286 research outputs found

    Uncertainty in multitask learning: joint representations for probabilistic MR-only radiotherapy planning

    Full text link
    Multi-task neural network architectures provide a mechanism that jointly integrates information from distinct sources. It is ideal in the context of MR-only radiotherapy planning as it can jointly regress a synthetic CT (synCT) scan and segment organs-at-risk (OAR) from MRI. We propose a probabilistic multi-task network that estimates: 1) intrinsic uncertainty through a heteroscedastic noise model for spatially-adaptive task loss weighting and 2) parameter uncertainty through approximate Bayesian inference. This allows sampling of multiple segmentations and synCTs that share their network representation. We test our model on prostate cancer scans and show that it produces more accurate and consistent synCTs with a better estimation in the variance of the errors, state of the art results in OAR segmentation and a methodology for quality assurance in radiotherapy treatment planning.Comment: Early-accept at MICCAI 2018, 8 pages, 4 figure

    Anatomically consistent CNN-based segmentation of organs-at-risk in cranial radiotherapy

    Get PDF
    International audiencePlanning of radiotherapy involves accurate segmentation of a large number of organs at risk (OAR), i.e., organs for which irradiation doses should be minimized to avoid important side effects of the therapy. We propose a deep learning method for segmentation of OAR inside the head, from magnetic resonance images (MRIs). Our system performs segmentation of eight structures: eye, lens, optic nerve, optic chiasm, pituitary gland, hippocampus, brainstem, and brain. We propose an efficient algorithm to train neural networks for an end-to-end segmentation of multiple and nonexclusive classes, addressing problems related to computational costs and missing ground truth segmentations for a subset of classes. We enforce anatomical consistency of the result in a postprocessing step. In particular, we introduce a graph-based algorithm for segmentation of the optic nerves, enforcing the connectivity between the eyes and the optic chiasm. We report cross-validated quantitative results on a database of 44 contrast-enhanced T1-weighted MRIs with provided segmentations of the considered OAR, which were originally used for radiotherapy planning. In addition, the segmentations produced by our model on an independent test set of 50 MRIs were evaluated by an experienced radiotherapist in order to qualitatively assess their accuracy. The mean distances between produced segmentations and the ground truth ranged from 0.1 to 0.7 mm across different organs. A vast majority (96%) of the produced segmentations were found acceptable for radiotherapy planning

    Anatomical Segmentation of CT images for Radiation Therapy planning using Deep Learning

    Get PDF
    Radiation therapy is one of the key cancer treatment options. To avoid adverse effect in tissue surrounding the tumor, the treatment plan needs to be based on accurate anatomical models of the patient. In this thesis, an automatic segmentation solution is constructed for the female breast, the female pelvis and the male pelvis using deep learning. The deep neural networks applied performed as well as the current state of the art networks while improving inference speed by a factor of 15 to 45. The speed increase was gained through processing the whole 3D image at once. The segmentations done by clinicians usually take several hours, whereas the automatic segmentation can be done in less than a second. Therefore, the automatic segmentation provides options for adaptive treatment planning

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Deep learning for fast and robust medical image reconstruction and analysis

    Get PDF
    Medical imaging is an indispensable component of modern medical research as well as clinical practice. Nevertheless, imaging techniques such as magnetic resonance imaging (MRI) and computational tomography (CT) are costly and are less accessible to the majority of the world. To make medical devices more accessible, affordable and efficient, it is crucial to re-calibrate our current imaging paradigm for smarter imaging. In particular, as medical imaging techniques have highly structured forms in the way they acquire data, they provide us with an opportunity to optimise the imaging techniques holistically by leveraging data. The central theme of this thesis is to explore different opportunities where we can exploit data and deep learning to improve the way we extract information for better, faster and smarter imaging. This thesis explores three distinct problems. The first problem is the time-consuming nature of dynamic MR data acquisition and reconstruction. We propose deep learning methods for accelerated dynamic MR image reconstruction, resulting in up to 10-fold reduction in imaging time. The second problem is the redundancy in our current imaging pipeline. Traditionally, imaging pipeline treated acquisition, reconstruction and analysis as separate steps. However, we argue that one can approach them holistically and optimise the entire pipeline jointly for a specific target goal. To this end, we propose deep learning approaches for obtaining high fidelity cardiac MR segmentation directly from significantly undersampled data, greatly exceeding the undersampling limit for image reconstruction. The final part of this thesis tackles the problem of interpretability of the deep learning algorithms. We propose attention-models that can implicitly focus on salient regions in an image to improve accuracy for ultrasound scan plane detection and CT segmentation. More crucially, these models can provide explainability, which is a crucial stepping stone for the harmonisation of smart imaging and current clinical practice.Open Acces
    • …
    corecore