the above approaches is that they only considered the permission

feature category. These methods were effective for the early generation of malware

apps since they often tried to gain over-privilege by requesting more permissions

than necessary. However, later malware applications came with smarter techniques

to conduct malicious activities. As a result, later approaches additionally considered

different other feature categories.

Li and Li in [13] proposed a static analysis method that focused on the Android code

organization. It first parsed the classes.dex file to extract the API calls and afterward

built a characteristic tree based on the usage and calls of those APIs. It devised a

novel method for analyzing similarities among these trees and proposed that it could

be useful for malware classification since malware samples have similar characteristics.

The work, however, did not report its performance in an actual malware detection

scenario.

Drebin [14] is another static analysis method that included a wide range of static
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features for malware detection. The work categorized the static features extracted

from an application into eight sets: hardware features, requested permissions, app

components, filtered intents, restricted API calls, used permissions, suspicious API

calls, and network addresses. Using an SVM classifier, the work achieved an overall

accuracy of 94%. Drebin is one of the most prominent works in the literature that

extensively considered a broad range of static features including permission, API calls,

and ICC. However, since it did not consider the dynamic behavior, it is vulnerable to

code obfuscation and dynamic code loading attacks [111].

In addition to extracting the API calls, further information about the behavior of

an application can be obtained by analyzing the context of an API call. Android

systems rely heavily on call back methods. These call back methods are related to the

events that cause an API function to be invoked. For example, an API method (e.g.,

sendSMS()) could be called when a user clicks on a button. In this case, a call back

method such as “onClickListener" will be tied to the button click event and sending

SMS will be handled by this callback method. On the other hand, in a potential

malicious case, the same API could be called based on some system-generated event

such as a change in the signal strength. In this case, the SMS will be sent in a different

context and handled by a different callback method (e.g., a broadcast receiver). In

the above scenario, the user is aware of the first call but unaware of the second. These

are known as contextual information and a detailed discussion on this is presented

in Sec. 3.3. A few works in the literature considered this contextual information for

malware detection.

AppContext [112] proposed a method that analyzed the call graph of an application

to trace back the entry point of the API calls. These entry points are related to

the activation events of an API call. It also extracted the associated environmental

information such as if a database query is made or if the system time is obtained

before an API call. All this information was encoded to construct a feature vector. It

then used an SVM based classifier to identify maliciousness of an API call. Though
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the work reported a 95% recall rate, the dataset used in the work is fairly small (only

202 malicious apps) and the method is very expensive computationally. Moreover,

the work poses a 5MB file size constraint making it very unlikely to be applicable in

real-world scenarios.

Narayanan et al. [113] introduced a graph similarity-based approach for malware

detection based on API and contextual information. The work first obtained the call

graph of an application where each node in the graph represents an API call. It

then traced the activation events of these API calls which were used to determine the

context, i.e., whether the user was aware or unaware of the call. Each node of the

graph is then re-labeled based on this contextual information. A contextual graph

kernel is then computed from this labeled graph and unknown samples are classified

according to the similarity of the graphs. The work was further improved in [114]

that considered multiple views of the graph in addition to the API dependency graph

such as, permission dependency graph and information source-sink graph. The later

work reported an overall accuracy of 98%. One major difference of their works from

others is that they considered the structural information of the application. However,

capturing all the structural information is an overwhelmingly difficult task due to the

heavy reliance on call-back methods and execution jumps of Android applications.

Moreover, the execution structure can easily be changed for applications by simply

altering the execution order, or using code obfuscation and dynamic code loading

techniques which will render this type of detection method ineffective.

The third category of static features is known as Inter Component Communication

(ICC) features. In Sec. 2.2 we described the different components of an Android ap-

plication. ICC mechanism allows these components to communicate with each other

which is known as Inter Component Communication. The communicating compo-

nents can be from the same or different application(s). Android operating system

facilitates this ICC communication to enable the reuse of codes so that the function-

ality of a component can be used and shared by others. This reduces the burden from
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the application developers [115]. However, researchers have found that malware may

abuse this ICC mechanism to evade detection and to conduct malicious attacks (e.g.,

collusion attacks) [116–119]. Different tools like Amandroid [120], Epicc [121], and

IC3 [122] have been developed to extract the communicating components (sources

and sinks) using ICC mechanism within an Android application. There are also tools

like IccTA [123] that identify taints of ICC leaks by constructing precise control flow

graphs.

ICCDetector [15] is a technique that proposed detection of malicious applications us-

ing the ICC features. It designed a parser on top of Epicc [121] to extract ICC related

features such as component, explicit intent, implicit intent, and intent filters. The

method used an SVM to classify malicious behaviors and obtained 88.8% accuracy.

Feizollah et. al. in [124] considered “Android intents" (explicit and implicit) as ICC

features and combined it with required permissions. They argued that the “Android

intents" are semantically significant features that could be used to reveal hidden ma-

licious behaviors more effectively when compared to other features such as permis-

sions. Using the Bayesian Network algorithm the work evaluated different detection

approaches that considered the features separately and in combination and achieved

91% accuracy.

The methods considering ICC features are effective in revealing particular malicious

intentions such as information leaks and collusion attacks. However, they also add

redundancy in the feature space and adversely affect the classifier since all the com-

municating components are not related to security threats. Hence, we see that the

approaches in [15, 124] are outperformed when other features are considered in com-

bination with ICC.
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2.9.2 Dynamic Analysis

Dynamic analysis requires the application to be executed in a suitable environment

such as an actual device or an emulator [125–131]. During the execution of an appli-

cation, the dynamic behavior of the application is monitored, logged and analyzed.

Dynamic analysis can be used to detect attacks involving code obfuscation and dy-

namic code loading.

Different features are considered as dynamic within an Android system including An-

droid system calls, network communication properties, and run-time usage of system

components. Among these, system calls are the most commonly used features in

dynamic analysis [132–134]. Every application requests resources and services from

the Android operating system using system calls. For example, opening, reading or

writing files, reading connection status, etc. There are more than 250 system calls

available in Android operating system from Linux kernel [135]. Below we present the

works in the literature that adopted the dynamic analysis approach.

Xiao et al. [132] proposed a technique for malware detection based on the sequences

of system calls. The work trains two deep neural networks one for the malicious

class and one for the benign application class. When a new application is tested, two

similarity score is computed from these two networks and the application is classified

based on this score. The work obtained 93.7% accuracy.

Deep et al. [136] proposed an Android malware classification system that extracted

system calls as features. It computed the value of a particular feature based on its

Term Frequency-Inverse Document Frequency (TF-IDF) value [137]. In this method,

the system calls that occur more commonly in a particular class get higher values

and the ones that occur rarely get lower values. It also incorporated a Rough Set and

Statistical Test-based feature selection and was able to reduce the false positive rate

to 1% using Random Forest as the classifier.

Abderrahmane et al. [138] proposed a system call based Android malware detection
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system where each application is analyzed in a remote server. The server installs

and executes the application in a simulated environment and the system calls of the

application are logged during this execution time. The work considers system calls

from the Linux kernel and represents each of the applications by a 250× 250 matrix.

Each entry in the matrix represents the dependency of a pair of system calls based

on their distance on the execution sequence. The method reported 93.29% accuracy

using a deep neural network-based classifier

Afonso et al. [133] proposed a dynamic malware detection system that logs the

frequency of Android system calls to detect malicious behavior. The work evaluated

the performance of the system using different classifiers including Random Forest,

Naive Bayes, and Decision Tree, and was able to achieve 96.82% accuracy for malware

detection. The work however is limited to a certain version of API in Android system.

Crowdroid [135] was proposed by Burguera et al. that classifies malicious applications

based on dynamic behavior. It first installs an analyzing application in the device

which then attaches a tracing process (strace) to an application to log the system

calls. This log is sent to a remote server where K-means clustering algorithm is used

for classification. One major drawback of this system is that it requires the user to

install an additional application and also it is highly dependent on the number of

users using this application.

Marko et al. [134] developed the Maline system that extracted the system call se-

quence of an Android application. It recorded the frequency of each system call and

also formed a dependency graph among them based on their paired distance in a se-

quence. The work experimented with different classifiers including SVM and Random

Forest and achieved an overall accuracy of 96% on Drebin dataset.

Bhatia and Kaushal [139] proposed a system that also used system calls for malware

classification. The work applied Decision Tree and Random Forest as classifiers and

obtained 88% accuracy. However, the dataset considered in the work is very small

35



(only 50 malicious applications) and hence, the applicability of the system in real

scenarios needs to be evaluated.

Even though dynamic analysis is necessary for uncovering certain attacks such as

dynamic code loading and code obfuscation, the methods proposed here has some

major drawbacks. To reduce the risk of infecting an actual device, extraction of

dynamic features is performed within a sandbox or an emulated environment. There

are malware applications that can detect these execution environments and can evade

detection by hiding their malicious functionalities during the analysis phase. Also,

during the automated execution process, random events are generated to explore

different functionalities, execution sequences, and dynamic behavior of an application.

It is not always possible to exhaustively generate all the events so that each and every

execution sequence of an application is covered.

2.9.3 Hybrid Approach

Static analysis reveals a lot of information about an application including over-

privilege, security-sensitive operations, and information leaks. However, it fails to

detect code modification and intrusion of virus. Static analysis cannot capture dy-

namic loading methods because the corresponding code remains encrypted which is

decrypted and fetched in the memory during execution. This characteristic can also

be used by malware developers to evade static detection. Dynamic analysis, on the

other hand, can address these obfuscations, repackaging, and encryption attempts

since they are exposed during the execution time. However, dynamic analysis has its

drawback which is mentioned in the earlier section. As a result, malware researchers

have opted for hybrid methods that combine both static and dynamic analysis tech-

niques for a comprehensive analysis of an application.

Jang et al. [140] devised a hybrid approach considering both malware-centric and

creator-centric information. As features, it extracts certificate serial number, permis-
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Table 2.3 Summary of key works in mobile malware detection

Work Feature
types

Contribution Dataset Performance Limitations

Yerima et al.
[11]

Static (Per-
mission)

Proposed a bayesian
classifier-based system that
utilized permission features
for malware detection.

Malgenome Accuracy = 93%

Only considers
permission
features.
Vulnerable to
new generation
of malware.

Samra et al.
[10]

Static (Per-
mission)

Proposed a basic
categorization system of
Android application based
on k-means clustering and
permission features.

Personal Recall = 0.71

Ganesh et al.
[90]

Static (Per-
mission)

Designed a system that
sends data to a remote
server where it is
transformed into an image
format. Uses a
Convolutional Neural
Network (CNN) for
classification.

Personal Accuracy = 93% Classification
can be misled
during data
trasmission.

Karbab et al.
[94]

Static
(API)

Designed MalDozer system
that identifies malware
families by analyzing the
sequence of API calls.

Drebin Precision = 0.96
Recall = 0.96
F1-score = 0.96

Vulnerable to
code
obfuscation and
dynamic code
loading attacks.

Li et al. [91] Static
(API)

Utilized a weight-adjusted
deep learning technique for
malware detection.

Drebin Recall = 0.94

Hou et al. [142] Static
(API)

Developed AutoDroid that
extracts APIs from smali
codes and uses a Deep
Belief Network for malware
detection.

Personal Accuracy =
96.66%

Zhang et al.
[93]

Static
(API)

Presented
DeepClassifyDroid that
extracted five different
feature sets through static
analysis and used CNN for
malware detection.

Personal Accuracy =
97.4%
Precision = 0.97
Recall = 0.98
F1-score = 0.97

Nix and Zhang
[143]

Static
(API)

Extracted API call sequence
and used a CNN for
learning feature
representations which are
then used for classification.

Contagio Accuracy =
99.4%
Precision = 1.00
Recall = 0.98

Narayanan et
al.[114]

Static
(Context)

Utilizes graph similarity
that matches the
dependency graph of an
application with that of
benign and malicious
samples.

Personal Accuracy = 98% Considered
context in
isolation.
Cannot be
combined with
other feature
categories

Yang et al.
[112]

Static
(Context)

Devised a malware
detection technique that
extracted environment
information associated with
sensitive API calls.

Personal Accuracy =
94.8%

Considered
dataset is very
small. 5MB app
size constraint
limits its
applicability.

Xu et al. [15] Static
(ICC)

Proposed a technique to
detect collusion attacks
among malicious
applications by utilizing
ICC features.

Drebin Accuracy = 97.4 Only considers
ICC features.
Vulnerable to a
range of other
attacks.



Table 2.3 summary of key works cont.
Work Feature

types
Contribution Dataset Performance Limitations

Su et al. [54] Static (Per-
mission,
API)

Utilizes a deep belief
network for malware
detection using permission
and API call features.

Drebin Accuracy = 96% Vulnerable to
code
obfuscation and
dynamic code
loading attacks.

Li et al. [95] Static (Per-
mission,
API)

Applies a deep neural
network-based system on
required permission and
API calls for malware
detection.

Drebin Pecision = 0.97
Recall = 0.94
F1-score = 0.96

Considers a
very small
feature set.

Wang et al.
[144]

Static (Per-
mission,
API)

Uses a Deep Autoencoder
(DAE) to extract features
and a convolutional neural
network for malware
detection.

Personal Accuracy =
99.8%
Recall 0.99
F1-score = 0.99

Depends on the
DAE’s ablity to
extract
meaningful
features.

Arp et al. [14] Static (Per-
mission,
API, ICC)

Introduced an SVM based
malware detection system
that considered a wide
range of static feature
categories including
permission, API calls, and
ICC features.

Drebin Accuracy = 94% Constructs a
very sparse
feature space
than can lead to
over-fitting.

Jiang et al.
[145]

Static (Per-
mission,
API, ICC)

Introduced a fine-grained
dangerous permission
feature-based detection
system that identifies the
most dangerous features
and uses them for malware
detection.

Personal F1-score = 0.94
Recall = 0.94

Vulnerable to
dynamic
loading and
code
obfuscation
attacks.

Dimjašević et
al.[134]

Dynamic Proposed a malware
detection system based on
the frequency of system
calls and their dependency.

Drebin Accuracy = 96%

Exhaustive
coverage of
execution
sequences is not
feasible.

Martinelli et al.
[97]

Dynamic Utilizes a Convolutional
Neural Network on system
call sequences of
applications for malware
detection.

Drebin Accuracy = 95%

Liang et al.
[146]

Dynamic Considers system call
sequences as text and
detects malware by
extracting themes from the
text.

Personal Accuracy =
93.1%
Precision = 0.96
F1-score = 0.87

Vulnerable to
malware attacks
that can
suppress
activities in
emulated
environments.

Yuan et al.
[147]

Hybrid Proposed a hybrid feature
based malware detection
system that utilized
permission, sensitive API
calls, and dynamic
behaviors.

Malgenome Accuracy = 96.8 Uses coarse
grained
features.

Yuan et al. [55] Hybrid Introduced a deep belief
network-based hybrid
approach for Android
malware detection.

Contagio Accuracy = 96.5 Considers a
very small
feature set.

Alshahrani et
al. [98]

Hybrid Developed the DDefender
system that utilizes data
from a client-side
application for malware
classification.

Drebin Accuracy = 95% Requires
additional
application to
be installed.
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Table 2.3 summary of key works cont.
Work Feature

types
Contribution Dataset Performance Limitations

Vinayakumar et
al. [148]

Hybrid Proposed the use of a
Long-Short Term
Memory-based detection
system for Android malware
detection.

Personal Accuracy =
97.5%

Suffers from
long training
and
classification
time.

sions, API sequence, and the combination of system commands and forged files. For

classification, it computes the similarity score based on these features. It then matches

this score against a pre-computed score of benign and malicious behavior. The work

reduced the false-negative rate to 1.77%. However, there are a few drawbacks of such

approaches. Since it uses the serial number as a feature, the detection system can

potentially be broken by obtaining a new serial number. Also, malware creators can

alter the sequence of API calls to bypass the detection while being capable of carrying

out malicious behavior [141].

Tong and Yan [149] adopted another hybrid approach that dynamically collected the

data and statically analyzed them. The work first created a database for malicious

patterns and benign patterns by calculating the frequency and weight of sequential

system calls at different depths based on a prefixed threshold. Then it inspected the

system call sequences of the unknown app and matched them with a known signature

database. Decision was made based on whether the sequence matched the malicious

pattern or benign pattern. Kapratwar [150] designed a hybrid method taking the

permissions as static feature and system calls as dynamic feature. The work studied

different machine learning approaches including Decision Tree, Random Forest, and

Naive Bayes.

The above approaches evidenced that considering a hybrid of static and dynamic fea-

tures is more effective in malware detection rather than adopting a static or dynamic

approach on its own. However, these methods are evaluated in a small scale environ-

ment considering a minimal subset of the features and they are largely dependent on

the number of applications that are already analyzed to build their database.
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In table 2.3 we provide a summary of the most notable works in the literature de-

tailing their characteristics, key contributions, and performance. This concludes the

literature review pertaining to our first research objective. In the following, we review

an evasive attack technique, known as adversarial attack, which breaks classification

systems and challenges their robustness.

2.10 Adversarial Attack

Machine learning models can detect malicious applications with state-of-the-art per-

formance if an optimal combination of feature categories is provided. However, recent

literature shows than such detection systems can be evaded with attacks using ad-

versarial samples. Even though adversarial samples were first introduced to attack

machine learning classifiers in the image processing domain, similar principles can

be applied to evade malicious application detection systems as well. In this section,

we present an overview of the adversarial attack and defense against such attacks

proposed in the current literature.

2.10.1 Adversarial Samples

Adversarial samples are artificial samples that are crafted by introducing small per-

turbations to the original samples. Szegedy et al. [151] first discovered that several

machine learning models, including neural networks, are vulnerable to adversarial

samples. The authors showed that carefully introducing perturbations into an origi-

nal sample can mislead a machine learning classifier into misclassifying that sample.

This careful introduction of perturbation is different in several aspects from adding

random noise into the dataset which is traditionally used to make a machine learn-

ing model robust. Firstly, the perturbation is not introduced randomly rather it

is carefully calculated. Secondly, the purpose of introducing this perturbation is to

specifically mislead the classifier unlike random noises that may or may not affect the
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classifier performance. And thirdly, the perturbation is kept at a minimum so that

the crafted sample and the original are not easily distinguishable. Following the work

in [151], several other methods to craft such adversarial samples have been proposed

in the literature. Some of the notable works in this regard are described below.

2.10.2 Adversarial Sample Crafting Techniques and Defense

Mechanisms

Most of the approaches to craft adversarial samples suggest to minimize the distance

between the adversarial sample and the sample to be modified, i.e., minimize the

perturbation required to shift the classification to an incorrect class [152]. Szegedy et

al. [151] introduced a method to craft adversarial samples by minimizing the following

loss function

loss(f̂(x+ r), ŷ) + c.|r| (2.15)

where x is the original sample, ŷ is the desired outcome, r is the perturbation added to

the sample and c is a parameter used to balance the distance between the original sam-

ple and the perturbation. The author proposed to solve this using a box-constrained

L-BFGS [153]. It essentially tries to find the minimal amount of perturbation (r)

needed to misclassify the sample x to class ŷ rather than to its original class.

Goodfellow et. al proposed a fast gradient sign method in [154] that uses gradients

of the output with respect to the input features for adversarial sample crafting. The

method adds a small value, ε, to each of the features of a sample so that the sample

is misclassified. The method solves the following equation for adversarial sample

crafting.

x̂ = x+ ε · sign(∇x(loss)) (2.16)
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Equation (2.16) computes the gradient of the loss function with respect to the input.

However, only sign (+ve or -ve) of the gradient is used to determine whether to add

or subtract the perturbation. When the gradient is positive it adds a small value to

the features and when the gradient is negative the value is subtracted. This allows

the method to add values in the direction of the gradient, i.e., and increase the loss

function value so that a sample is misclassified.

Su et. al [155] proposed a technique that modified only a single feature for adversarial

sample crafting. Similar to other adversarial samples crafting methods, it tries to

keep the adversarial sample as close to the original sample as possible. However,

unlike other methods that try to find minimal perturbation, this method limits the

perturbation to a single feature. Nevertheless, different properties of a single feature

can be modified. For example, in case of an image classification task with pixels as

features, the x- and y-coordinate, red, green, and blue (RGB) channels of a single

pixel is modified. It uses a genetic algorithm-based approach that starts with a set of

randomly formed candidate samples and progresses in an iterative fashion. In each

iteration, it forms a new set of candidate solutions by modifying the current set of

samples. The process stops when a candidate sample is successful to be misclassified.

Additionally, some works studied the physical aspect of adversarial samples. For

example, Brown et. al [156] developed a technique that creates printable adversarial

patches that can be stuck beside an actual image to fool a classifier. Athalye et. al

[157] proposed adversarial samples crafting techniques for 2D and 3D classifiers. It

showed an example where a turtle was 3D printed and was able to be misclassified as

a riffle.

There are very limited works in the literature that have reported adversarial example

crafting techniques and their impact on malware detection systems, while even less

attention has been focused on adversarial attacks in mobile malware domain. Most

of the earlier works in this domain proposed techniques only for crafting the adver-
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sarial samples to fool a malware detection system. A few of the later works studied

the defense strategies against such samples. Most notable works in this regard are

presented below.

Anderson et al. [158] adopted a reinforcement learning-based approach for crafting

adversarial examples. It modified a malicious sample in an iterative fashion to bypass

malware detection systems. In each iteration it modifies the malicious sample by

performing a single action from a set of acceptable actions that includes adding a

function, manipulating existing section name, and modifying header checksum. This

iterative process continues until the sample is misclassified by the target model. The

work achieved 16% evasion rate on a model which is trained for 100,000 round on

original data. The work did not devise a defense mechanism however, it proposed

that a model should be retrained on the adversarial samples to make it robust against

adversarial attacks.

Dang et al. [159] proposed an adversarial malware sample crafting technique using

three tools namely, a detector, a morpher, and a tester. The detector is the classifica-

tion system that the attacker wishes to evade, the morpher is a tool that modifies a

malicious sample and tester is a tool that checks whether a modified sample still con-

tains the malicious functionality or not. A malicious sample is considered a successful

adversarial example if the tester verifies it as a malicious sample but the detector ac-

cepts it as a benign sample. The method carries out a series of morphing operations

to obtain several modified copies of a malware sample. Afterward, it adopted a hill-

climbing approach where the number of morphing steps was leveraged as a scoring

mechanism to find the closest sample that is able to evade the detection. The work

reported a 100% evasion rate by the adversarial malware samples crafted with this

technique. However, it did not propose any defense strategy.

Yang et al. [160] introduced a Malware Recomposition Variation (MRV) approach

based on the semantic analysis of various existing malware applications for crafting
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adversarial malware samples. Through phylogenetic analysis, the work observed how

different features of malicious applications evolve over different versions. To craft

adversarial malware samples, it used a semantic-feature mutation technique that au-

tomatically mutated the malware bytecode to inject malicious behaviors into an ap-

plication component. However, the method proposed in this work requires access to

the malware binaries and source code. Further, it also requires a specific component

of an Android application, i.e., broadcast receiver, which can easily be detected since

it is a common characteristic of a malicious application to invoke sensitive APIs from

broadcast receivers.

Grosse et al. [161] studied adversarial example crafting specifically for Android mal-

ware detection. 63% of the adversarial samples crafted in the work were able to

successfully bypass the malware detection system. The work also explored adversar-

ial training as a defense mechanism against adversarial attacks where adversarially

crafted malware samples are used to retrain a classifier to make it robust. It showed

promising results against adversarial attacks where several architectures of deep neu-

ral networks along with varying ratios of malware and benign samples were considered.

However, retraining a classifier with too many adversarial samples can lead to over-

fitting and degrade the performance and the work did not consider how to optimally

select these samples for retraining.

Unlike adversarial retraining, Papernot et al. [162] proposed a different defense mech-

anism based on distillation. In this method, a classification model M is first trained

using the original data and the probability of the samples belonging to a certain class

is recorded. A second classification model M ′ is then trained using these probabili-

ties as the label. However, this mechanism is not as effective in malware detection

as in other domains such as image processing and computer vision. Other defenses

against adversarial attacks include classifying adversarial samples as a separate class

and differentiating them based on their statistical property [163, 164].
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Table 2.4 Summary of key research and their main contributions on adver-
sarial attacks in mobile malware detection.

Work Contribution Comments
Anderson et al. [158] Utilizes a reinforcement

learning-based approach that
iteratively modifies a malware
sample to craft adversarial
examples.

It achieves a 16%
evasion rate. Does not
suggest any defense
machanism.

Dang et al. [159] Utilizes a detector, a morpher,
and a tester to craft adversarial
malware samples.

Achieves a 100%
evasion rate. Doest
not propose any
defense technique.

Yang et al. [160] Adopts Malware Recomposition
Variation (MRV) approach
based on the semantic analysis
of malware samples. Injects
malicious byte codes into
applications to craft adversarial
samples.

Requires access to
malware source code.

Grosse et al. [161] Uses saliency map-based
adversarial sample crafting
technique and achieves 63%
evasion rate. Proposes
adversarial retraining as a
defense mechanism.

Sub-optimal
performance due to
random choice of
samples.

The effectiveness of adversarial malware attack and its defense in mobile malware de-

tection settings is a relatively unexplored area unlike image processing and computer

vision domain. Furthermore, intelligent selection of samples has shown improved per-

formance in different areas of machine learning applications [165, 166]. However, such

selective sampling is yet to be applied for adversarial retraining in mobile malware

detection domain. In our second research objective, we address this issue and improve

the robustness of malware detection systems against adversarial attacks using a novel

selective sampling strategy.

The following section presents the literature review for our final research objective

that deals with imbalanced data distribution.
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2.11 Imbalanced Data Problem for Mobile Malware

Detection

The machine learning models descried earlier are designed to expect a balanced data

distribution, i.e., it expects that the number of benign and malware samples are

nearly equal. If the dataset is imbalanced, the performance of such models can suffer

to a great extent. A dataset is considered imbalanced if the number of samples in

one class is significantly higher than that of another. This characteristic of data

distribution occurs naturally in malware detection systems since in the real world the

benign applications outnumber malicious applications to a great extent. In fact, Xu

et al. [16] reported a class imbalance in the order of 2 in 1000 in mobile malware

detection. Even though various fields of research including telecommunication, text

classification, and image processing have tried to deal with data imbalance [167–175],

the problem becomes highly critical in the field of malware detection because the cost

of incorrectly classifying a malware (i.e. false negative) is significantly more than

that of a benign application. Misclassifying a malicious application could result in

a harmful application being launched in the market potentially leading to privacy

leaks, information stealing, and financial loss. Existing methods in the literature

for handling imbalanced data problems can be divided into three categories namely,

data-level approach, algorithm-level approach, and hybrid approach [176]. Table 2.5

summarizes the properties, advantage, and disadvantages of these approaches. In the

following, we present the most notable works in the literature.

2.11.1 Data Level Approaches

Data-level approaches or data augmentation is one of the most common approaches

to handle imbalanced data [16, 169, 177–182]. This approach reduces data imbalance

by changing the distribution of the training data. Traditional approaches of data

augmentation include over-sampling [17, 183] and under-sampling [174, 184] which
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Table 2.5 Imbalanced data handling approaches overview.

Approach Properties Advantage Disadvantage
Data-level methods Tries to balance the

dataset by changing
the distribution of the
data, e.g., removing
majority class samples
or creating synthetic
minority class
samples.

Does not depend on a
particular algorithm.
Simpler to implement.

Often lead to poor
generalization,
information loss, and
may generate invalid
samples.

Algorithm-level methods Modifies an underlying
algorithm to handle
imbalanced data, e.g.,
modified loss function.

Relative importance
on majority and
minority classes can
be adjusted.

Solution is algorithm
specific.

Hybrid methods Strategically combines
both data-level and
algorithm-level
methods.

Generates balanced
data distribution and
has the capability of
assigning relative
importance to each
classes. Can be
tailored to be used in
various domains.

The process is
complex and
computationally
expensive.

in their simplest form refer to simply copying random minority class samples and

discarding random majority class samples, respectively [182]. However, these simple

techniques have major drawbacks. In the case of random over-sampling, since mere

copies of minority class samples are created, the classifier often gets redundant infor-

mation. This leads to over-fitting and poor generalization, i.e., the classifier doesn’t

perform well on unseen test data. Random under-sampling on the other hand, dis-

cards samples from the majority class that lead to information loss, i.e., the samples

that are critical to learn the characteristics of the data often get removed from the

training data. To mitigate these problems researchers have opted for devising in-

telligent over-sampling and under-sampling methods to minimize redundancy and

information loss.

SMOTE (Synthetic Minority Over-sampling Technique) [17] proposed by Chawla et

al. is one of the most notable intelligent over-sampling techniques in this regard.

Rather than simply creating copies, it generates artificial samples for the minority

class. Figure 2.9 illustrates how SMOTE algorithm works. For each minority class
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sample, it selects a number of nearest samples from the same class using K-NN rule.

Afterward, it randomly interpolates the features between the neighboring samples

to create artificial samples. In Fig. 2.9, green and red dots represent majority and

minority samples respectively. The yellow dots are the interpolated samples between

neighboring minority samples.

Several variants of the SMOTE algorithm were proposed to further improve its perfor-

mance [185, 186]. Before creating artificial samples these works examined the neigh-

bors from the majority class and prevented over-sampling in overlapping regions to

minimize generation of noisy data.

Jo and Japkowicz [187] proposed another intelligent over-sampling technique that

considered multiple clusters of the minority class. The work first clustered the samples

and then performed over-sampling within each cluster to improve both intra- and

inter-class imbalance.

These methods however are only suitable for continuous features. Also, since they do

not pay any particular attention to the characteristics of the features, an immutable

feature can be modified by these methods resulting in invalid artificial sample creation.

Lee et al. [188] proposed a two-phase learning approach to classify highly-imbalanced

datasets. In the first phase, the proposed method down-sampled the majority class

until it has at most 5000 samples. This down-sampled dataset is used to pre-train

a classifier which is then fine-tuned using the complete dataset in the second phase.

The work reported improved minority class performance, however, major drawbacks

in this work are determining the creation process of the down-sampled dataset and

finding the optimal choice of the minimum number of samples.

Mani and Zhang [189] proposed a k-nearest neighbor (K-NN) based under-sampling

approach. It devised multiple methods that removed a majority class sample from

the training data based on its distance from the minority samples. For example,

their NearMiss-1 method calculated the average distance of a majority sample from
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Figure 2.9 SMOTE algorithm for handling imbalanced datasets. Red and
green dots represent minority and majority classes respectively and yellow
dots are the interpolated samples.

three nearest minority samples and only kept the samples that have the smallest

distance. NearMiss-2 on the other hand calculated the average distance of a majority

sample from three farthest minority samples. The work presented a comparative

study among these methods. However, the choice of different parameters such as,

how many minority samples to use for distance calculation is a major drawback in

this work.

Additionally, Barandela et al. [190] proposed a technique that removes majority

samples from the class boundaries. Using K-NN rule based on Wilson’s editing [191]

the work removes the samples that are misclassified from the training data. Kubat

et al. [184] proposed a technique known as one-sided-selection that carefully selects

a representative subset of the majority class by removing noise, redundancy and

borderline samples that results in a more balanced training set.

2.11.2 Algorithm Level Approaches

In algorithm-level methods, the learning model is modified so that the bias imposed on

the classifier due to the prior probability of imbalanced data is mitigated. This is most

commonly achieved by designing a loss function that penalizes the misclassification

of minority class samples more than that of the majority class.
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Wang et al. [192] showed that the traditional Mean Squared Error (MSE) poorly

captures the classification performance when high data imbalance exists. The work

introduced a new loss function, Mean False Error (MFE), by combining two com-

ponents of MSE, i.e., Mean False Positive Error (MFPE) and Mean False Negative

Error (MFNE). The method showed improved performance as compared to traditional

MSE loss. However, the datasets considered were fairly small and the improvement

is highly problem-specific [193].

Lin et al. [194] proposed Focal Loss (FL) function that modifies the traditional

cross-entropy (CE) loss function. The work multiplied the CE loss function with

a modulating factor. This factor downgrades the easily classified samples to reduce

their effect on the classifier. Concurrently, it assigns more importance to the minority

class samples to improve classification performance. This method is also transferable

to hard sample problems, however, in [195], the traditional CE loss performed better

in some datasets suggesting that the performance improvement by this method is

specific to particular problem domains.

Wang et al. [196] introduced a cost-sensitive deep learning technique to handle imbal-

anced data problem. It modified the traditional CE loss function and a pre-defined

cost matrix was incorporated with it. The cost matrix forces the loss function to pay

more attention to correctly classify minority class samples. The work implemented a

cost scheme that specified the false negative error to be 2× the cost of false positive

error. However, optimally computing the cost matrix is a very complex and time

consuming task that can be impractical for large datasets.

Zhang et al. [197] introduced a deep representation learning-based technique for

imbalanced datasets. The Category Center (CC) method proposed in the work incor-

porates transfer learning, deep feature extraction, and nearest neighbor classification.

It first trains a deep neural network (DNN) on a balanced dataset. The output from

the penultimate layer of this network is used as a deep feature representation of the
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samples which are then used for clustering the samples. The same network is used

for extracting deep features from the imbalanced dataset. This is used to compute

the distance of the samples from the pre-computed cluster centers and the samples

are classified accordingly. The limitation of this work is that it greatly depends on

the DNN’s capability to extract discriminating features and requires a large balanced

representative dataset.

Ding et al. [198] studied the possibility of using very deep neural networks for im-

balanced data. The work studied the performance of deeper networks with 16 to 50

hidden layers against shallower 6 to 10 hidden layer networks. The work suggested

that additional hidden layers can make it easier to locate local minimum and accel-

erate convergence. However, adding hidden layers exponentially increases computing

and time complexity that results in impractical solutions.

2.11.3 Hybrid Approaches

Hybrid-methods strategically combines data-level and algorithm-level approaches that

balance the underlying data distribution and counters classification bias towards the

majority class.

LMLE [199] was introduces by Huang et al. to learn discriminative deep representa-

tions of imbalanced data. The work introduced a combination of quintuplet sampling

and triple-header hinge loss function to produce deep representations of the features

which preserve same-class locality and increase discrimination between classes. This

deep representation provides well-formed clusters that are used by a K-NN based

system for classification. The method showed good performance on the highly im-

balanced CelebA dataset [200]. However, the technique proposed in the work is both

complex and computationally expensive. Moreover, the method requires pre-clustered

data for quintuplet sampling which is difficult to obtain in the absence of suitable

feature extractor.

Dong et al. [201] proposed an end-to-end deep learning method for addressing high
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class-imbalance. The work introduced a combination of hard-sample mining and class

rectification loss and used mean sensitivity scores as the primary performance metric.

At the data-level, the proposed method selects samples that are correctly classified

with low confidence and misclassified with high confidence. At the algorithm-level, it

assigns more weights to the highly imbalanced classes and reduces weights to the less

imbalanced ones. The work, however, does not generalize well to different domains

especially when the problem consists of low level of class imbalance and fails to provide

any performance gain.

Data imbalance in mobile malware detection problem has been acknowledged in var-

ious works [202, 203]. However, no explicit attempt has been made to deal with the

problem until recently. Xu et al. [16] proposed fuzzy-SMOTE for imbalanced mobile

malware detection which is based on the fuzzy set theory. It generates synthetic ex-

amples for the minority class in the fuzzy region where the minority examples have

a low membership degree. Classification models pay more attention to the enhanced

minority class when trained with these synthetic samples. Consequently, the decision

boundary of the minority class is enlarged and the classification bias towards the

majority class is reduced. The work, however, assumes a continuous feature domain,

and also, it does not discriminate between mutable and non-mutable features when

generating synthetic samples that leads to invalid sample generation. Changing a

non-mutable feature will result in the application losing certain malware functionali-

ties.

Oak et al. [204] proposed a technique that utilizes Bidirectional Encoder Represen-

tations from Transformers (BERT) [205] for malware classification with imbalanced

data. The proposed method utilizes a monitoring service [206] to record the sequence

of various operations performed by an Android application. The extracted informa-

tion is high-level representations, e.g., a file is opened on the device, which are then

encoded as integer values. This results in a dataset where each application is repre-

sented by a sequence of integers which is used for classification. However, a major
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drawback of the method is that it relies heavily on the operation sequence generated

by the monitoring service. Generating such sequence requires an application to ex-

ecute in a controlled environment and its not always possible to exhaustively cover

every possible execution sequence of an application. Further, some malicious appli-

cations are intelligent enough to detect such environment and suppress its malicious

functionalities.

Table 2.6 Summary of key research and their contributions on mobile mal-
ware detection with imbalanced data.

Work Approach
type

Contribution Limitations

Xu et al. [16] Data level Adopts a fuzzy set
theory-based approach
that creates synthetic
samples from the
malware applications
that are in the fuzzy
region.

Generates invalid
samples.

Oak et al. [204] Data level Utilizes a monitoring
service that records
sequences of operations
performed by an
application and analyzes
them for classification

Greatly depends on the
efficacy of the
monitoring service.

Songqing Yue [207] Hybrid Coverts malware binaries
to grey scale image.
Utilizes a weighted
softmax function for
classification using CNN.

Limited by the
conversion process which
may incur loss of
information.

Chen et al. [208] Algorithm
level

Utilizes an imbalanced
data gravitation
classification model that
computes gravitation of
a sample using weighted
Euclidean distance for
classification

Cannot handle high level
of imbalance.

Songqing Yue [207] proposed a method where malware binaries are converted into dig-

ital grey-scale images. It devised a Convolutional Neural Network (CNN) based clas-

sification system that incorporated a weighted softmax loss function for imbalanced

malware classification. In contrast to the traditional softmax loss where misclassifi-

53



cation of each sample is weighted equally, the work scaled the misclassification cost

of different classes according to their imbalance ratio. This counters the bias towards

the majority class and improves the performance of minority class classification. The

performance of the model, however, can be limited by the conversion process that

can lead to loss of important characteristics of an application. Also, choosing the

appropriate scaling of the loss function is a challenging task in this method.

Chen et al. [208] proposed a method that analyzed network traffic with machine

learning models to classify malicious behavior with an imbalanced dataset. The work

monitored the network packets of mobile applications and utilized the statistical prop-

erties of mobile traffic to identify malicious applications. However, the work cannot

handle high level of imbalance and the performance declines when the level of imbal-

ance increases [209].

2.12 Open Research Challenges

Mobile malware detection has become an attractive research area due to the un-

deniable popularity of smartphones and other hand-held devices, and the increased

malware attacks in these devices. Because of the large number of smartphone ap-

plications (over five million [210]), automatic malware detection systems based on

machine learning models have been widely used. However, several key factors affect

the performance, resilience, and robustness of these models, and our extensive review

of the current literature reveals the following open research challenges.

• The existing machine learning-based techniques consider random feature cate-

gories when designing their model. Not considering the effect of feature cate-

gories in a systematic manner can render a classification system ineffective since

different categories of features represent different behavioral aspects of mobile

applications. For example, many systems consider permission and API calls

as feature categories while ignoring the dynamic category. These models are
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incapable of identifying obfuscation or dynamic loading-based attacks. On the

other hand, a blind combination of these features is also ineffective since adding

redundancy can negatively impact model performance. Moreover, additional

information about some features (i.e., contextual information of API calls) can

provide further assistance in distinguishing different functional aspects of a mo-

bile application. Incorporating such information with the associated features

and using them in combination with others will significantly improve a model’s

performance. A few prior works have explore this idea, but they only considered

it in isolation. Thus, a model that comprehensively considers a wide range of

behavioral aspects while incorporating contextual information can be of great

advantage for effective malware detection, which is lacking in the current liter-

ature.

• Newer malware applications are surfacing everyday and specific techniques to

evade detection systems are also becoming smarter. Preventive measures need

to be enforced against adversarial attacks and successful adversarial samples can

effectively render a detection system as useless. The literature proposes proac-

tively retraining the models with self-crafted adversarial samples as a preventive

measure. However, this does not provide a full-proof solution since retraining

with all or an indiscriminate choice of adversarial samples can lead to perfor-

mance degradation due to over-fitting. Intelligent methods that can selectively

choose higher quality samples are necessary to ensure robustness against such

attacks.

• The classification models developed in most prior works assume a balanced

data distribution in terms of the number of malicious and benign applications.

Section 2.11 showed that imbalanced data is an inherent characteristic of this

problem domain. Cross-domain approaches cannot be applied here since mal-

ware detection in mobile platforms has unique characteristics, and this is a

major drawback of prior works in this area which are very limited. For exam-
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ple, over-sampling by feature interpolation for data balancing cannot directly be

applied here since the resulting samples often represent applications with bro-

ken functionality which makes them invalid samples. To ensure training with

valid samples, application characteristics have to be preserved, and, hence, it is

necessary to address this issue with domain-specific constraints.

• Building in-device detection mechanism and knowledge transfer are some addi-

tional research challenges in this domain. For instance, computing resource and

limited power constrains mobile devices from hosting a training environment for

a malware detection system. This can be overcome by keeping the bare mini-

mum in the device and acquiring knowledge from a server (e.g., transferring the

connection weights of a neural network). Upgrading the system by optimizing

the knowledge acquisition process as the model updates to account for newly

exposed attacks is another related research problem. However, these issues are

related to research on resource-constrained environments and are outside the

scope of this thesis.

2.13 Conclusion

This chapter discussed the importance of malware detection in mobile platforms

while illustrating their characteristics and usage. Due to the inherent dependency

of machine learning-based systems on application features, models could result in

sub-optimal performance if different categories of features are used in a randomized

fashion. The feature categories need to be carefully investigated since they aid in

exposing different aspects of application behavior. Further, these models need to em-

ploy defense mechanisms against evasive techniques designed to deceive such detection

methods. Also, considering real-world characteristics such as data imbalance, incor-

porating techniques to handle this will ensure models’ practical applicability. In this

regard, a detailed review of the literature was presented in this chapter. Reported
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works’ contribution, advantages, and limitations were discussed and open research

challenges were identified. With a view to designing a robust mobile malware detec-

tion system, the next chapter addresses the fundamental issue of feature categories,

their characteristic, and impact on machine learning systems for mobile malware de-

tection.

57



Chapter Three

Impact of Feature Categories in

Mobile Malware Detection

The previous chapter identified that the appropriate choice of feature categories is

one of the most crucial steps in designing an effective mobile malware detection sys-

tem using machine learning. Section 2.9 introduced four different feature categories

and described the related works. Based on the studies of current literature we have

found that no work has systematically considered all of these feature categories and

thoroughly analyzed their individual and collective impact on mobile malware detec-

tion. In this chapter, we conduct a systematic study on this issue and investigate the

behaviors of these feature categories. We also identify the combination that gives the

best classification performance. Additionally, we formulate a technique to embed the

contextual information of API calls into the feature space to facilitate its combined

use with other feature categories. The following section describes our detection model

and its components. Section 3.2 then undertakes a detailed discussion on the feature

categories and application behaviors they capture. Section 3.3 details the contextual

information, and Sec. 3.4 presents the experiments and results.
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3.1 Detection Model

Figure 3.1 shows our mobile malware detection system which comprises two phases,

training and testing. The training phase prepares the classification model for testing,

which consists of two components, feature extraction and classifier training. The

feature extraction component extracts various categories of features from the training

set of malicious and benign samples. The extracted features are used to encode each

of the applications into (either benign or malicious) feature vectors which are fed

to the classifier for training. This trained classifier is used in the testing phase for

classification of unknown applications. The components of our detection system are

described below.

3.1.1 Feature Extraction Component

The feature extraction component consists of two parts for extracting static and

dynamic features respectively. Each application is analyzed individually by this com-

ponent and the features extracted from an application are saved in an individual

feature file. Thus, each application has a feature file associated with it that lists the

only features present in that particular application. Additionally, all the features are

added to a global feature set, Ω, which lists all the unique features extracted from

all the applications and is later used for feature vector formulation. Several feature

extraction tools were introduced in Sec. 2.7, however, the specific tools used in our

work along with the feature extraction process are described below.

Static Feature Extraction

We used a reverse engineering tool called Androguard [100] for static feature ex-

traction. Androguard provides a Python library that can be used to analyze an

application to extract permissions, API calls, and ICC features. After listing all the

API calls in an application, we filtered it through the list provided by Pscout [211]
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Figure 3.1 Mobile malware detection system

for extracting the security-sensitive API calls. In the process, we extracted 600 per-

missions, 1000 API calls, and 87000 ICC features. Algorithm 1 describes our static

feature extraction process. For each application in the dataset, this algorithm calls

Alg. 2 to 4 for extracting permission, ICC, and API call features respectively. Each

application is assigned an individual feature file that lists all the extracted features

for the application.

Algorithm 1 Static Feature Extraction
Input:
Apps← application set for feature extraction
Output:
Ω← global feature set

1: Import Androguard library for static analysis.
2: for each Application in Apps do
3: Create FeatureF ile for the application to list the extracted features.
4: Call “AnalyzeAPK()" from Androguard library to obtain the decoded APK

object (DecodedApk) and the “Analysis" object (Dx).
5: Call Algorithm 2 with FeatureF ile, DecodedApk, and Ω to extract permission

features.
6: Call Algorithm 2 with FeatureF ile, Dx, and Ω to extract API features.
7: Call Algorithm 3 with FeatureF ile, DecodedApk, and Ω to extract ICC

features.
8: end for
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Algorithm 2 Permission Feature Extraction
Input:
DecodedApk ← the decoded APK file
FeatureF ile← feature file for the application
Output:
Ω← global feature set

1: Import Androguard library.
2: Call “get_permissions()" function from Androguard to extract the required per-

missions for DecodedApk.
3: List the extracted permission in FeatureF ile.
4: Add the extracted permission to the global feature set Ω.

Algorithm 3 ICC Feature Extraction
Input:
DecodedApk ← the decoded APK file
FeatureF ile← feature file for the application
Output:
Ω← global feature set

1: Call “get_activities()" function on DecodedApk to extract activities.
2: Call “get_services()" function on DecodedApk to extract services.
3: Call “get_receivers()" function on DecodedApk to extract broadcast receivers.
4: Call “get_providers()" function on DecodedApk to extract content providers.
5: Call “get_intent_filter()" function on each activity, service, broadcast receiver,

and content provider to extract intent filters.
6: List the extracted features in FeatureF ile.
7: Add the extracted features to the global feature set Ω.

Algorithm 4 API Feature Extraction
Input:
Dx← the “Analysis" object from Androguard
FeatureF ile← feature file for the application
Output:
Ω← global feature set

1: Call “get_classes()" function on Dx to get all the classes of the application code
2: Call “get_methods()" function get all the method calls for each class
3: Call “is_external()" function for each method to determine if it is an external

API call
4: Filter the external API calls with the list of PScout [211] to extract the security

sensitive API calls.
5: List the extracted APIs in FeatureF ile
6: Add the extracted APIs to the global feature set Ω.
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Dynamic Feature Extraction

Since extracting dynamic feature requires executing the application, we run each

application in an emulator to avoid the risk of an actual device being infected. Geny-

motion [102] emulator was used for this purpose which provides a free license for

personal use. A Python script was written to automate the process of installing and

running the application utilizing the Android Debug Bridge (ADB) [212]. Monkey

tool [103] was used for generating random events. We injected 1000 events during

the execution of each application. The strace [213] utility from Linux was used to

attach a tracing process during the application run-time and system calls made by

the application were listed in a log file. Afterward, the log files were parsed to ex-

tract dynamic features. We extracted 122 system calls as dynamic features from our

dataset. Algorithm 5 lists our process of dynamic feature extraction.

Algorithm 5 Dynamic Feature Extraction
Input:
Apps← application set for feature extraction
Output:
Ω← global feature set

1: Run Genymotion emulator
2: for each Application in Apps do
3: Open FeatureF ile for the application to list the extracted features.
4: Install and run the Application on Genymotion using ADB commands.
5: Identify the process id (PID) of the running application.
6: Create logF ile to log the dynamic behaviors.
7: Attach strace to the process for logging system call.
8: Inject random events using Monkey tool.
9: Terminate application execution.

10: Write output from strace to logF ile.
11: Pull the logF ile out from the emulator memory.
12: Parse logF ile to extract system call features.
13: List the system calls in FeatureF ile.
14: Add the the system calls to the global feature set Ω.
15: end for

62



3.1.2 Feature Matrix Formation

After the features were extracted, each of the applications were then encoded as a

feature vector. A feature vector is a binary vector whose length is the number of total

unique features extracted from all the samples (i.e., the length of the global feature

vector Ω). Each component (i.e., index) of this vector corresponds to a feature.

For each application, a feature vector is first initialized with 0 in all of its indices.

Afterward, the feature file associated with the application was parsed and the value

of the indices corresponding to the features listed in the feature file was set to 1.

Hence, an entry of 1 in the feature vector means the corresponding feature is present

in the application and 0 means it is absent. These feature vectors were compiled as

a matrix representing the dataset where each row of the matrix represented a feature

vector for an app. Algorithm 6 shows the process of feature matrix creation.

Algorithm 6 Feature Matrix Creation
Input:
Apps← application set for feature matrix creation
Ω← global feature set
Output:
FeatureMat . The feature matrix

1: FeatureMat← Φ . Initialize feature matrix
2: for each Application in Apps do
3: Open FeatureF ile of the Application
4: V ec← allocate memory size = length(Ω) + 1 . Allocate one extra index

for class label
5: V ec← initialize all indices to 0
6: if Application is malware then . Set last index to 1 if it’s a malware
7: V ec[size] = 1
8: end if
9: for each Feature in FeatureF ile do

10: idx← index of Feature in Ω
11: V ec[idx] = 1
12: end for
13: Append V ec to FeatureMatrix
14: end for
15: return FeatureMatrix
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3.2 Feature Category Characteristics

In Sec. 2.9, we briefly introduced different feature categories of an Android applica-

tion. This section discusses the characteristics of these feature categories in detail.

We also discuss the behavioral aspects captured by these feature categories and how

they influence a malware classification model.

Permission

Every Android application must acquire the necessary permissions before executing

the corresponding functionality. Each Android application needs to declare the re-

quired permissions in its manifest file. The user is prompted with these permissions

before the installation process begins. Figure 3.2 shows the installation screen of an

application that displays the required permissions. There are two types of permission

for an Android application: the official Android permissions and developer-defined

permissions that are used to protect the components of an application.

Permissions are one of the most commonly used feature categories in mobile mal-

ware detection since acquiring necessary permissions is the first barrier a malicious

application has to overcome. Figure 3.3 shows the most commonly occurring permis-

sions in malware and benign applications in our database as described in Chapter 2.

The figure shows that both malware and benign applications most commonly request

permission for accessing the internet, which is understandable since most applica-

tions (malware or benign) require internet access to carry out basic functionalities.

However, a lot of the malicious applications also ask for permission to send and re-

ceive SMSs which is abused for stealing money. Permission to check whether the

phone has completed booting is another commonly requested permission by malware

applications which aids them to carry out activities secretly in the background.
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Figure 3.2 Installation screen showing the required permission for an appli-
cation.

API calls

API calls are functions of Android java library that are available to application de-

velopers to request services from the operating system (OS) and to perform different

operations. For example, to get the location of a device, the application will call the

“TelephonyManager.getDeviceID()" function. Figure 3.4 shows the most commonly

occurring API function calls in malware and benign applications. The figure shows

that most malware applications use the “SmsManager.sendTextMessage()" API func-

tion for stealing money. “webkit.WebView()" is another function used by the malware

apps to direct users to websites with malicious contents and scams.

ICC features

The Android OS allows the components of an app (describe in Sec. 2.2) to com-

municate with each other through ICC mechanism. This was made available to

programmers to reduce the burden of coding similar components. Figure 3.5 shows
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Figure 3.3 Most commonly occurring permission features in malware and
benign applications in our dataset.
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(b) API calls in benign samples

Figure 3.4 Most commonly occurring API features in malware and benign
applications in our dataset.
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an example where ICC mechanism is useful. In this example, the Facebook app is

trying to show the location of an address on a map. Using ICC, Facebook can transfer

the address to a map application (e.g., Google maps) where the exact location of the

address is displayed.

Malware developers can exploit this facility to construct collusion attacks. Figure 3.6

exemplifies one such attack scenario. The application on the left denoted by a red

rectangle leaks user information by getting the device location and sending an SMS to

the attacker. However, since these two functions are done by the same application, it

is relatively easy to detect such a privacy leak attack. Conversely, two apps denoted

by the green rectangles on the right side only perform one of the two actions, i.e.,

one application is only capable of getting the location and the other can only send

SMSs. On their own, these two apps seem harmless but they can accomplish the same

functionality with a collusion attack by communicating through ICC while bypassing

detection.

Figure 3.7 shows the most commonly occurring ICC features in malware and benign

applications. It is noteworthy that most of the benign and malicious applications

contain “android.intent.action.MAIN" and “andoid.intent.category.LAUNCHER" as

ICC features since they are used in basic execution process of an Android application.

But we see many malicious applications having “android.intent.action.

BOOT_COMPLETED" and “android.intent.category.HOME" as ICC features that

enable them to carry out secret activities in the background.

System calls

The Android system is built on top of Linux kernel and most of its operations are done

through Linux system calls. The system calls made by an application can be traced

during run-time, thereby dynamically revealing the malicious activities of an appli-

cation. For example, some malware applications hide their malicious code to bypass

detection when the program is launched. At a later period, they dynamically load
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Figure 3.5 Apps communicating through ICC mechanism.

Figure 3.6 Collusion attack using ICC mechanism.

their malicious codes. This dynamic loading goes through a series of actions which

includes making an “open()" system call for opening the target code and invoking

“mmap()" to load it into the memory. These behaviors can be captured through

dynamic analysis of system calls.
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Figure 3.7 Most commonly occurring ICC features in malware and benign
applications.
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3.3 Encoding Contextual Information as

Feature Value

The contextual information of Android API calls was briefly introduced in Sec. 2.9.1.

This section discusses this in detail, as well as how we incorporate this information

into feature vectors.

The execution procedure of the Android system makes the applications heavily depen-

dent on “callback" methods. For example, when an application starts, the “onCreate"

callback method of its “main activity" is executed. Or when a user clicks a button,

the “onClickListener" callback method is called to carry out the actions associated

with the button click. These callback methods are tied to some activation events,

i.e., for the above examples, the “onCreate" method is tied to the event of starting

the application and the “onClickListener" method is to tied to the event of clicking

a button. These can be utilized to obtain additional information about an API call

made by an Android application.

To illustrate the above, we take the example of the working principle of MoonSMS

malware. A simplified call graph of the application is shown in Fig. 3.8. This mal-

ware appears as a benign application that sends greetings messages. In the process, it

obtains the “SEND_SMS" permission so that it can call the “sendTextMessage()" func-

tion. As shown in Fig. 3.8 “SmsManager.sendTextMessage()" is a security-sensitive

API call used to send SMSs which can be invoked by the application in several ways.

First, the method is invoked when the user clicks the “send" button, which executes

the “SendTextActivity.onClick()" callback method that consequently sends an SMS.

This is the expected use case highlighted with green arrows in Fig. 3.8. Second, when

the signal strength of the device is changed, Android OS generates a corresponding

event. The application registers the “ActionReceiver.OnReceiver()" callback method

to respond to this event. This callback method checks if the current time is between

11 pm and 5 am when the user is expected to be unaware of this covert action and
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proceeds to send an SMS. Third, whenever the application is launched, its “SplashAc-

tivity.OnCreate()" callback method is called which checks if the last connect time is

at least 12 hours ago. Expecting that one SMS per 12-hour interval will go unnoticed,

the malware application invokes the sendTextMessage() function.

In the above example, the first use case is not malicious since the user is aware of the

operation. The user can actually see the information on the screen and can modify

the action if necessary. From an execution point of view, this is tied to the event of

button click by the user. However, the last two scenarios are malicious since they

are being carried out unnoticed by the user and used to send premium SMSs to a

malicious server to steal money from the user. These are tied with “signal change"

event and “application start" event respectively.

By analyzing the contextual information (i.e., the associated activation events), addi-

tional information about the usage of an API call can be obtained and, consequently,

the behavior of an application more accurately predicted. Extracting contextual

information has two components, namely, entry point identification and activation

event resolution. For this, we first construct the call graph of an application using

the Androguard [100] tool. Subsequently, the nodes in the call graph that contains a

security-sensitive API call are identified. These nodes will represent the API features

of an application. Thereafter the two components are executed consecutively. These

are described bellow.

Entry point identification. To identify the entry points of a security-sensitive API

call, the call graph of the application is traversed upward in a Depth First Search

(DFS) [214] manner until a root node is reached. This process is carried out in an

iterative fashion to identify every entry point from which the corresponding API can

be reached. It noteworthy that an application call graph can have multiple root nodes

or entry points since there is no main function in the Android application code and

the operations are basically initiated through callback methods.
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ActionReceiver.onReceive() SpashActivity.onCreate()

DummyMainMethod

MainService.onCreate()
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between 11 pm and 5 am 

start the MainService,

SendTextActivity$4.onClick()

If the last connect time was 
more than 12 hours ago 

send SMS
SmsManager.sendTextMessage()

Figure 3.8 Call graph of Moon SMS malware

Activation event resolution. Activation events of an Android application can be of

two types, user interface (UI) activation (user aware context) and background activa-

tion (user unaware context) [215]. To resolve which type of activation an entry point

corresponds to, we check its overridden class. If an entry point overrides any of the

three interfaces among “android.view.KeyEvent.Callback", “android.graphics.drawable.

Drawable.Callback", and “android.view.accessibility.AccessibilityEventSource", it is

resolved to a UI activation events since these are the top-level interfaces related to

user interaction [215]. Otherwise, the entry point is resolved to a background event

activation.

The example shown in Fig. 3.8 demonstrates that an API call initiated by user

interaction is less likely to be a malicious case, whereas, an API call initiated by

a background event has a greater potential of being malicious. Representing the

API calls simply by a binary value as in [14, 54] cannot capture this contextual

information which can lead to classifying both benign and malicious calls to the same

class. Our initial experiment confirms that this way of representation produces more

false negatives (i.e., misses malware). To encode the contextual information into a

numeric value, we used the activation events to calculate a maliciousness indicator

score Υ using the following equation

Υ =
Wuivui +Wbevbe
Wui +Wbe

. (3.1)

here, Wui and Wbe are the weights associated with UI callback and background event
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callback respectively. vui and vbe are binary values representing whether the API call

is initiated by the respective activation event (1) or not(0). This score (Υ) is fed to

the sigmoid function to obtain the feature value Γ:

Γ = sig(kΥ). (3.2)

The sigmoid function is defined as:

sig(kx) =
1

1 + exp(−kx)
(3.3)

here, k is the steepness parameter and x=Υ. The parameters in Eq. (3.1) and Eq.

(3.2) need to be determined such that the computed feature values show a considerable

distinction between the user aware and unaware API calls. This is formulated as the

following optimization problem.

argmax
Wui,Wbe

K (3.4a)

s.t. Wui,Wbe, k = [W1,W2,W3,W4, . . . ] (3.4b)

U = [Γ, for vui = 0, 1 and vbe = 0, 1] (3.4c)

Ψ = |Ua − Ub| for a = 1, . . . , (‖U‖ − 1) (3.4d)

b = a+ 1, . . . ,‖U‖

K = min(Ψ) (3.4e)

where |Ua − Ub| denotes the absolute difference between the ath and bth indices of

U, and ‖U‖ denotes the length of U. We performed a grid search on the parameters

Wui, Wbe, and k varying the range from 0.5 to 5 with an interval of 0.5. The optimal

values were found to be 0.5, 4, and 1 for UI event activation (Wui), background event

activation (Wbe), and k respectively.
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3.4 Experiments and Results

The primary aim of this chapter and therefore the following experiments was to care-

fully examine the impact of different feature categories on mobile malware detection

systems and their relative importance. Due to the promising performance of DNN

(introduced in Sec. 2.5) reported in the literature, we also adopted a DNN based

architecture for our first set of experiments. However, afterward we verified our find-

ings with three different classifiers including SVM and Random forest. The first set

of experiments was divided into two parts. First, the characteristics of individual

feature categories were investigated, and second, all possible combinations of feature

categories were taken and their effectiveness analyzed to find the best possible com-

bination. Afterward, the contextual embedding described in Sec. 3.3 was included

in the experiment set and its performance was recorded. A relevancy analysis for

each feature category was then performed, followed by some additional experiments

with the ICC feature category. Each of the experiments was run for 20 trials and the

average of these trials is reported in the results below.

3.4.1 Characteristics of Individual Feature Categories and

Their Effects

Table 3.1 shows the malware detection performance of a deep neural network using

a single feature category. It can be seen that, as a single feature, permission gives

the best result, attaining 96.69% accuracy. Since the first requirement an application

must have is to get the necessary permissions to perform any sort of operation, “per-

mission", as a single feature category, reveals the general behavior of an application

more effectively than any other features. API calls and dynamic features provide com-

parable performance, but they capture the behavior of an application from different

perspectives. API calls are statically extracted and represent the functionalities avail-

able in the application code. Dynamic features capture the run-time functionalities
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Table 3.1 Malware detection performance with individual feature category.
Deep learning model is used for classification.

Metric

Features
Permission API Calls ICC Dynamic features

TP 2831 2770 1690 2675

TN 5435 5352 5020 5263

FP 142 225 557 314

FN 141 202 1282 297

Accuracy 96.69 95.01 78.49 92.85

Precision 0.952 0.925 0.752 0.895

Recall 0.953 0.932 0.569 0.900

Specificity 0.975 0.960 0.900 0.944

G-mean 0.963 0.946 0.715 0.922

F1-score 0.952 0.928 0.648 0.898

while they are being executed. Most of the security-related operations can be traced

back to some API calls which can be mapped to the corresponding system call. For ex-

ample, to send an SMS, an application has to call “SmsManager.sendTextMessage()"

API through the code which, during the execution, will invoke the “sendto()" system

call from the OS. As a result, we found similar performances from these two cate-

gories. Dynamic features are useful to detect code obfuscation and dynamic code

loading which are used by malware applications to bypass static detection systems.

However, all-inclusive coverage of every possible execution sequence of an application

is not feasible. Hence, aggregation of dynamic features with static analysis is more

effective for malware detection. Later experiments further expand on this.

ICC features are found to be the lowest performing in this set of experiments. This is

explainable in that the names of the components that communicate with each other

are taken as ICC features. If different applications define different names for their

components while carrying out basically the same functionality the resulting features
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Figure 3.9 ROC curve and AUC for individual feature categories

will still be different. These behaviors will not be captured by the classifier except

for the unlikely scenario where every application uses the same name for their com-

ponents. As a result, a relatively lower performance by the ICC features is observed.

Figure 3.9 also demonstrates that the lowest AUC value is obtained by ICC (0.826)

while the best is obtained by permission features (0.989).

3.4.2 Malware Detection using Different Combinations of Fea-

ture Categories

This section describes malware detection capability with all possible combinations

of feature categories. The first part presents the six combinations where only one

category is combined with another which helps to analyze which feature categories

complement each other well. The second part combined two or more categories re-

sulting in another five combinations.
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Table 3.2 Malware detection performance with combination of two feature
categories.

Metric

Features
Permission, API Permission, ICC Permission, Dynamic API, ICC API, Dynamic ICC, Dynamic

TP 2910 2752 2833 2900 2840 2743

TN 5319 5431 5454 5363 5492 5343

FP 258 146 123 214 85 234

FN 62 220 139 72 132 229

Accuracy 96.26 95.72 96.94 96.65 97.46 94.58

Precision 0.919 0.950 0.958 0.931 0.971 0.921

Recall 0.979 0.926 0.953 0.976 0.956 0.923

Specificity 0.954 0.974 0.978 0.962 0.985 0.958

G-mean 0.966 0.950 0.966 0.969 0.970 0.940

F1-score 0.948 0.938 0.956 0.953 0.963 0.922

Table 3.2 shows the malware detection performance when only one feature category is

combined with another. Drawing from the conclusion of the previous section, we see

that dynamic features complement the static features most effectively when combined.

The best performance in these experiments was obtained by combining “permission

and dynamic features" and “API calls and dynamic features" achieving 96.94% and

97.46% accuracy respectively. Considering other performance metrics, overall, the

later combination performed better.

Table 3.3 shows the malware detection performance when more than two feature

categories are combined. It is noteworthy that the combination of permission, API

calls, and dynamic features gives the best performance here with 97.78% accuracy

and 0.968 F1-score. As reflected by the results of “all" feature category combination,

further addition of ICC features does not improve the classification performance.

Rather, in some cases, it slightly degrades performance, for example, the accuracy

and F1-score falls to 97.6% and 0.966 respectively. Figure 3.10 further confirms this

as the AUC value falls to 0.994 from 0.996. This is consistent with our findings from

Sec. 3.4.1 where we experimented with individual feature categories and found ICC

to be the least performing. Also, since the number of ICC features becomes very
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Table 3.3 Malware detection performance with combination of more than
two feature categories

Metric

Features
Permission, API, ICC Permission, API, Dynamic Permission, ICC, Dynamic API, ICC, Dynamic All

TP 2905 2863 2910 2905 2909

TN 5422 5496 5291 5373 5435

FP 155 81 286 204 142

FN 67 109 62 67 63

Accuracy 97.40 97.78 95.93 96.83 97.60

Precision 0.949 0.972 0.911 0.934 0.953

Recall 0.977 0.963 0.979 0.977 0.979

Specificity 0.972 0.985 0.949 0.963 0.975

G-mean 0.975 0.974 0.964 0.970 0.977

F1-score 0.963 0.968 0.944 0.955 0.966
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Figure 3.10 ROC curve and AUC for combination of feature categories.
AUC1 = Permission, API, and Dynamic, AUC2 = All feature categories.
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large (around 87,000) due to different components names, the feature space becomes

very sparse. This results in over-fitting due to “The Curse of Dimensionality" [216].

Hence, it is important to make an informed decision, rather than blindly combining

the feature categories, when designing a malware detection system.

3.4.3 Effect of Contextual Information

Table 3.4 shows the impact of embedding contextual information of API calls into

the feature space. It shows that with this additional contextual information, API call

outperforms permissions as a single feature category. This is because API calls can

distinguish between malicious and benign behaviors more effectively than permission

features when contextual information is provided. For example, sending an SMS by

a benign application and malicious application is represented by the same permis-

sion, i.e., “android.permission.SEND_SMS" and therefore, is not distinguishable by

the permission feature. On the other hand, with the contextual information (i.e.,

user aware or unaware use cases; described in Sec. 3.3), API features can differen-

tiate between potential malicious and benign usages. Table 3.4 also shows that the

combination of permission, API, and dynamic features gives the best result for all

the performance measures, attaining 98.21% overall accuracy. Figure 3.11 shows the

best AUC of 0.996 is obtained by the combination of permission, API, and dynamic

features.

3.4.4 Validating with Other Widely Used Classifiers

This next set of experiments were conducted with various other classifiers to validate

whether the relative performance with different combinations of feature categories

for these classifiers stays consistent with our findings from DNN-based experiments.

The result of these experiments is shown in Fig. 3.12. It can be seen that the actual

performance of the individual classifier varies. However, the relative performance for

different feature category combinations is consistent with our previous finding – the
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Table 3.4 Malware detection performance using different categories of fea-
ture and their combination with embedded contextual information in relation
to API calls.

Metric
Features API Permission, API, Dynamic ALL

TP 2867 2899 2876
TN 5502 5497 5496
FP 75 80 81
FN 105 73 96

Accuracy 97.89 98.21 97.93
Precision 0.973 0.973 0.973
Recall 0.965 0.975 0.968

Specificity 0.986 0.986 0.985
G-mean 0.976 0.981 0.977
F1-score 0.970 0.974 0.970
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Figure 3.11 ROC curve and AUC with embedded contextual information.
AUC1 = Permission, API, and Dynamic, AUC2 = All feature categories, and
AUC3 = API features.
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Permission, API with context, Dynamic and C4 : All with context
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combination of permission, API, and dynamic feature categories performs better than

all other category combination as measured by SVM and random forest (Fig. 3.12a

and Fig. 3.12b) and it gives a comparable performance as measured by Bayesian

classifier (Fig. 3.12c). This again substantiates that using all feature categories does

not necessarily provide any advantage in terms of detection performance.

3.4.5 Relevancy Analysis of Feature Categories

After observing that the ICC feature category has less impact on classifier perfor-

mance and possibly introduces redundancy when combined with all other categories,

we further studied the relevancy of each feature category. We used a relevancy mea-

sure based on entropy and information gain for this analysis. The entropy of a random

variable X (e.g., a feature) is defined as:

En(X) = −
∑
i

P (xi)log2(P (xi)) (3.5)

The entropy of X given another variable Y is:

En(X|Y ) = −
∑
j

P (yj)
∑
i

P (xi|yi)log2(P (xi|yi)) (3.6)

The information gain of X given Y can be calculated as [217]:

Ig(X|Y ) = En(X)− En(X|Y ). (3.7)

We computed the information gain of each feature based on the class label and used

it as the feature relevancy indicator. If this value was greater than a threshold ϑ, the

feature was considered to be relevant. The value of ϑ is predefined manually. Figure

3.13 shows the number of relevant features with respect to the ϑ threshold for each

category. Increasing the threshold indicates a more stringent condition for a feature

to be selected as relevant which, in other words, means that only features that exhibit
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higher influence on prediction outcome are selected at an increased threshold. Figure

3.13 shows that the number of relevant ICC features decreased sharply with increased

threshold, while other feature categories showed a much slower decrement. Dynamic

category showed the least decrement with increased threshold, suggesting that almost

all of the feature set is highly relevant. However, we see that the number of relevant

features for the ICC category drastically reduces with a slight increase in threshold

value after ϑ = 1 × 10−4. As a further step, we also inspected the individual ICC

features deemed not relevant (i.e., redundant) at the threshold value 1 × 10−4. At

this threshold value, about 60000 ICC features were found to be redundant and, after

closer inspection, we found that these features were absent in most of the apps. In fact,

none of these features were present in more than 10 apps in the dataset. This suggests

that this large number of ICC features do not provide any useful information about

malware classification; rather, they introduce redundancy and mislead the classifier

leading to decreased classification performance.
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Figure 3.13 Number of relevant features
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3.4.6 Further Analysis of ICC Feature Category

Previous experiments showed that the ICC feature category does not have a posi-

tive impact on malware classification models. However, this could also indicate that

the dataset does not have a sufficient number of applications that perform collusion

attacks, i.e., the type of attack ICC features can detect. Hence, to further analyze

the efficacy of ICC features we augmented the dataset with malware samples that

are specifically generated. For this purpose, we used the ACID tool [218] and gener-

ated 832 colluding apps that access one of the sensitive data listed in Table 3.5 and

cooperate with another app to leak the information through ICC.

Table 3.5 Information accessed by generated colluding apps.

Function name Accessed information
IMEI Accesses the device IMEI number

Microphone Records phone audio
Contacts Reads phone contacts
History Accesses the navigation history
Location Accesses the device location
WiFi Gets the list of WiFi SSIDs

Accounts Reads the device account information

With this augmented dataset we performed additional experiments with the DNN

classifier. Table 3.6 shows the results of these experiments. As the table shows,

there is not much difference in the performance and only a slight improvement is

observed, with the accuracy increasing from 98.39% to 98.66% and the AUC value

(in Fig. 3.14) increasing from 0.982 to 0.997. However, this improvement comes with

a huge computation overhead as depicted in Fig. 3.15 which shows that when ICC

features are combined with other categories the model training time increases by a

magnitude of ten. This can create serious issues especially when a faster deployment

of the model is required. Also, increased training time hampers model retraining

which is required for adaptation and for making the model robust against newer

attacks and vulnerabilities.
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Table 3.6 Malware detection performance with generated collusion attacks
using ICC feature category. Note that the dataset used here is the augmented
dataset comprising the previous samples and 832 colluding malware apps.

Metric
Features ICC Permission, API, Dynamic ALL

TP 2332 3746 3756
TN 5051 5484 5499
FP 526 93 78
FN 1472 58 48

Accuracy 78.70 98.39 98.66
Precision 0.816 0.976 0.980
Recall 0.613 0.985 0.987

Specificity 0.906 0.983 0.986
G-mean 0.745 0.984 0.987
F1-score 0.700 0.980 0.984
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Figure 3.14 ROC curve and AUC with generated attacks using ICC feature
category. AUC1 = All feature categories, AUC2 = Permission, API, and
Dynamic, and AUC3 = ICC features.
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The aim of this study was to investigate the relative influence of different feature

categories on mobile malware detection. Considering the performance and execution

time of different feature category combinations, we recommend that the permission,

API calls, and dynamic features be used for the mobile malware detection systems.

3.5 Conclusion

In this chapter, we analyzed the impact of different feature categories of mobile appli-

cations on machine learning-based malware detection systems. Through systematic

investigation and extensive experiments, we showed that blind combination of fea-

tures degrades classifier performance and some feature categories add redundancy

to the feature space. In the process, feature categories that complement each other

were determined and the combination of permission, API calls, and dynamic feature

categories was found to yield the best performance. Additionally, a novel embedding

technique for contextual information was devised in this chapter. This allows the con-

textual information to be embedded in the feature space which facilitates its combined

usage with other feature categories. The classifier designed in this chapter provides

87



the basis for the experiments in the rest of the work. The next chapter discusses an

evasive attack (known as adversarial attack) that breaks down the detection systems

discussed in this chapter and presents an intelligent selective sampling technique to

defend against such attacks.
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Chapter Four

Robustness Against Adversarial

Malware Attacks

4.1 Introduction

In the previous chapter, we conducted an extensive study on the feature categories for

designing a mobile malware detection system and identified their best combination

in terms of classification performance which provides the basis for the rest of our

works. We recall from Sec. 2.10 that machine learning models are vulnerable to

adversarial attacks, which is an evasive technique designed to bypass a detection

system. An already detected malware can morph itself with carefully introduced

perturbation and render a detection system ineffective. Retraining a model with

self-crafted adversarial samples can be used to defend against such attacks. The

quality of the retraining samples plays a crucial role in this regard since retraining

with too many samples results in performance degradation due to over-fitting. Also,

randomly selected sample subset, as suggested by some previous works, can lead to

sub-optimal performance since good quality samples can be left out. No prior works

in the literature addressed these issues. In this chapter, we design an intelligent

technique for evaluating the sample quality and selectively choose the best possible

sample set for adversarial retraining to make a malware detection system robust
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against adversarial attacks.

4.2 Adversarial Examples

Adversarial attacks are conducted through adversarial samples crafted by introducing

a small perturbation into correctly classified samples so that the classifier is misled

and classifies them into incorrect classes. Formally, we take a malware detection

model M (described in Sec. 2.5) and represent a correctly classified sample X as

M(X) = y, where y is its original class label. An adversarial sample X ′ is crafted by

introducing perturbation δx such that

argmin
δx

M(X + δx) = {y′ | y′ 6= y} (4.1)

where y′ denotes an incorrect class label and δx is the perturbation introduced to the

sample X.

Figure 4.1 shows an illustrative example of an adversarial sample. The blue and green

stripes represent the value ‘0’ and ‘1’ in the feature vector, respectively. The top part

of the figure represents a malicious sample correctly classified by the detection system.

The bottom part is an adversarially crafted sample with some of the features modified

from the original malware sample. As shown in Fig. 4.1, the features were modified

in two of the regions (indicated by two brackets at the bottom) and left unchanged

in the other two (indicated by two brackets on the top). The unchanged regions

represent the functionalities preserved from the original sample. Due to this careful

modification, an adversarial sample can mislead the classifier. As long as the malicious

functionalities of the application are preserved, an adversarially crafted sample can

function as a malware application and go undetected by the detection system.

adversarial attacks can be divided into several types depending on the attacker’s goal

and knowledge about the detection system. These are described below.
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Figure 4.1 Illustrative example of an adversarial sample

Types of Adversarial Attack

Based on the attacker’s knowledge about the detection system, adversarial attacks

can be of three types:

• White-box attack assumes the attacker has a detailed knowledge about the de-

tection system (i.e., knows the model architecture, hyper-parameters, training

and testing data, and model weights).

• Semi black-box attack assumes the attacker has partial knowledge of the target

system. For example, only the training and testing data are known without the

internal detail of the model.

• Back-box attack assumes that the attacker does not have any knowledge of the

target system regarding its data or parameters. The system is only accessible

as a standard user, i.e., only the output of the model is available either in the

form of class label or probability score.

Based on the attacker’s goal, adversarial attacks can be of two types:
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• Targeted attack specifies the target class of the adversarial sample. This is

achieved by setting the condition to y′ = yt in Eq. (4.1) where yt is the intended

target class.

• Non-targeted attack only tries to mislead the classifier while minimizing the

perturbation. This could be achieved by launching several targeted attacks and

taking a successful sample.

In a binary classification scenario (e.g., benign and malware), targeted attacks are

equivalent to non-targeted attacks. It is noteworthy from the above discussion that

an adversary is strongest in a white-box attack scenario where it has access to all the

information about the target model. Most of the approaches in the literature are also

white-box in nature [151, 154, 161, 219]. With a view to achieving robustness against

the strongest possible attack, we also adopted a white-box attack model in our work.

In the following section, the attack model and our proposed defense methods are

detailed.

4.3 Methodology

In this section, we describe the methodology of our work. Figure 4.2 shows the work-

flow of adversarial retraining using our selective samples strategy (i.e., crafting and

identifying the samples that, when used in retraining the detection model, will make

the model more robust). A classifier trained with clean data (i.e., the dataset without

adversarial samples) is used as a target for adversarial attacks. Afterward, the mal-

ware samples from the test data are perturbed to craft adversarial samples to evade

detection by the classifier. The malicious samples that were correctly detected by

classifier but evaded detection after perturbation were considered successful adver-

sarial samples. Afterwards, a subset of adversarial samples was selected and combined

with the original samples to retrain the same classifier. For this purpose, we propose

two mechanisms to select adversarial samples. Section 4.3.1 describes the adversar-
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ial sample crafting process adopted in our work. The detail of our sample selection

technique is presented in Sec. 4.3.2, followed by the experiments and results in Sec.

4.4.

4.3.1 Crafting Adversarial Malware Samples

The technique of crafting adversarial samples described in this section can be applied

to any differentiable classification function. However, the most common application

of this is with DNN [151, 154, 161]. Our work also adopted a DNN to craft the

adversarial samples. Note that once adversarial samples are crafted, they can also be

used to test against other classification methods.

We begin with a malware sample X ∈ {0, 1}n and note the prediction outcomes

using the DNN. Using two neurons to represent two classes, the final layer of the

trained DNN model M outputs two values M(X) = [M0(X),M1(X)], indicating

the probability of X being a benign application or a malware respectively. As the

prediction, we choose the class that has the highest probability. For crafting an

adversarial example, we want to find a small perturbation δx so that the output

M(X + δx) is different from the original prediction and matches the attacker’s goal.

This can be done by solving Eq. (4.1) described in Sec. 4.2.

However, the complex functions learned by neural networks are generally non-linear

and non-convex. As a result, finding a solution to this problem is difficult. Re-

searchers have proposed various heuristic solutions including forward gradient-based

[154] and saliency map-based solutions [219]. The most notable works in this regard

are described in Sec. 2.10.2.

In our work, we adopt a saliency map-based adversarial sample crafting technique

using the Jacobian matrix since it is more suitable for binary features [219]. The

goal here is to craft adversarial malware samples so that they are classified as benign

applications. The Jacobian matrix is defined as
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Figure 4.2 Work flow of selective adversarial retraining

JM =
∇M(X)

∇X
=

∇M0(X)
∇X0

... ∇M0(X)
∇Xn

∇M1(X)
∇X0

... ∇M1(X)
∇Xn

 (4.2)

here ∇ denotes the gradient of a function. After computing the Jacobian matrix (i.e.,

the derivatives of the cost function with respect to the input), we modify the feature

that is most influential towards our target class. Since our target class is 0 (i.e., to

fool the classifier to misclassify the adversarial sample as begin) we find the feature

that has the highest value in ∇M0(X) for modification. This process is iterated until

the malicious application is misclassified as benign.

However, modifying the value of such features is not as straightforward. For example,

the method was originally proposed for image processing where several constraints

were imposed so that the modification of pixel values does not visually distort the

image. An example of such a constraint can be allowing only a small change in pixel

value (i.e., keeping the change under a certain threshold). However, unlike image

processing, where the values of the image pixels are continuous, we only have 0 and 1
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as feature values (except the contextual values which cannot be modified as we will see

later). As a result, thresholding for feature values cannot be applied here. Further,

an attacker will ensure that the malicious functionality of a malicious application

is not hampered while adversarial samples are crafted and hence, arbitrary features

cannot be modified. For this, we imposed a different set of constraints for crafting

adversarial malware samples. These are described below.

Constraints for Adversarial Malware Crafting

As crafted malware samples need to preserve their malicious functionality, the features

that could potentially hamper the maliciousness of an application cannot be modified.

Taking the malicious behavior of a broad range of malware into account, we impose the

following specific constraints on adversarial malware crafting to preserve its malicious

functionality:

• Features are allowed to be added but not removed since removing a feature

could potentially break down the corresponding code execution. This means we

only allow modification to the features that have value 0.

• We allow the addition of only those features extracted from the AndroidMan-

ifest.xml file (discussed in Sec. 2.2) since adding features in this way does not

necessitate modification of the original code, hence the original functionality of

the code can be preserved.

• Modification of dynamic (i.e., system call) features is not allowed. This is

because adding a dynamic feature (e.g., system call) requires modifying the

code for executing the corresponding function which, in turn, may hamper the

original functionality of the malware.

To implement the above constraints, we first define a vector ν ∈ {0, 1}n, where νi = 1

if feature i is allowed to be modified and νi = 0 otherwise. After computing the

derivatives from Eq. (4.2), we obtain the final score using the following equation
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S(X) = ∇M0(X)× neg(X)× ν (4.3)

where neg(X) is a negation function on vector X (i.e., for each index it changes the

value from 0 to 1 and vice versa). After this, we choose the index i for modification

using the following equation:

i = argmax
j

S(Xj) (4.4)

4.3.2 Proposed Selection Methods for Adversarial Retraining

This section proposes two methods for selecting adversarial samples.

Method 1: Based on Distance from Cluster Center

In this method, adversarial samples are selected by computing the distance of these

samples from the malware cluster center. For this, a distance score, Sd(X), is first

calculated for each adversarial samples X using the following equation:

Sd(X) = min
∀k∈K

Distk(X) (4.5)

where K is the set of malware clusters, and Distk(X) is a distance measure between

sample X and cluster center k. Note that malware samples may form multiple clus-

ters depending on the types of malware in the dataset. Any clustering algorithm

(e.g., K-means clustering) can be used for this purpose. To investigate the impact

of distance measure types on the proposed selection strategy, we experimented with

various distance measures such as:
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The Euclidean distance :
√∑

i=1

(ai − bi)2 (4.6)

Hamming distance :
∑
i=1

(ai 6= bi) (4.7)

L1-norm :
∑
i=1

|ai − bi| (4.8)

Thereafter, the samples were sorted based on the distance score and the first n number

of samples with the least score were selected for retraining. Intuitively, these are the

samples that should have been correctly classified since they are closer to the cluster

center, yet they were able to fool the classifier.

Method 2: Based on Probability Derived from Kernel-based Learning

(KBL)

In this method, adversarial samples are selected based on the probability derived

from a kernel based learning. We implement this by first training a SVM kernel on

the dataset free of any adversarial sample. The decision function f(x) is computed

such that sign(f(x)) is used to predict the label of a sample. Afterward, in order to

compute the class probability Pr(y = 1|x)–that is, the probability that a sample is a

malware–we consider the following approximation based on Platt [220]:

Pr(y = 1|x) ≈ PA,B(f) ≡ 1

1 + exp(Af +B)
(4.9)

where f = f(x). Assuming fi is an estimate of f(xi), the best value of A,B is

determined by minimizing the negative log likelihood of the training data:

min
A,B

−

∑
i

tilog(pi) + (1− ti)log(1− pi)

 (4.10)

where pi = PA,B(fi) (Eq. (4.9)) and ti’s are the target label for the optimization

problem defined as:
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ti =


N++1
N++2

, if yi = +1.

1
N−+2

, if yi = −1.

(4.11)

where N+ and N− are the number of positive and negative samples respectively. Using

Eq. (4.9) - (4.11), the probability of adversarial samples to be a malware is computed.

We chose the first n adversarial samples that have the least probability of being a

malware. Showing a lower probability while maintaining the malware functionalities

means these samples are more likely to fool a classifier.

4.4 Experiments and Results

The following section describes the experimental results. The first set of experiments

were conducted with DNN followed by three other classifiers used to verify perfor-

mance improvements.

4.4.1 Resilience by Retraining with Deep Neural Network

In this section, we present the performance evaluation of adversarial retraining with

DNNs when the samples are chosen using our proposed selection strategy and com-

pared with the prior works in the literature where retraining samples were randomly

selected. We first trained a DNN on the clean dataset with thee hidden layers con-

sisting of 2000, 1000, and 500 neurons respectively. The network achieved 98.3%

accuracy. Applying the method and satisfying the constraints outlined in Sec. 4.3.1,

293 adversarial samples were generated by modifying the malware samples used in

the test dataset. The classification accuracy dropped to 71% when tested on the ad-

versarial data. Thereafter, a certain number (n) of adversarial samples were selected

for retraining the classifier either randomly or using our proposed strategies.

For our first proposed method, based on the distance from the malware cluster center,

we considered the malware samples as a single cluster for implementation simplicity.
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However, it can easily be extended for multiple clusters using Eq. (4.5) and for

any clustering algorithm. The rest of the adversarial samples were combined with

the clean test data for evaluation. Once the adversarial samples were selected, the

classifier was retrained using a new training set consisting of original training samples

and the selected adversarial samples as additional malicious samples. We incremented

the value of n from 100 with an interval of 10. Each of these experiments was run for

20 trials varying random initialization of DNN weights and biases, and the average

of these trials is reported in the results presented below.

Figure 4.3 shows the comparison of accuracy and recall values between random selec-

tion [161] and our selection based on the Euclidean distance, L1 norm or KBL after a

DNN is retrained with adversarial samples. Results show that our proposed selection

methods outperform the random selection method. It is also noteworthy that the

KBL approach performs better than other selective strategies.

We postulate that, the probability function f in Eq. (4.9) used in the KBL method es-

sentially reflects a distance from the hyper-plane, separating the samples in the trans-

formed kernel space. Arguably, the better separation between samples, as learned by

the kernel for the transformed feature space, also captures better information from

the samples, leading to better performance.

A comparison of random selection with our other distance-based selection methods

showed only a few cases of random selection performing slightly better. This occurred

mostly in cases where the number of samples for retraining is small (e.g., 100 and

110 samples) where the probability of randomly selecting better samples is higher.

However, the performance difference is not significant in these cases and this effect

diminishes as more samples are chosen for retraining. Figure 4.3 shows the results of

KBL using the RBF kernel. We also explored the possibility of using a linear kernel,

however, it did not result in any performance gain. It has already been shown in

the literature that the linear kernel is a degenerate case of RBF kernel and, hence, a
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Figure 4.3 a) Accuracy and b) recall values of deep neural network after
adversarial retraining when adversarial samples are selected randomly or se-
lectively based on the Euclidean distance, L1 norm or KBL
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properly tuned RBF kernel gives similar or better performance in most cases [221].

Figure 4.3a further shows that a selection of 58–65% adversarial samples for retraining

achieves better performance for all methods. This is especially evident when com-

pared to random selection; KBL achieves a 6% accuracy improvement when trained

with 65% of adversarial samples. Figure 4.3b also shows that KBL attains better

recall value, which is more prominent when more than 50% of adversarial samples are

selected for retraining. Higher recall value indicates the misclassification of fewer ma-

licious samples which is a desired property since the cost of misclassifying a malicious

application is significantly higher than that of misclassifying a benign application.

We further recorded G-mean and F1-score that represent a balance between the false

positives and false negatives and the results are shown in Fig. 4.4. The figure shows

that in most of the cases the selective sampling, especially KBL, performs better

than the random selection strategy, and the highest value for G-mean (Fig. 4.4a) and

F1-score (Fig. 4.4b) were obtained when the DNN model was retrained with 65% of

the adversarial samples.

However, when more than 65% of the adversarial samples are selected for retraining,

the performance degrades with the increasing number of samples. If too many adver-

sarial samples are used for retraining, the classifier starts to over-fit towards malware

and starts misclassifying benign samples at a higher rate. This can further be observed

in Fig. 4.3b which shows that the recall value keeps increasing as more adversarial

samples are used for retraining, indicating that more malicious applications are being

correctly classified (i.e., the number of false negative is decreasing). This occurs at

the expense of increased misclassification of benign samples when there are too many

adversarial samples, such as above 65%. As a result, a gradual decrease of precision

values was also observed as more adversarial samples were used for retraining.

A Wilcoxon Signed-Rank Test [21] comparing random selection and KBL based se-

lective methods yielded a p-value of 4.4 × 10−4, indicating that the performance
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Figure 4.4 a) G-mean and b) F1-score of DNN after adversarial retraining
with random and selective samples
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improvement of KBL, as compared to random selection, is statistically significant.

We further evaluated the impact of network architecture on the performance of ad-

versarial retraining. Table 4.1 shows the accuracy and G-mean values of different

adversarial retraining methods with varying network architecture. The table shows

a slight variation in terms of performance depending on the number of layers and

neurons in each layer of the network. Since networks with less than two hidden layers

are considered shallow, we varied the number of hidden layers from two to four with

a different number of neurons in each layer. Results show that our proposed selection

mechanisms yield better performance than blind random selection, such as 80.69%

and 0.7843 (random) vs 86.08% and 0.8655 (KBL) in terms of accuracy and G-mean

respectively.

A plot of ROC curve and the AUC using the selection methods is shown in Fig. 4.5.

The figure shows our selection methods achieve better AUC than random selection,

and the best AUC of 0.958 is achieved by the KBL method vs 0.884 in random

selection.
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Figure 4.5 ROC curve and AUC for adversarial retraining using random,
the Euclidean distance-based and KBL-based selection
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4.4.2 Resilience by retraining with Other Classifiers

We further evaluated the selective strategies of adversarial retraining with three other

widely used classifiers, namely, Random forest, SVM and Bayesian classifier. We first

experimented with how effectively the adversarial samples crafted using DNNs can

mislead those classifiers. For this, we first trained a classifier with original samples and

tested it with clean test samples ensure its performance was satisfactory. Afterward,

we mixed adversarial samples with the clean samples and evaluated the classifier’s

performance. Table 4.2 shows the accuracy of different classifiers when tested with

clean samples and samples mixed with adversarial ones. The table shows a significant

drop in classifiers’ performance when tested with adversarial samples. This suggests

that adversarial samples crafted using DNNs are similarly effective in misleading other

classifiers as well.

We subsequently retrained these classifiers with the adversarial samples crafted using

DNN and compared the efficacy of our selective methods to that of random selection.

Figure 4.6 shows the comparison of malware detection accuracy after adversarial

retraining with the classifiers as measured by a) SVM, b) Random forest, and c)

Bayesian. It is observed that the KBL- and the Euclidean distance-based selection

methods clearly outperform the random selection method for adversarial retraining in

all the classifiers while L1 norm-based selection performs better than random selection

for SVM and Random forest classifier. Calculating G-mean and F1-score also showed

improved performance by our KBL method. For example, when using the SVM

classifier at 65% samples, G-mean and F1-scores are 0.936 and 0.942 respectively for

KBL selection, and 0.885 and 0.902 for random selection. The G-mean and F1-score

values are shown in Figures 4.7 and 4.8 respectively.

For these classifiers, a Wilcoxon Signed-Rank Test comparing KBL with random

selection method yielded a p-value of < 3.8 × 10−4, validating the performance im-

provement as being statistically significant.
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Figure 4.6 Malware detection accuracy of adversarial training for a) SVM
b) Random forest and c) Bayesian classifier.
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Figure 4.7 G-mean value of adversarial training for a) SVM b) Random
forest and c) Bayesian classifier.
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Figure 4.8 F1-score value of adversarial training for a) SVM b) Random
forest and c) Bayesian classifier.
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Table 4.2 Accuracy of different classifiers when tested on clean samples and
samples mixed with adversarial samples.

Classifier
Accuracy (%)

Clean Samples Mixed with adveresarial samples

SVM 98.5 73.19

Random forest 97.75 73.83

Bayesian 97.25 72.82

4.5 Conclusion

In this chapter, we studied the vulnerability of malware detection systems against ad-

versarial attacks. Rather than selecting random adversarial samples for retraining a

classifier, we proposed two techniques for selecting adversarial samples. Experimental

results reveal that, compared to the random selection strategy proposed in previous

works, our selective sample selection strategy leads to better performance. Our KBL

selection method achieved a 6% performance improvement in accuracy over random-

ized selection. While prior works are mostly based on deep neural networks, we show

that other well-known classifiers are also vulnerable against adversarial samples in

malware detection. Our selection methods yielded similar performance improvement

for those classifiers as well. In the next chapter, we deal with an important data

characteristic known as imbalanced data problem which can make a malware detec-

tion system biased and degrade its performance in detecting malicious applications.

We propose a novel technique to balance the data and develop a hybrid system that

effectively deals with imbalanced data problem in mobile malware detection.
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Chapter Five

Tackling Data Imbalance in Model

Training

5.1 Introduction

In the last chapter, we investigated adversarial attacks on malware detection systems.

We showed that adversarial samples can successfully evade malware detection by

carefully changing their features. We developed a selective strategy as a defense

mechanism against such attacks that retrains a classifier with an optimal adversarial

sample set. However, machine learning-based classifiers are designed for balanced

data distribution, that is, the number of samples from each class (i.e., malware and

benign) are expected to be similar. Proposed detection systems in the literature also

suffer from this inherent assumption. In real-world malware detection problems, the

data distribution is highly imbalanced since benign applications greatly outnumber

malware applications. This imbalance data problem contributes to the degraded

performance of machine learning models for malware detection. We address this gap

in the literature. In the following sections, we present a hybrid approach using a novel

synthetic oversampling strategy and an adaptive cost schema to handle imbalanced

data problem in mobile malware detection.
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5.2 Methodology

Figure 5.1 shows the workflow of our proposed approaches for handling imbalanced

data in mobile malware detection. We first propose a new synthetic over-sampling

technique for mobile malware detection and combine this with our first approach,

which is based on the fuzzy synthetic minority over-sampling technique (Fuzzy-

SMOTE [16]). This approach is labelled “Proposed Method 1" in Fig. 5.1. Af-

terward, we propose a dynamic minority class weight scheme combined with the

synthetic sampling technique, labelled as “Proposed Method 2" in Fig. 5.1. Our

proposed approaches are detailed in following sections.

5.2.1 Proposed Technique for Synthetic Malware Oversam-

pling

Data imbalance in mobile malware detection is characterized by a large number of

benign applications compared to the number of malicious applications. We define the

imbalance ratio, ρ, as follows

ρ =
no. of malware

total no. of apps
× 100% (5.1)

To ensure balanced data for training a classifier it is necessary to either increase

the number of samples of the minority class (over-sampling) or decrease the num-

ber of samples of the majority class (under-sampling). However, over-sampling and

under-sampling have their own drawbacks. Over-sampling the minority class by sim-

ply replicating the samples often results in redundant information for the classifier

resulting in over-fitting. On the other hand, under-sampling by removing minority

samples leads to valuable information loss resulting in poor classification performance,

especially for the majority classes. Many works in the literature are, thus, in favor of

over-sampling since it preserves the available information. Synthetic over-sampling
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Figure 5.1 Work flow of proposed imbalanced data handling approaches

mitigates these two problems by generating artificial samples of the minority class,

thus preserving all the available information of the majority class. Hence, creat-

ing synthetic samples of the minority class is generally a better choice for handling

imbalanced data.

Section 2.11 described the most notable works in the literature for data balancing

with synthetic samples. However, these techniques cannot be used in mobile malware

detection for a few reasons. First, the techniques to generate synthetic samples are

primarily for features having continuous values but the features in mobile malware

detection (except the features with contextual information) in general are binary.

Also, the general idea of interpolating artificial samples between two original samples

by calculating the distance between them is not applicable here. Synthetic samples

created in this way often do not represent a valid application since we cannot just

randomly remove or add features to an application. A sample generated in this way

112



may represent an invalid application with broken code sequences. To illustrate this,

we take the example of the MoonSMS malware described in Sec. 3.3 which sends

premium messages to steal money from the user. It requires the “SEND_SMS" per-

mission to function properly and calls the “sendTextMessage()" function for sending

messages. This means that the feature vector of this application will have 1 in the

index corresponding to “SEND_SMS" permission, and a specific value in the index rep-

resenting the “sendTextMessage()" function depending on the contextual use of that

function. If the synthetic sample generation process arbitrarily modifies these values,

the corresponding application code will no longer have the functionality to send an

SMS. Further, an interpolated value (i.e., a fractional number) cannot be used for

a permission feature since it cannot have real values. This means this process of

synthetic sampling may end up generating additional noise rather than useful data

points.

We propose a technique for over-sampling malicious applications with the following

conditions:

• The samples should not be copies of the original application, which results in

data redundancy, rather, samples should be generated synthetically to provide

additional information for the classifier.

• The generated samples should represent a valid application (i.e., the correspond-

ing code should not have any broken sequences).

• The synthetic malware samples should have their malicious functionality pre-

served.

Our goal is to generate synthetic malware samples until a balance between the two

classes is reached. For this, we took the original malware samples and modified their

features to generate new samples. However, during the synthetic malware sampling

process, we imposed the constraints described in Sec. 4.3.1 so that the above condi-

tions are met and valid samples are generated.
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Algorithm 7 Synthetic Malware Oversampling
Input: Xmal, Nmal, Nben, Idxm, ρ (candidate malware feature matrix, no. of
candidate malware, no. of benign apps, indices of the features that are allowed
to change, target malware to benign ratio)
Output: Xmal // augmented with synthetic malware

1: η ← ρ×Nben

1−ρ −Nmal // required no. of malware
2: while η > 0 do
3: if η > Nmal then
4: S ← randomly choose Nmal no. of malware from Xmal

5: η ← η −Nmal

6: else
7: S ← randomly choose η no. of malware of from Xmal

8: η ← 0
9: end if

10: Syn← SynMal(S, Idxm) // generate synth. malware
11: Xmal ← Xmal ∪ Syn
12: end while
13: function SynMal(V ectors, Idx_mutable)
14: for each V in V ectors do
15: randomly choose index i such that, V [i] = 0 & i ∈ Idx_mutable
16: V [i]← 1
17: end for
18: return V ectors
19: end function

Algorithm 7 shows the pseudo-code of our proposed approach for synthetic malware

oversampling. It uses a candidate malware feature matrix (Xmal), the number of

candidate malware (Nmal) and benign applications (Nben), indices of mutable features

(Idxm), and the desired ratio between malware and benign applications (ρ) as inputs.

The desired ratio allows a user the flexibility to change the level of balance between

malware and benign applications, oversampling can thus be undertaken to reach both

perfect balance (ρ = 0.5) and moderate imbalance (ρ 6= 0.5). For our experiments,

we consider ρ=0.5.

Line 1 of the algorithm, depending on Nmal, Nben and ρ, calculates the number of

malware necessary to reach the target malware-to-benign ratio. An iterative process

then follows. At each iteration except the last, we select Nmal samples from the

114



current malware set, modify them to generate synthetic malware samples, and add

them to the current set of malware samples (lines 2 to 12). This way of random

choosing of malware, mutation of features, and augmenting the malware set before

sampling in the next iteration reduces the probability that the same copy of synthetic

malware is generated too many times. Thus, our approach reduces redundancy and

also allows broader coverage of feature space. For the last iteration, only the number

of malware samples required to reach the desired ratio (ρ) is generated and added to

Xmal. Lines 13 to 19 define the function that modifies the malware feature vector to

generate synthetic samples. It is noteworthy that our model is not affected by any

of the limitations posed by distance measures (e.g., the Euclidean distance) since we

are permuting the features rather than interpolating them.

5.2.2 Proposed Approach 1: Modified Fuzzy-SMOTE

This approach is based on Fuzzy-SMOTE [16] that over-samples the minority class

samples depending on their membership degree to the minority class based on fuzzy

set theory. The fuzzy set theory states that minority samples that have a lower degree

of membership to the minority class are more likely to be misclassified. By over-

sampling these samples, the decision region of the minority class can be broadened

so that the classification bias is removed. To illustrate this, we consider two classes

Cb and Cm denoting classes of benign and malicious applications respectively. Let vb

and vm denote the centroids of the classes respectively which are defined as follows

vb =
1

Nb

Nb∑
n=1

xbn (5.2)

vm =
1

Nm

Nm∑
n=1

xmn (5.3)

where Nb and Nm denotes the number of samples in benign and malware class re-

spectively and xbn and xmn denotes the nth sample from benign and malware class
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Figure 5.2 Illustrating membership degree for sample xi and xj to class Cb
and Cm

respectively. The membership degree of a sample x to a class Ci, MCi
(x), is then

defined as follows:

MCi
(x) =

[
m∑
k=b

(
‖x− vi‖2

‖x− vk‖2

)1/(d−1)]−1
(5.4)

where k is set to b and m for benign and malware class respectively,‖x− vi‖ denotes

the Euclidean distance of sample x from centroid vi, and d denotes the fuzziness of

membership to each class and is set to 2 as in the original work [16]. A higher value

of MCi
(x) indicates that the sample x has a higher membership degree to class Ci

and is likely to be classified as a class Ci sample.

Figure 5.2 illustrates membership determination. Let xl and xj be two malware class

samples. Because xl is in a region distinctly characterized by malware samples, it will

have a higher membership degree to class Cm than to class Cb, hence it is likely to be

classified to class Cm. But sample xj lies in the fuzzy region. Thus, if a sample xj
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has a membership degree such that MCm(xj) ≤ 0.5 and MCb
(xj) > 0.5, the sample is

closer to class Cb than to Cm and is more likely to be classified to class Cb. To balance

the data, the minority class samples (i.e., malware) whose membership degree to the

minority class satisfy MCm(.) ≤ 0.5 are identified first. These samples in the fuzzy

region are those that Fuzzy-SMOTE over-samples using an interpolation technique.

As our first proposed approach, we consider a modification of Fuzzy-SMOTE. More

precisely, similar to [16], we also consider the cluster centers of malware (minority)

and benign (majority) class samples and consider the same membership function as

in Eq. (5.4). Based on the membership function, we also identify malware samples

that fall within the fuzzy regions. However, contrary to [16], whose interpolation

technique leads to continuous variables and therefore invalid malware samples, we

apply the over-sampling technique proposed in Sec. 5.2.1 to balance the data. This

ensures that our approach considers only the synthetic samples that are valid and

preserve malware functionalities. The candidate malware feature matrix passed as

input for the first approach are only the samples that the fuzzy membership function

in Eq. (5.4) characterizes as having a higher likelihood of misclassification.

5.2.3 Proposed Approach 2: Modified Loss Function with Dy-

namic Minority Class Weight

Here, we propose a hybrid of data level and algorithm level technique to deal with

imbalanced data. We use the technique proposed in Sec. 5.2.1 as the data level tech-

nique. Additionally, at the algorithm level, we propose a modified loss function with a

weight dynamically adjusted for the minority class. Since the cost of misclassifying a

malware is greater than that of a benign application, our cost function initially gives

more weight (penalty) to a malicious application. However, as the training progresses

keeping a high penalty can further lead to model instability [222]. Hence, we adjust

this weight dynamically based on the performance of the model on the validation set
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during the training phase of the model.

For this we use the cross entropy loss and the usual cross entropy loss is defined as

− (ylog(p) + (1− y)log(1− p)) (5.5)

where y is the original label and p is the probability predicted by the model. We

define the weighted cross-entropy loss as

− (ylog(p) + Pw(1− y)log(1− p)) (5.6)

where Pw is the minority class weight. We initialize this weight as follows

Pw0 =
Nm −Nb

γ ×Nb

(5.7)

Pw = 1 + Pw0 (5.8)

where γ is a parameter that controls the scale of the minority class weight. Our

empirical study shows that, depending on the imbalance ratio, the optimal value

for γ is between 20 and 90. The weight, Pw, is dynamically adjusted based on the

model’s performance during training. We calculate the F1-score of the model on the

validation set after each epoch and then adjust the weight as follows

Pw = 1 + Pw0(1 + log(1− F1-score)) (5.9)

where Pw0 is defined in Eq. (5.6). The lower bound of this weight is set to 1, i.e., when

the majority and minority class weights become the same. Here, “F1-score" measure

was used for weight adjustment instead of “accuracy" since accuracy can provide

misleading information about classifier performance when dealing with imbalanced

data (detailed in later sections). The characteristic curve of this dynamic weight is

shown in Fig. 5.3 with varying initial weights. It shows that the minority class weight

remains high where the model is suffering from class imbalance and its F1-score is
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Figure 5.3 Minority class weight characteristic curve

poor. The minority class weight starts to decrease towards the region where the model

starts to adapt and the F1-score improves.

5.3 Experiments and Results

5.3.1 Dataset Preparation

We took 50,000 samples from the datasets described in Sec. 2.6. Five hundred mal-

ware samples were randomly selected as minority class samples and the number of

benign samples was varied from 4500 to 49500 to formulate several datasets with

various imbalance ratios. A total of 10 datasets were produced in the process with

an imbalance ratio varying from 10% to 1%. Stratified 10-fold cross-validation was

used for each of the datasets. We took 20 trials of the experiments for each dataset

and the average of these trials is reported in the results shown below.
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5.3.2 Discussion

Impact of Data Imbalance on Detection Performance

Figure 5.4 shows the impact of data imbalance on the classifier performance. While

the classification accuracy is above 97% for all the datasets, the figure clearly shows

that the model suffers greatly from data imbalance in terms of recall rate and F1-

score. It also shows that as the data imbalance increases, the classifier becomes

more biased towards the majority class (benign applications) as evidenced through

increased overall accuracy but decreasing recall value and F1-score. Such models with

low recall and F1-score are useless as far as malware detection is concerned.

Performance Comparison

Figure 5.5 shows the performance comparison among the over-sampling, under-sampling,

and our two proposed approaches in terms of accuracy, precision, recall, F1-score, and

G-mean. The figure shows that both of our proposed approaches outperform other

techniques for all the imbalanced ratios. The performance improvement is especially

noticeable when the imbalanced ratio is lower than 5% for precision and F1-score (Fig-

ures 5.5a and 5.5c respectively). For example, with the dataset of 1% imbalance ratio,

our two approaches achieve 0.87 and 0.89 F1-score respectively while over-sampling

and under-sampling achieve 0.64 and 0.17 respectively.

We noticed different trends in terms of recall and F1-score between over-sampling

and under-sampling. In the case of over-sampling, duplicates of the malware samples

are created to balance the dataset. Even though the classifier suffers less from data

imbalance, the duplication leads to over-fitting, and thus, it does not perform as

well on the unseen malware samples as the under-sampling technique. As a result,

the recall value for over-sampling is much lower than that of the under-sampling

technique. However, since no information is lost from the benign samples, the classifier

still performs well on benign samples which is reflected in the better F1-score values.
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This can further be observed in precision values which are better for the over-sampling

technique compared to under-sampling.

On the other hand, under-sampling removes samples from the benign class to balance

the data. This removes the bias towards the majority class, resulting in better recall

value. However, since a lot of information from the majority class is lost, the detection

of benign samples suffers greatly. This is reflected by the drop in F1-score with

increasing level of imbalance, for example, 0.52 and 0.27 for 5% and 2% imbalance

ratio respectively (Fig. 5.5c).

Our proposed approaches outperform all these methods. Since our approaches do

not remove samples from the majority class they do not suffer from information loss.

Further, unlike under-sampling, they do not create mere copies of the minority class

sample; rather, they create synthetic samples by modifying feature values. Hence,

they do not suffer from over-fitting. Moreover, our sample generation technique

(described in Sec. 5.2.1) permutes the features in the binary domain rather than
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interpolating their values. This enables it to explore valid sample space to reduce

data imbalance. Consequently, we see better performance by our approaches.

Further, in our second approach (Sec. 5.2.3), we devised a loss function that assigns

dynamic weights to the minority class to reduce classification bias towards the major-

ity class. This allows this approach to perform better on minority class. This effect is

demonstrated in Fig. 5.5b and 5.5d which shows our second approach achieves higher

recall and G-mean value.

In Fig. 5.5b, we see that in a very few cases, and only in terms of recall value, under-

sampling performs slightly better than our proposed methods. This is observed when

the imbalance ratio goes lower than 3%. Our detailed inspection of the results shows

that when data imbalance is this high (i.e., imbalance ratio is low), under-sampling

removes most of the benign samples from the training data. This allows the classifier

to learn the malware class while ignoring most of the information from the benign

class, resulting in slightly better recall value. However, this comes with a significant

compromise in the overall performance which is evident through very low precision

value and F1-score of the under-sampling method (Figures 5.5a and 5.5c). In contrast,

our methods do not suffer from such limitations, as seen in Fig. 5.5a and Fig. 5.5c

which show our methods outperform under-sampling by a significant margin in terms

of both precision and F1-score.

Table 5.1 shows a detailed performance comparison of our methods with existing

methods for 10% and 5% imbalance ratio. The table shows that under-sampling

reduces more false negatives (FN) than over-sampling; however, since it removes a

significant number of majority samples, the false positive (FP) increases significantly.

On the other hand, over-sampling reduces FP but they perform poorer than our

methods due to over-fitting. Our proposed approaches outperform other methods

while our second approach achieves the best true positive (TP) count (482 for 10%

and 477 for 5%). It is also noteworthy that while the two proposed approaches
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Figure 5.5 Performance comparison of the proposed approaches with over-
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perform similarly in terms of accuracy, G-mean, and F1-score, the second approach

achieves slight improvement in terms of FN compared to the first approach (18 for

10% and 23 for 5%). This is because the second approach assigns dynamic weight to

the minority class which allows it to further reduce the classification bias towards the

majority class.

Figures 5.6a and 5.6b show the ROC curve along with the AUC for 5% and 10%

imbalanced ratio respectively. The figures show that our proposed techniques achieve

better AUC values than the existing techniques for all the imbalanced ratios.

A Wilcoxon Signed-Rank Test [21] comparing our techniques with existing techniques

shows that the p-value is always less than 5.1×10−3, indicating that the performance

improvement of our techniques is statistically significant.

Further Analysis of the Proposed Approaches

To further analyze the characteristics of our proposed approaches we conducted ex-

periments by varying the range of fuzzy region (described in Sec. 5.2.2). Figure 5.7

shows the performance variation of the first proposed approach with various fuzzy

regions. The model’s performance is highly dependent on the chosen range of the

fuzzy region. We see that different imbalance ratio of the dataset requires different

fuzzy region for optimal performance (e.g., region 0.6 for 7% imbalance ratio, and

0.5 and 0.8 for 5% and 3% imbalance ratio respectively for F1-score measure). Also,

for different performance measures, different fuzzy region yields optimal performance

(e.g., in case of 3% imbalance ratio, the best performance is found when the fuzzy

region is 0.8 for F1-score, 0.6 for G-mean, and 0.4 for specificity). Hence, deciding the

fuzzy region for the best performance can prove to be a difficult task. On the other

hand, the dynamic minority class weight in the second proposed approach is auto-

matically adjusted based on the model performance during the training time using

Eq. (5.9). As a result, no manual parameter adjustment is needed and the approach

does not suffer from such drawbacks. Thus, of the two proposed approaches, the
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second approach has higher potentials for application in mobile malware detection

with imbalanced data.

5.4 Conclusion

In this chapter, we addressed the real-world data imbalance characteristics in mobile

malware detection. We showed that traditional over-sampling and under-sampling do

not work well since they suffer from over-fitting and information loss. The existing

synthetic sampling technique also suffers from invalid sample generation. We pro-

posed a novel synthetic malware generation technique that generates mobile malware

samples with valid functionalities. Additionally, we proposed a hybrid technique

that utilizes a loss function assigning weights to the minority class (i.e., malware)

dynamically during the training process. Our experimental results show that our

proposed approaches do not suffer from the above-mentioned drawbacks and the hy-

brid approach improves F1-score by 9%. In the next chapter, we conclude this thesis

by presenting conclusive remarks and some directions for further extensions of this

work.
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Chapter Six

Conclusion and Future Works

In Chapter 1 we formulated three major research objectives that we wanted to address

in this thesis. In the previous three chapters, those problems have been addressed

in detail. In this chapter, we make concluding remarks based on the findings of the

research that addressed those objectives. First, this work systematically investigated

the impact of different feature categories on malware detection performance. Al-

though several works in the literature have performed feature selection in a randomly

chosen feature category set, none have systematically analyzed the effect of individual

feature categories and their different combinations on malware detection performance.

This study filled this gap. Additionally, this work proposed a technique to embed

contextual information into the feature space allowing this information to be used

in combination with other feature categories. Extensive experiments were conducted

to analyze the performance impact of different feature categories on mobile malware

detection. The experiments show that as a single feature category, “permission" pro-

vides the best performance with 96.26% accuracy without contextual information,

and “API calls" provides the best performance with contextual information obtaining

97.89% accuracy. However, when features were combined, the combination of permis-

sion, API calls, and dynamic features provided the best performance attaining 98.21%

accuracy and outperforming the combination of all categories (97.93% accuracy).
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This work then proceeded to make the detection system robust against adversarial

attacks. Tackling adversarial attacks is especially important in malware detection

domain since they can take down a well-performing detection system by carefully

crafting malware samples. The work proposed two approaches to select the best sam-

ple set from self-crafted adversarial samples for retraining classifiers because retraining

with too many samples further degrades detection performance. Randomly selecting

a sample set, as done in prior studies, results in sub-optimal performance. The KBL

method proposed in this work achieves a 6% improvement in terms of detection ac-

curacy. The Wilcoxon Signed-Rank test indicates that the performance improvement

of our proposed approach is statistically significant with p-value < 3.8 × 10−4. One

possible extension of our approach for further improvement could be to implement

an ensemble learning system where different types of classifiers with different archi-

tectures are trained and used together for classification. However, this drastically

increases the complexity of the system which may not be practical especially when

dealing with large amounts of data and when fast deployment is required.

Finally, to address the real-world malware data characteristics, this thesis considered

imbalanced class distribution in the training data set. Since existing data balancing

techniques generate invalid malware samples, this work proposed a novel synthetic

malware sample generation technique that preserves the malicious functionality of the

original samples. To further counter the majority class bias, a dynamic cost schema

was devised that automatically assigns minority class weight during model training.

This hybrid technique improved F1-score by 9%.

The techniques developed in this thesis have great practical aspects that can provide

assistance to system planners especially in designing security components. The meth-

ods proposed in this thesis can be used as a standalone component and integrated

into the system for malware detection making use of its feature extraction and robust

classification mechanism. Also, the individual contributions of this thesis such as

protection against adversarial attacks, and imbalanced data handling mechanism can
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be used separately to improve the robustness of a malware detection system.

Future Works

Considering that a malware detection system is required to be robust and continuously

adapt itself to newfound vulnerabilities and exploits, we present some directions for

extending the work presented in this thesis:

• Since attackers are constantly looking for new vulnerabilities in the system and

attempting to exploit them, the problem of mobile malware detection is always

evolving. Handling such issues (generally known as concept drift) in this regard

is very important to ensure that the system is able to detect new generations of

malware. The imbalanced data handling technique in this work can be utilized

to address this. The method for handling imbalanced data deals with differences

in data distribution in terms of sample size. It can be extended for concept

drift that changes the data distribution from a different perspective since newer

features get added to the feature space or certain features become stronger

relative to others over time. In addition to being able to learn newer attacks,

it is also important to form a mechanism to forget obsolete information. For

example, Sec. 2.6 mentioned some attacks becoming invalidated or outdated due

to OS upgrades. The information particularly associated with such attacks need

to be forgotten by the model for better generalization and overall performance

of the detection system. Identifying the point where concept drift starts to

occur is also another major challenge in this regard and which can be addressed

with time-stamped data and periodically evaluating the classifier looking for

significant performance drop.

• The adversarial sample crafting technique in Chapter 4 can be extended to

provide explainable decisions. For example, as demonstrated in this thesis, it is

possible to identify the minimum number of features that need to be modified in

132



order to mislead a classifier. These features can be taken as the most influential

features and analyzing their semantics and corresponding codes can provide the

reasoning behind a particular prediction. This can be valuable in designing a

better detection system, especially for resolving the false negatives since it can

explain why a particular malicious behavior went undetected.

• The robustness mechanisms against adversarial attacks can be extended to

achieve resilience against zero-day attacks. Zero-day attacks refer to the ex-

ploitation of newfound vulnerabilities in the system that have not been patched

yet. Similar to adversarial retraining, this requires a proactive strategy. Con-

tinual research on current systems must be conducted and whenever a new

vulnerability is found, the associated feature set should be identified. Malware

samples utilizing the features corresponding with newfound vulnerabilities can

then be crafted and a classifier can be retrained with these samples using the

adversarial retraining strategies.

• The models designed in this work can be utilized to develop a federated machine

learning system where a central machine learning system resides in a remote

server and local detection models are trained in individual mobile devices. Each

device trains their model on local data and periodically sends updated infor-

mation about the model to the server. The server aggregates the information

and updates the central model which is then propagated back to the individ-

ual devices. This enables a model to generalize better and learn from a wide

range of data. The major challenge here is to design a proper system that can

effectively aggregate the information obtained from the individual devices that

can update the central model. An efficient protocol that reduces the number of

communication rounds and optimally transfers useful information between the

server and the devices also needs to be designed.
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