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1 Introduction
Cancer is the second most common death cause in Europe, causing 262 deaths per
100,000 inhabitants[1]. Therefore, the search for a treatment method has become
one of the targets of science in the 21st century. Even though some cancer types can
be well controlled when detected in early stage, such as breast and prostate cancer,
the treatment of late-stage cancer and difficult cancer types, like pancreatic cancer,
remains an issue. For many cancer types, a surgery is a common treatment modality
to remove the tumor. However, the risk for recurring tumors is high, when only
treated with a surgery. In many cases an adjuvant chemotherapy or radiation therapy
is applied in order to ensure the necrosis of remaining tumor cells. Radiation therapy
is, therefore, often used as a second treatment modality for reducing the risk of
recurring tumors. On the other hand, radiation itself poses a risk for creating tumors,
and a high radiation can cause side effects including infertility and incontinence.
Therefore, it is important to constrict the radiation as much as possible to the
target tissue in order to spare critical structures. For this treatment planning, the
anatomical structures need to be segmented from computer tomography scans. The
segmentation is currently done by a trained clinical expert, which takes between 10
minutes and several hours depending on the tumor site. Thus, an adaptive planning
approach, which uses the anatomy of the day, is unfeasible in many cases.

Through the rise of artificial intelligence, several approaches have been made to
automate the segmentation process using deep neural networks [2]. In this work,
different neural architectures are designed and compared to current state-of-the-art
neural networks. The comparison is done both in terms of quality as well as inference
speed. The anatomical sites have been chosen to be the female breast and pelvis as
well as the male pelvis. While in the first site breast cancer is the most prevalent
cancer, the second site is affected by cancer of the uterine corpus or colorectal cancer.
The segmentation of the male pelvis, on the other side, is used for treating prostate
cancer. Thus, this work tries to improve the treatment of three of the most common
cancer types in females and the most common cancer type in males.

This work has been performed in cooperation with Varian Medical Systems Oy,
which provided part of the framework as well as the data.
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2 Background
In the following, a brief introduction into cancer, its different types and treatment
options is given. After this, relevant imaging modalities and radiation therapy is
explained. This section will be concluded with basics of deep learning, which forms
the basis of this work.

2.1 Cancer
Even though many books could be written about cancer in itself, here a very brief
introduction into what cancer is and what types of cancer exist will be given. In
addition to that, the cancer types, which are most prominent, will be explained and
their different treatments discussed.

2.1.1 What is Cancer?

The root cause of cancer is thought to be a genetic mutation, which leads to uncon-
trolled cell growth. Thus, the diseased tissue starts to suppress the healthy tissue
and, therefore, can hinder its function. In some cancer types, the plain accumulation
of tissue can lead to pain and other adverse effects. For instance, bone metastases
can compress the spinal cord. In general, there are more than 200 different cancer
types, such as breast cancer, prostate cancer or leukemia.

2.1.2 Causes of Cancer

The causes for developing cancer can be categorized into micro-causes, such as
mutations inside one cell, and macro-causes such as risk factors like obesity or
inherited gene defects. In the following, a brief introduction into the genetic causes
of cancer will be given.

The development of a cell is controlled by its DNA. This DNA contains sequences,
which can control gene expression, activate proteins or be translated to messenger
ribonucleid acid (mRNA). The vast functions of the DNA are out of the scope of this
short introduction, but an interested reader might be refered to Anthony Griffiths’
book ’Introduction to Genetic Analysis’ [3]. The DNA comprises two polymer strands
of deoxyribonuclid acid. These polymers consist of different nucleotids, which are
connected through its phosphate deoxyribonuclid backbone. In the human DNA,
four different nucleotids are used: The pyrimidine acids thymine and cytosine, and
the purin acids adenine and guanine. Each pyrimidine acid forms a pair with a purin
acids based on hydrogen bonds. Thymine forms two hydrogen bonds with adenine,
whereas, cytosine forms three hydrogen bonds with guanine. Thus, the two strands
of the DNA are tightly connected and form the DNA double-helix. The double-helix
is then wound up using histones, which are supporter proteins. They not only reduce
the length of the DNA, but also play a role in gene expression [4].

One function of the DNA is to provide the ’blueprints’ for proteins. These proteins
are used for many different things, such as building parts of the cell but also for
controlling its growth. Therefore, if the ’blueprints’ are damaged, the growth might
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become uncontrolled, leading to cancer. For creating proteins, a part of the DNA is
first transcribed to an mRNA polymere using the RNA-polymerase. The mRNA, in
contrast to the DNA, is able to leave the nucleus. The mRNA is then translated
by the ribosomes to create a protein. In order to keep this chapter concise, mRNA
processing such as splicing has been omitted here.

Three consecutive base pairs in the DNA form a codon. Each codon exhibits
a certain function in the ’blue print’: Start codons communicate to the mRNA-
polymerase where to start transcribing and the stop codons cause the mRNA-
polymerase to terminate the transcription. The other codons are associated with a
protein, which is included into the polypeptid by the ribosomes. However, different
codons can be used for the same protein, e.g. guanine-cytosine-guanine and guanine-
cytosine-adenine are both translated to alanine.

One type of mutations of the DNA is the point mutation. Here, one base pair of
the DNA is changed. Three types of point mutations can be distinguished: silent,
mis-sense and non-sense mutations. In a silent mutation, the changed codon is
still translated to the same protein. In a mis-sense mutation, the changed codon is
translated to a different protein and in a non-sense mutation, the initial codon is
changed to a stop codon. The base pair can be changed during replication, due to
a misinsertion of the corresponding base. The DNA replication itself is considered
to be accurate with an error rate less than 2 · 10−10 [5]. One hot spot for point
mutations are methylated-cytosine-guanine base pairs. 35 % of point mutations
were found to be within a cytosine–guanine dinucleotid [6] out of which 90 % were
either cytosine→thymine or guanine→adenine mutations. When methylated-cytosine
is spontaneously deaminated, it creates thymine and, thus, producing a thymine-
guanine mismatch. When repairing, either a guanine-adenine or a cytosine–thymine
base pair is created, which leads to the mentioned point mutation. It has been
found that 18.2 % of pathologic lesions are due to this point mutation located in a
5’—cytosin—phosphate—guanin—3’ dinucleotide [7].

Hydroxyl radicals can cause an oxidative damage, which leads similary to the
deamination of cytosin to mutation. However, several polymers exist to remove oxida-
tive damages, such as 8-oxod-guanin-tri-phosphate-phosphatase, MYH-glycosylase
and 8-oxoguanin-DNA-glycosylase.

Other DNA damages are apurinic or apyrimidinic (AP) sites, where the purine or
pyrimidine base is removed. Those sites can be repaired during replication through
different polymerases. It can also be repaired using base excision repair (BER). Here,
the DNA back bone is opened at the AP site and and the matching nucleotide is
inserted.

Through ultra violet radiation, bases inside the DNA can be covalently bound,
leading to dimers, which distort the double helix. The most prevalent one is the
thymin-dimer. In mammals, the neucleotid excision repair (NER) is used to repair
the damage. Here, similarly to the BER, the back bone is opened and the nucleotide
replaced. However, the BER only removes one nucleotide, whereas the NER removes
several nucleotides of the same strand and resynthesizes the matching nucleotide
strand.

The two described DNA damages cause the DNA replicase to stop and, thus,
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slow down the DNA replication. This is defined as replication stress [8], which can
cause a specific cell response through ataxia telangiectasia and Rad3-related protein
(ATR).

Ionizing radiation poses a risk for double-strand fracture and inter-strand cross
links. Depending on the type of double strand breaks, either the non-homologous
DNA end joining (NHEJ) or homology directed repair (HR & SS) can be used for
repairing the fracture [9]. One of the proteins related to the homologous DNA
repair is encoded by the gene RAD51. A modification inside this gene has shown to
be correlated to several different cancer types, such as pancreatic adenocarcinoma
[10], head and neck cancer [11], aggressive prostatic cancer [12], non-small-cell lung
cancer [13], resectable esophageal squamous cell carcinoma [14], estrogen receptor-
positive/progesteron receptor-negative breast cancer [15] and invasive ductal breast
cancer [16]. The BRCA2 gene encodes a regulatory protein for the RAD51 and,
therefore similarly to the defects in the RAD51 gene, a mutation of the BRCA2
gene can lead to different types of cancers, such as triple-negative breast cancer and
ovarian cancer at young age [17].

During each cell cycle, the G1/s checkpoint, the S-phase checkpoint and the
G2/M checkpoint exist, which can be activated, when the DNA is damaged. This
response of the cell to DNA damage is activated through phosphorylation-dependent
events. Several different sensor molecules exists, which signify that the DNA is
damaged. Ataxia-telangeictasia-mutated (ATM) is activated at double-strand breaks
using different helper proteins, which then itself phosphorylates other substrates,
called the transducer proteins, and therefore initializes a signaling cascade. Similarly,
the ATR can activate the signal cascade and is itself an essential protein, as its
absence is lethal at least for mice. In contrast to ATM, ATR response to replication
stress, whereas ATM responses to double-strand breaks [18].

One of the transducer proteins is BRCA1, which is correlated with breast cancer
in females. It is phosphorylated by ATM as a response to double-strand breaks. A
mis-sense mutation or frameshift inside the BRCA1 gene leads to familial breast
and ovarian cancer. ATM itself is a susceptibility factor for breast cancer [19].
Furthermore, a null or hypomorphic ATM gene leads to lymphoid tumors and T-cell
leukemia.

Figure 1 shows a coarse sketch of the above mentioned factors increasing the
susceptibility for breast cancer and their function in the DNA repair for a double
strand breaks. The ATM is used for detecting the DBS and causes the phosphorylation
of the transducer protein BRCA1. BRCA1 causes the activation of RAD51, which is
one of the factors responsible for the actual repair of the DBS. BRCA2, on the other
hand, is one of the regulating factors of RAD51. If one of these proteins is defect,
breast cancer can develop. This is by far not exhaustive and only shows the four
factors - ATM, RAD51, BRCA1 and BRCA2 -, which were mentioned above to be
relevant for breast cancer. The actual repair is far more complex and involves many
different proteins. Also, more proteins are known to be related to different cancer
types but are out of the scope of this brief introduction.
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Figure 1: A sketch of four factors used in the repair of double strand breaks, which
are related to breast cancer.

2.1.3 Cancer Nomenclature and Staging

As mentioned earlier, over 200 different types of cancer can be distinguished. The
nomenclature for cancer types is based on the cancer site, the cell type it is originating
from, the shape of the cancer cell or the name of the physician, who first identified
it. Starting with the originating cell type, malignant cells developing from epithelial
cells are called carcinoma, whereas cells from connective tissue are called sarcoma. A
further classification can be made, by using a prefix. A carcinoma originating from
the glandular epithelium is called adenocarcinoma, whereas a carcinoma stemming
from the squamous epithelium is called squamous carcinoma.

For sarcoma, the tissue type further identifies the cancer. Again using prefixes,
the sarcoma can be categorized with ’osteo-’ for bone tissue, ’chandro-’ for cartilage,
’lipo-’ for fat tissue, ’rhabdo-’ for skeletal muscle and ’leiomyo-’ for smooth muscle.

Hematologic cancers are called lymphoma, when having a lymphoid origin, and
myeloma, when stemming from myeloid bone marrow tissue. The lymphoma is
further categorized into Hodgkin and Non-Hodgkin lymphoma, where the first is
originating from lymphocytes. If the hematologic cancer is originating from plasma
cells, it is called multiple myeloma.

To assess the severity of the cancer, a scoring system provided by American Joint
Committee on Cancer (AJCC) is used:

• G1: Well differentiated

• G2: Moderately differentiated

• G3: Poorly differentiated

• G4: Undifferentiated

The basis for the grade is usually a pathologic report, where the cancer tissue
is examined under a microscope. One measure for staging is the comparison of the
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cancerous tissue with the normal tissue. A term used is differentiation. It "describes
[the process] by which immature cells become mature cells with specific functions."1

A tumor cell that is well-differentiated closely resembles the surrounding tissue and
is thought to be less aggressive. On the other hand, an undifferentiated tumor cell
differs from the surrounding tissue and is represents a more aggressive cancer type.

The pathologist can consider three different measures in classifying tissue: The
tubule formation, the anaplasia and the mitosis rate. Based on those three measures
a score for the pathologic tissue is given. It has been shown, that this score correlates
closely with the survival rate of breast cancer patients [21].

In addition to the pathologic report, the staging takes into account if metastases
exist and whether the lymph nodes are involved. The detailed staging for each cancer
type can be found in the ’AJCC Cancer Staging Manual’ [22].

2.1.4 Treatment Modalities

If a patient is diagnosed with cancer, different treatment options are available
dependent on the patient’s physical condition, the cancer type and the stage of the
cancer. The most common ones are:

• Active surveillance

• Surgery

• Chemotherapy

• Endocrine therapy

• High-intensity focused ultrasound

• Radiation therapy

The basics of each one of them, the benefits and occurring side effects are de-
scribed briefly in the following:

Active surveillance is used for non-aggressive cancer types, when the risk of
the cancer is low, e.g. a patient, who is diagnosed with prostate cancer using the
prostate-specific antigen (PSA). The cancer might not be critical or affect the
quality of life for the patient, therefore a treatment of the tumor might worsen
the state of the patient without benefit. However, active surveillance ensures that
in the case of the cancer becoming more aggressive, appropriate actions can be chosen.

Surgery is the oldest option for cancer treatment. Bower and Waxman [23] define
six different purposes of surgical oncology:

1. Cancer prophylaxis

2. Cancer classification
1Definition of "Differentiation" by NCI Dictionary of Cancer Terms, 2018 [20]
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3. Cancer treatment

4. Surgery for oncological emergency

5. Palliative cancer care

6. Reconstructive surgery post cancer treatment

In case of an inherited cancer gem line, parts of the body can be removed as a
cancer prophylaxis. An example is the familial adenomatous polyposis (FAP), which
can lead to colon cancer. Here, it is recommended to remove the colon before the
age of 25. Another example is a BRCA mutation, which can be an indication for a
prophylactic mastectomy, meaning the removal of breasts or part of it.

As mentioned in the previous chapter, the classification of cancer is dependent
on the pathologic evidence. For this, part of the tumor tissue is needed, which is
gathered through biopsy. This might require a surgery.

For cancer treatment, in case of a non-metastatic cancer, the tumor can often be
removed using surgery. However, during the surgery, tumor cells might get distributed
in the tissue, leading to metastasis. This can be avoided by accompanying surgery
with either chemotherapy or radiation therapy.

An oncological emergency occurs, for instance, when a tumor in the back bone is
in risk of inhibiting the function of the spinal cord. In this case, a surgery is needed
to avoid further damage.

Concerning point 5. in the above list, in palliative care, a surgery can reduce the
pain by decreasing the size of the tumor. However, the goal here is not the curation
of the cancer but only the improvement of the quality of life of the patient.

A surgical excision of tissue during cancer treatment can severely change the
appearance of the subject and, thus, a reconstructive surgery either by an oncologic
surgeon or a plastic surgeon might be indicated.

Surgery is an invasive treatment, which can cause severe side effects. For ag-
gressive types of cancer, such as pancreatic cancer it is de facto the only option to
save the patient’s life. However, surgery can cause severe side effects and is only
applicable when the patient is able to recover from it. A surgery can furthermore be
accompanied with radiation therapy or chemotherapy to ensure necrosis of metastasis
or excess tumor cells, which have not been removed surgically.

In chemotherapy, a drug is used to decrease the number of cancer cells. There
are different types of agents: Alkylating agents aim at fast dividing cells by in-
ducing DNA damage, whereas intercalating agents change the shape of the DNA.
Anti-metabolites or topoisomerase inhibitors, on the other hand, inhibit the DNA
multiplication. Other agents inhibit polymerization or depolymerization of tubulin,
which inhibits the mitosis of a cell. Therefore, chemotherapy not only damages
cancer cells but also other fast dividing cells in the body, such as the bone marrow,
the gastrointestinal tract epithelium, gonadal cells and the hair follicles. Therefore,
side effects include myelosuppression resulting in low concentration of red and white
blood cells due to the damage of the bone marrow, inflammation or ulceration of the
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gastrointestinal tract and infertility due to damage of the gonadal cells. Further, side
effects range from mental and cognitive problems, over nausea, vomiting and fatigue,
to gynecological and urinary problems [24]. In addition to that, different cancer types
have differing likelihoods of developing resistances against chemotherapeutic agents.
Occurring cell mutations might for instance bypass certain metabolic pathways to
overcome anti-metabolites, increase the activity of efflux pumps or decrease the influx
to lower the concentration of toxic agents, or develop an increased DNA repair ability
[23].

Endocrine therapy or hormonal therapy is used in treatment of breast and prostate
cancer. Breast cancer cells need oestrogen in order to grow. Thus, a decrease in
oestrogen or a inhibiting of oestrogen receptors can be used to treat breast cancer.
Similarly, prostate cancer needs testosterone to be able to grow. Therefore, the
decrease in testosterone or inhibiting its receptors is able to reduce the prostate
tumor. However, side effects are e.g. impotence, bone and joint pain, and hot flashes.

High-intensity focused ultrasound (HIFU) is a rather new technique, in which
ultrasound-induced hyperthermia is used for cancer treatment. This technique is
non-invasive and has been studied for brain tumors [25], breast cancer [26], bone
metastasis [27], uterine fibroids [28] and prostate cancer [29]. The ablation is guided
by either ultrasound imaging or MRI. However, this technique is not widely available
and limited to a few cases of cancer for clinical practice.

In radiation therapy, different types of radiation are used to induce DNA damage
and cause necrosis of tumor cells. The main goal is destroying the tumor, whilst
preserving healthy tissue. A more in-depth introduction into radiation therapy will
be given in Chapter 2.6.
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2.2 Most Common Cancer Types and Treatment Options
In the following, the most common cancer types and the applicable treatment options
are explained. This will give a brief overview and is by far not exhaustive. The goal
is to give a motivation for the improvement in radiation therapy through this work.

The four most common cancer types in females are breast cancer (30%), lung
cancer (13%), colorectal cancer (7%) and uterine cancer (7%). For men, these are
prostate cancer (19%), lung cancer (14%), colorectal cancer (9%) and bladder cancer
(7%). Due to the higher mortality in lung and pancreatic cancer, those two are
within the top four causes for cancer related deaths. The four most prevalent death
causes for females are lung cancer (25%), breast cancer (14%), colorectal cancer (8%)
and pancreatic cancer (7%). For men, these are lung cancer (26%), prostate cancer
(9%), colorectal cancer (8%) and pancreatic cancer (7%) [30]. The estimated new
cancer cases and cancer deaths for the most common cancer types in the USA in
2018 are shown in Figure 2. Due to early screening and improvements in treatment,
the mortality rate for breast cancer has decreased by 39% from 1975 till 2015 [31].
This example shows, that improvements in medical care can improve the survival
rate significantly and, thus, provides a strong motivation for the research done in
this work.

Figure 2: The estimated new cancer cases and cancer deaths for the four most deadly
cancers (Breast/Prostate, Lung & Bronchus, Colorectal, Pancreas) in the USA for
2018 for both genders combined. Data from Cancer Statistics, 2018 [30].

2.2.1 Breast Cancer

Breast cancer is the most common cancer in women with an estimation of 266,120
new cases in the US for 2018, but, with a 5-year survival rate of 90% (as of 2018),
poses a good life expectancy [30]. The survival rate, however, is highly dependent on
the stage in which the cancer is detected. Stage I is here defined for a tumor with a
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size of less than 2 cm and no nodes. Stage II has a tumor size of 2 to 5 cm and might
have moveabale axillary nodes. Stage III breast cancer involves either the chest wall
or the skin and might have fixed axillary nodes. Breast cancer is classified in stage
IV once it develops metastases. The 5-year survival rate for stage I is 88%, 69%
for stage II, 43% for stage III and 12% for stage IV (as of 2010) [23]. In a newer
study from 2017, breast cancer was merely classified in local, regional and distant.
Here, the five year survival rates were found to be 93–97% for local breast cancer,
78–90% for regional and 26–40% for distant depending on the race of the women
[32]. The relative prevalence in the stage, in which the cancer is detected, and the
5-year survival rate for breast cancer in US in 2018 can be seen in Figure 3.

As the survival rate strongly decreases for later cancer detection, the American
Cancer Society recommends a annual mammographic screening for breast cancer
for women between 45 and 55, and biannually for women above 55 until their life
expectancy is less than ten years [33].

Figure 3: The relative prevalence of the stage in which the cancer is detected and
the 5-year survival rate for breast cancer in US in 2018. The data are taken from
the Cancer Statistics, 2018 [30].

Once a suspicious finding is seen in a mammographic image, a pathological
examination is needed to confirm the finding. For this purpose, a fine or core needle
biopsy can be undertaken, which can be guided using ultrasound. A risk of the
procedure is the contamination of surrounded tissue with cancerous cells leading to
metastases. If the finding is confirmed and the tumor is localized, the tumor can
be removed surgically. If the tumor is regionally spread and auxiliary nodes are
involved, a mastectomy might be necessary. The surgery can be accompanied with
either pre- or post-surgical endocrine therapy, chemotherapy or radiation therapy.
Pre-surgical therapy can be used to reduce the tumor size before it is removed,
whereas post-surgical therapy aims at necrosis of metastatic cancer cells and at
ensuring the cell death of residual cancer cells. Adjuvant radiation therapy leads to
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a decrease of recurring local breast cancer from 40–60% to 4–6% [23] and is able
to improve the cancer free survival compared to groups, which only receive post-
operative chemotherapy [34] [35]. Radiation therapy might also be only targeted at
the regional lymph nodes after breast preserving surgery. This significantly improves
the survival rate [36].

For metastatic breast cancer, the median survival rate is between 18 and 24
months and is hardly curable. In postmenopausal women, a hormonal treatment
is feasible with a response rate of 70%. For premenopausal women, the natural
hormon production needs to be mitigated, for instance, through radiative castration.
Alternatively, a chemotherapy can be applied. Radiation therapy, on the other side,
can be used to reduce pain from bone metastases. High-dose chemotherapy, using
bone marrow transplants or stem cell replacement, was used during 1980s but showed
to not increase the survival rate significantly [23].

2.2.2 Prostate Cancer

Prostate Cancer is the most common cancer in men with an estimation of 164,690
new cases in the USA in 2018. It is also the second most common cause for cancer
death with an estimation of 29,430 death in 2018 [30]. The survival rate is dependent
on the stage of the cancer. The 5-year survival rate for localized prostate cancer is
nearly 100 %, but only 30 % for distant prostate cancer [30]. The former one might
be due to overdetection caused by the low specificity of the PSA test. The relative
prevalence in the stage, in which the cancer is detected and the 5-year survival rate for
prostate cancer in US in 2018 can be seen in Figure 4. The current recommendation
is to discuss the applicability of a screening for the prostate speicific antigen (PSA)
with patients aged 55 to 69 and stop screening for men older than 70 years [37]. A
positive PSA does not necessarily implicate a tumor finding but is an indication for
a further investigation using MRI, transrectal ultrasound and core needle biopsy.
The treatment is dependent on whether the tumor has spread or not and on the
pathological finding. 92 % of prostate cancers are detected in localized stage [38]. In
addition to pathologic investigation, a genetic examination of the tumor cells can
give insight weather the cancer is of an aggressive type or not [39].

The treatment option vary from active surveillance, over radiation therapy to
radical prostatectomy. In the age group younger than 64 years, radical prostatecotomy
is the most prevalent with 51 %, followed by radiation therapy and no treatment
with each 23 %. For the age group 65 to 74 years, radiation therapy alone is the most
common with 36 %, followed by radical postatectomy (30 %) and no therapy 29 %.
For patients older than 75 year, most often no therapy is applied (48 %), followed by
radiation therapy alone (33 %) [38].

The radical prostatectomy might be accompanied with radiation therapy and
hormonal therapy. In radical prostatectomy, the whole prostate is removed. Addi-
tionally, the seminal vesicles and lymph nodes in proximity might be removed. This
surgery can either be done through an open retropubic approach, an open perineal
approach or a laparoscopic approach. In the first case, the surgery occurs through
an open cut in the lower belly. In the second case, through an open incision in the
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Figure 4: The relative prevalence of the stage when the cancer is detected and the
5-year survival rate for prostate cancer in US in 2018. The data are taken from the
Cancer Statistics, 2018 [30].

perineum, which lays between rectum and the scrotum. In a laparoscopic surgery, the
surgical instruments are inserted through three holes and the surgery is performed
without the need of an open incision. The main complications of these procedures
are incontinence and impotence. These complications also occur in radiation ther-
apy as not only the tumor is targeted but also the healthy tissue of the prostate.
Furthermore, a higher risk for osteoporoses exists due to the radiation pathway.

A new treatment option is high-intensity focused ultrasound, where either through
the rectum or the urethra ultrasound is applied. The induced hyperthermia of the
tumor tissue then leads to necrosis. It is a minimal invasive procedure, which
preserves the prostate.

2.2.3 Lung Cancer

Lung cancer is the cancer with the second highest number of cancer deaths both
in male and female in the USA in 2018 [30]. The 5-year survival rate in localized
detection is at 56 %, whereas it is at only 5 % in a metastatic stage. The relative
prevalence in detection stage and the 5-year survival rates for the different stages
can be seen in Figure 5. 57 % of the lung cancer is detected in a distant stage, which
is due its asymptomatic behavior [38].

The treatment options depend on the stage in which the cancer is detected.
For localized or regional non-small lung cancer, a lobectomy, a sublobal excision or
pneumectomy might be undertaken. Furthermore, in localized lung cancer a radiation
therapeutic approach can be undertaken. The surgery can be improved through a
VATS surgery, instead of an open incision. Here, through several small incisions the
lobe is removed. A newer approach called unipolar lung resection, removes the lobe
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Figure 5: The relative prevalence of the stage when the cancer is detected and the
5-year survival rate for lung and bronchial cancer in US in 2018. The data are taken
from the Cancer Statistics, 2018 [30].

through only one incision. The less invasive treatments seem to improve the pain
management and lead to shorter hospital stays [40].

A localized lung tumor can also be treated using radiation therapy as a primary
treatment. In addition to that, radiation therapy can be used before a surgery to
reduce the tumor size or after the surgery to reduce the risk of a recurring tumor.
Furthermore, metastatic lung cancer and small cell lung cancer are managed through
chemotherapy and palliative care, such as radiation therapy for brain and bone
metastases.

As smoking increases the risk of having lung cancer, a CT screening for these
high-risk groups is under discussion [41–43].

2.2.4 Colorectal Cancer

Colorectal Cancer is the third most common cancer both in male (9 %) and female
(7 %). The overall 5-year survival rate is 65 %, with 90 % for localized, 71 % for
regional and 14 % for metastatic colorectal cancer [30]. The distribution over the
different stages at presentation as well as the 5-year survival rates are shown in
Figure 6.

Symptoms for colorectal cancer include constipation, diarrhoea, change in bowel
habit, abdominal pain and rectal bleeding. Furthermore, anemia and low red cell
volume can occur. However, these symptoms are not cancer specific and there
predictive value is relatively low. For instance, the positive predictive value for rectal
bleeding for men over 60 years ranges from 2.4 % to 4.5 % [44]. This is partially
caused by the similarities of these symptoms to other diseases such as irritable bowl
syndrome and inflammatory bowel disease [45]. Therefore, the detection of colorectal
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Figure 6: The relative prevalence in stage when the cancer is detected and the 5-year
survival rate for colorectal cancer in US in 2018. The data are taken from the Cancer
Statistics, 2018 [30].

cancer is difficult and, especially for low-risk symptoms, the detection might be
delayed. There are discussions about screening for colorectal cancer, which can
include a fecal blood test, endoscopy or CT colonography, but the cost efficiency and
sensitivity of those tests seem to be not sufficient [46].

Colorectal cancer can be inherited through familial adenomatous polyposis. Here,
multiple polyps are developed in the colon with the potential of forming a tumor.
As it leads to colonic cancer in most of the patients, a prophylactic colectomy should
be done before the age of 25 [23].

The management for stage I and II cancer is mostly done using partial or total
colectomy. For stage III colorectal cancer, chemotherapy is additionally applied to
colectomy. For stage IV cancer, chemotherapy is the most prevalent treatment. For
stage I to III colorectal cancer adjuvant radiation or chemotherapy can be applied
[38].

2.2.5 Pancreatic Cancer

Even though pancreatic cancer is a fairly rare cancer, with a prevalence of 3.2 %, it is
the fourth most common cause for cancer death. This is due to its low survival rate,
with a 5-year survival rate of 8 %. The survival rate is higher for localized pancreatic
cancer with 32 % and regional with 12 %. However, metastatic pancreatic cancer has
a low 5-year survival rate of 3 % [30]. The relative prevalence in detection stage and
the 5-year survival rates for the different stages can be seen in Figure 7.

The detection of pancreatic cancer is difficult as it might be asymptomatic.
Possible symptoms are pain in the abdomen and back, as well as weight loss, anorexia
and fatigue [23]. In addition to that, patients can have jaundice. Pancreatic cancer
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Figure 7: The relative prevalence of the stage when the cancer is detected and the
5-year survival rate for pancreatic cancer in US in 2018. The data is taken from the
Cancer Statistics, 2018 [30].

tends to be an aggressive cancer, which leads to a fast growth and spreading of the
tumor. One reason for its deadliness is its location: Placed in the posterior abdomen,
it is surrounded by several critical organs and blood vessels. Therefore, in less than
20 % of the cases it is operable [23]. The alternative treatments are radiation therapy,
chemotherapy and immunotherapy. However, as the survival rates are low, the focus
is mostly on quality of life instead of curability.
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2.3 Basics of Photon–Electron Interactions
Radiation therapy and X-ray imaging as well as CT imaging are based on the same
physics of photon–electron interactions. In radiation therapy, ionizing radiation is
used to induce double-strand breaks in cancer cells, whereas in the two mentioned
imaging modalities, non-ionizing radiation is used to measure the electron density
within the human body. Thus, a basis for photon-electron interactions is needed
in order to provide an understanding for both the imaging modalities used and the
radiation therapy.

2.3.1 Atomic Structure

The electrons are surrounding the core on discrete orbits, which are differentiable
through their different energy levels. The energy levels can be found through solutions
of the Schrödinger equation [47]:

−~2

2m ∆φ(r, t) + Epot(r, t)φ(r, t) = i~
∂φ(r, t)
∂t

(1)

This equation leads, similar to the swinging motion of a string to discrete eigenmodes,
which characterize the discrete energies of the electrons. This was first discoverd
by Schrödinger and the solution for the hydrogen atom can be found in his article
"Quantisierung als Eigenwertproblem" from 1926 [48].

2.3.2 The Photon

First described by Albert Einstein in 1905, the photon is a particle, which is electro-
magnetic energy. Thus, electromagnetic energy does not only exhibit wave features
but also has particle characteristics. This was first discovered through the pho-
toelectric effect, in which a certain wavelength is necessary, independent from its
intensity, to loosen electrons from a metal plate. Einstein explained this effect by
a quantization of the energy of a electromagnetic wave [49]. This smallest energy
quantization needs to be higher than the potential energy of the electron with the
highest potential energy. The relationship between the frequency and the energy
of the photon was already discovered by Planck before Einstein’s interpretation as
particles [50] and is found to be [51]:

E = hν = hc

λ
(2)

where E is the energy of the photon, h: the Planck constant, c: the speed of light, ν:
the frequency and λ: the wavelength.

As the photon can also be seen as a particle, it possesses a momentum, which
was first described by de Broglie in his PhD thesis ’Recherches sur la théorie des
quanta’ [52]. This lead to the de Broglie equation for the momentum to be [53]:

p = hν

c
= h

λ
(3)
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2.3.3 Scattering

When an electron is exposed to a radiation field, the photons can interact with
the electrons. When the direction of motion of the photon is changed, it is called
scattering. A good derivation for the different scattering types can be found in
’X-Ray and Neutron Reflectivity’ by François de Bergevin [54]. Its approach shall
here be sketched to give an overview of the different scatter types. The assumption is
that energy and momentum are conserved. Thus, the following equation holds [54]:

1
2m

(
p− eA

c

)2

= p2

2m + e2

2mc2A
2 − e

mc
Ap (4)

with p being the momentum operator of the electron and A of the radiation field, m
the mass of the electron, c the speed of light and e the charge of the electron.

Now, when using a pertubation of the interaction terms, one can find one term
associated with A2 and two with Ap, which are [54]:

b = re 〈s| eTsceikscreine
−ikinr |i〉︸ ︷︷ ︸

Thompson Scattering

−re
∑
i

〈s| eTscpe+ikscr |c〉 〈c| einpe−ikinr |i〉
m(Ec − Ei − ~ωin + iΓc/2) − re

∑
i

〈s| eTscpe−ikscr |c〉 〈c| einpe+ikinr |i〉
m(Ec − Ei − ~ωsc)︸ ︷︷ ︸

Dispersive Scattering
(5)

where re is the electron radius, 〈s|: the state of the scattered photon, |i〉: the state
of the initial photon, 〈c|: the state of the electron, esc: the unit vector in direction of
the scattered photon, esc: the unit vector in direction of the incoming photon, ksc:
the wave number of the scattered photon, kin: the wave number of the incoming
photon p: the momentum of the photon, m: the mass of the electron, Ec: the energy
of the electron after scattering, Ei: the energy of the electron before scattering, ωin:
the frequency of the incoming photon, Γc: the half life of the electron state after
scattering and ωsc: the frequency of the scattered photon.

The total scatter cross section of a medium can be defined through the attenuation
of a through passing beam with:

dI

dz
= −nσI (6)

with I: the beam intensity, z: the length of the path through the medium, n: the
density of scattering centers and σ: the total scatter cross section.

When keeping only the first term, and thus assuming that the electron state stays
unchanged, one can easily derive the total scattering cross section by squaring it. In
the following, only the case with one electron shall be considered for simplicity and
later the generalization to a number of Z atoms will be made. The total cross section
can be found to be:

b2
th = r2

e

(
eTscein

)2∑
s

〈i| ei(ksc−kin)r |s〉 〈s| ei(ksc−kin)r |i〉 , (7)
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which can be simplified to the following, using that it is the sum over all possible
electron states:

b2
th = r2

e

(
eTscein

)2∑
s

〈i| ei(ksc−kin)re−i(ksc−kin)r |i〉 =
(
reeTscein

)2
(8)

When only considering elastic scattering, which is scattering that leaves the photon
energy unchanged, the initial and final electron states are the same. Therefore, we
can write [54]:

bth = reeTscein 〈i| ei(ksc−kin)r |i〉︸ ︷︷ ︸
fii

(9)

fii =
∫
φ∗(r)φ(r)ei(ksc−kin)rdr =

∫
ρ(r)ei(ksc−kin)rdr (10)

and with this the elastic scattering cross section can be found to be [54]:

dσ

dΩ elastic
=
(
reeTscein

)2
| fii |2 (11)

Here, we see that the elastic scattering cross section is correlated to the electron
density of the atom. When more than one electron is present, the resulting scattering
can be written as the sum of the form factors [54]:

dσ

dΩ elastic
=
(
reeTscein

)2
|
∑

1≤j≤Z
fjj |2 (12)

and the total scattering cross section [54]:

dσ

dΩ elastic
=
(
reeTscein

)2
Z +

∑
1≤j 6=l≤Z

f ∗jjfll− |
∑

1≤j 6=≤Z
fjl |2

 (13)

The elastic scattering cross section is now the Fourier transform of the electron
density [54].

2.3.4 Absorption

In addition to the above described scattering, the radiation can be absorbed. The
most preponderant mechanism here is the photoelectric effect, in which the energy
of the photon is used to expel the electron from the atom. For this, the energy of
the photon needs to be higher than the bonding energy of the electron. Thus, there
are absorption edges in the spectrum: Once the energy of the photons is higher than
the bonding energy of the electron in a certain shell, considerably more absorption
occurs. The absorption cross section can be approximated with [53]:

σ = 2π
3 αr2

n

(
ωn
ω

)3
≈ π

12
α3Z4

n2 r2
0

(
ω0

ω

)3
(14)

with α: finestructure constant, rn: the track radius of the electron, ωn: the frequency
of the electron rotation, ω: the frequency of the incoming wave, Z: the number
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of electrons, n: energy level, r0: classical electron radius and ω0 = mc2/~: the
relativistic maximum frequency.

In addition to that, radiation with a lower photon energy can excite an electron
into an empty state. The electron decays then with a certain half-life to energetic
lower states, while it might emit radiation. The radiative effect is called fluorescence.

2.3.5 Electron-Positron Pair Production

For radiation with an energy higher than the rest energy of an electron and a positron,
meaning an energy higher than 1.022 MeV, this radiation can create an electron-
positron pair. Due to the momentum conservation, part of the momentum of the
photon needs to be transfered to an surrounding atom. Thus, the probability of a
pair production is dependent on the surrounding medium and on the frequency of
the photon. It can be approximated with [53]:

σp = αZ2r2 (15)

The dominating mechanism for absorption and scattering is dependent on the energy
of the photon. For low energies the photoelectric effect dominates, then for higher
energies the Compton effect starts dominating and then for even higher energies the
pair production takes the most prevalent role.
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2.4 Imaging Modalities
For both diagnosis and treatment of cancer, it is important to obtain accurate
anatomical information. For this purpose, different imaging modalities exist, which
shall be described briefly in the following chapter and more extensively for computed
tomography as this is the imaging modality used in this work.

2.4.1 Ultrasound

Ultrasound is a non-invasive imaging technique, which has the advantage of being
non-radiative. Therefore, it is a low risk imaging, which can even be used for fetal
imaging. The basis here is the difference in acoustic impedance inside the human
body. Once an acoustic wave encounters an interface of media with different acoustic
impedances, it is partially reflected with the reflected energy ratio being [55]:

Er/Ei = Γ2 =
(
Z1 − Z2

Z1 + Z2

)2
(16)

with Er: the energy of the reflected wave, Ei: the energy of the incident wave, Γ:
the reflection coefficient and Zi: the acoustic impedances.

Now, using the time or phase differences in the reflected wave, the position of the
reflecting boundary can be reconstructed, and the amplitude gives information about
the acoustic properties of the medium. Therefore, an image can be constructed,
which is able to differentiate between different media.

In cancer care, ultrasound can be used to image tumors, which are accessible
through ultrasound. Some application cases are ultrasonic imaging of breast cancer,
transrectal ultrasound for prostate cancer imaging and esophagogastroduodenoscopy
for endoscopic imaging of pancreatic cancer. A disadvantage of ultrasound imaging
is that it can only be applied to tissues, which are not covered by bone. In addition
to that, it gives mostly 2D information about a small region of the patient.

2.4.2 MRI

Magnetic resonance imaging (MRI) is based on the nuclear spin resonance, which
is different for varying molecules and atoms. The spin is an inherent property of
every atom. When an external magnetic field is applied, the two different spin states
become energetically differentiable. The energy difference is given by:

∆E = ~γB0 (17)

with γ: the gyromagnetic moment of the electron and B0: the applied magnetic field.
The motion of the spin can, here, be thought similar to the precessing movement of
a gyroscope. The precession frequency is called Lamor frequency and is found to be:

ω0 =| γB0 | (18)
The orientation of the spins in thermal equilibrium can be described by a Boltzman

distribution. When a electromagnetic pulse is applied, the spin distribution can be
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brought out of equilibrium. The relaxation of the resulting magnetization is two
fold. First, due to the inhomogenity of the external field and the slightly varying
microscopic environments of the particles, the spin movements become out of phase.
Second, the spins align back into their equilibrium state. Both decay times can be
used in MRI imaging, defining the T1 and T2 contrast, which is named after the
two different decay times.

MRI imaging provides a good spatial resolution of down to 0.25 mm in an MRI
device with a 3-Tesla magnet in a medical setting [56]. Furthermore, the use of
contrast agents can give additional anatomical information, such as the specific
imaging of blood vessels in angiography, or metabolic information. As no external
radiation is necessary, the imaging technique has a low risk. However, with high-field
MRI, the risk of burns due to closed body loops increases. Additionally, patients
with magnetic implants are not able to use MRI. Even though, MRI gives a good
anatomical image, it does not provide the electron density, which is needed for
radiation therapy planning. However, there are current approaches by companies to
calculate the electron density from an MRI image.

2.4.3 Positron-Emission Tomography

The usability of PET for oncology comes from the possibility of attaching radioactive
markers to metabolic molecules. Therefore, tissues with a high metabolic rate can
be found. As cancer tissue is mostly fast growing compared to other tissue, its
metabolism rate is high. Thus, PET imaging can give an additional indication for
cancer tissue.

As a product of the β+-decay of isotopes like fluorine-18, a positron is created.
This positron creates a positronium atom together with an electron. Positronium is
a highly unstable system as it is formed out of an electron and its anti-particle the
positron. It decays with a half life of approximately 124 ns [57], creating an even
number of photons. The probability of the decay decreases strongly with the number
of photons emitted, such that in practice only two-photon decays are used. Within
the life time of the positron, it is able to travel a couple of millimeters dependent on
the isotope. For instance, for the above mentioned isotope fluorine-18, its average
distance is 0.35 mm [58].

One property of the positron-electron annihilation is that due to the momentum
conservation, the two photons are emitted in opposite directions. Therefore, by
using coincidence measurements, the photons from the same location can be detected
and the position of the annihilation reconstructed. Therefore, the location of the
metabolic markers can be detected inside the patient’s body. This leads to a more
accurate spatial detection of the cancer.

2.4.4 X-Ray

The first published X-ray image was taken by Wilhelm Röntgen in 1895 [59]. The
principle is still the same, even though the measurement time and the radiation dose
are drastically decreased. In principle, electrons are accelerated within a vacuum tube
and when hitting a metal plate emit bremsstrahlung, which is the x-ray radiation.
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The wavelength of the emitted photons is dependent on the voltage difference with
which the electrons are accelerated. In medical x-ray imaging, voltages between 10kV
and 100 kV are typically used. Furthermore, not only uncharacteristic radiation is
produced but also material specific radiation, which is dependent on the metal used
as a target.

The radiation then is guided through the human tissue, which shall be imaged,
and captured afterwards either by photographic film or nowadays mostly by electronic
photo detectors. As different tissues differ in their attenuations, the x-ray is attenuated
depending on which tissue it is passing through. The attenuation is caused by the in
section 2.3 mechanisms; mainly absorption and Compton scattering. From the cross
section the attenuation coefficient can be easily derived with [53]:

µ = NNatσ (19)

with N : number of atoms, Nat: atom number density and σ the total cross section.
The attenuation within the tissue can be calculated with [60]:

I = I0e
−µx (20)

This can be rewritten for spatially changing attenuation coefficients using the integral
[61]:

I = I0e
∫
−µ(x)dx (21)

The x-ray image is, thus, only a 2D projection of the 3D attenuation profile of the
tissue.
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2.5 Computed Tomography
In the following, computed tomography (CT) shall be explained in a bit more detail
as this image modality is used in this work. The principle of CT is similar to X-ray
imaging. Also here X-rays are used to gather information about the attenuation
profile of the human tissue. However, the goal is to achieve 3D information in contrast
to the 2D projection produced by standard X-ray imaging.

2.5.1 The Sinogram

In CT imaging, a form of X-ray images are taken from different angles in order to
reconstruct 3D information. The simplest idea of viewing it is by first considering
one slice of the 3D image and using several parallel x-ray beams. The parallel x-ray
beams travel through the transverse plane of the human body and each beam is
attenuated according to the tissue it is passing through. Now, in the next step, the
beams are passing through the body from a different direction, creating a slightly
different image. This procedure is done for many different angles. At each angle, a
one dimensional image is created. Stacking all those one dimensional images together,
the so called sinogram is created. Mathematically the sinogram can be described as
the radon transform of the attenuation profile:

p(θ, r) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − s)dxdy (22)

with θ: being the angle at which the x-ray projection is taken, s: the position on the
one dimensional x-ray projection and f(x, y): the 2-dimensional attenuation profile
of the tissue.

2.5.2 Reconstruction

The simples version of reconstruction is performing the inverse radon transform
on the sinogram. This is equivalent to a 2D Fourier transform and can, thus, be
calculated quickly on a computer. The inverse radon transform is defined as [62]:

f(x, y) =
∫ π

0

∫ ∞
∞

∂p(θ, r)
∂r

1
x cos θ + y sin θ − rdrdθ (23)

However, this method leads to a blurred image, as the intensity due to scat-
tering decays with 1/r. Therefore, deconvolving the sinogram with the opposite
convolutional filter, improves the reconstructed image. This is called filtered back-
propagation. The deconvolution can be fastened up by multiplying the Fourier
transformed sinogram with the deconvolution function instead of performing the
convolution operation [63]. In addition to that, several other filter types can be
applied such as Shepp-Logan, Hammak or Hamming.

Another approach to reconstruction is the use of iterative image reconstruction.
The goal of all reconstructions is to find the image vector f , which satisfies the
equation:

p = Af (24)
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when p is the projected vector and A: the matrix of the forward solution. This
equation can be solved by finding the inverse of A. This is, however, impractical
as the number of elements of the matrix is of order 108 to 1012 [62]. One approach
is to optimize each equation in the equation system separately and iterate over
the process. This is called Algebraic Reconstruction Technique (ART). As ART
calculates each ray after each other, it is fairly slow. It can be improved by updating all
equation simultaneously, which is then called Simultaneous Algebraic Reconstruction
Techniques (SART). The update rule is [64]:

f
(k+1)
j = fj(k) + α

∑
i

(
pi−
∑N

n=1 Ainf
(k)
n∑N

n=1 Ain

)
∑
iAij

(25)

Here, the forward solution is applied to an image guess fk and is compared to
the actual sinogram p. The image guess is then improved until the error between the
suggested sinogram and the actual sinogram is small enough.

A more robust approach can be achieved using a Bayesian method. For this,
an additional noise term is assumed. Therefore, the measured projection can be
described as:

p = Af + n (26)
When assuming a gaussian noise with zero center, finding the maximum a posteriori
likelihood becomes equal to finding the following minimum [64]:

f = argmin
f

(
| p−Af |2 +λ | f |2

)
(27)

with λ: the regularization parameter. λ needs to be larger for a higher noise level.
Finding this minimum can be done, for instance, using gradient descent algorithms.

2.5.3 Cone Beam Computed Tomography

In cone beam computed tomography (CBCT), a cone-like x-ray beam is used. A
sketch can be seen in Figure 8. Therefore, in comparison to conventional single-slice
CT, the patient is not imaged slice by slice but several slices at once. This gives
an advantage in speed but the image quality suffers from it, as only approximate
reconstruction mechanisms exist for circular CBCT. However, for helical CBCT an
exact reconstruction mechanism exists [65]. But it is more prone to error for noisy
images.

As CBCT is often used with low radiation dose, the measurement contain more
noise. A solution to the problem can be iterative reconstruction, but commercially
often filtered back propagation (FBP) is still used. The CBCT is more susceptible
for scattering artefacts and thus the image quality can be poor. However, it is
nowadays often used in radiation therapy to correct the patient position prior to
treatment. In comparison to fan-beam CT (FBCT), it was found that not only the
image quality in CBCT is worse but also twice to three times as much radiation is
needed in CBCT compared to FBCT [66]. In comparison to multi-slice CT, it was
found that CBCT uses less radiation whilst being comparable in image quality [67].
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Additionally, for CT-guided ablation of metastatic lung cancer, CBCT is able to
improve the treatment speed in comparison to CT imaging [68].

Figure 8: A sketch of a CBCT (left) and a single-slice circular CT device (right).

2.5.4 Artifacts

When a X-ray beam passes through a strongly absorbing medium, such as bones,
its low energy photons are more likely to be absorbed or scattered. Thus, after the
object mainly high energy photons remain, which experience a reduced attenuation
profile. Therefore, the grey values in a CT image after a bone structure are lower
than in parts where the X-ray beam has not passed through bone structure before.
This effect is called beam hardening. As CBCT has a lower average photon energy,
it is more susceptible to beam hardening artifacts [69].

Another problem are motion artifacts, which are generated, if the patient or
part of his tissue moves. In CBCT, this can cause artifacts, which look similar to
scattering artifacts. In imaging the abdomen this can become a problem, when bowel
movement occurs.

Because of the geometry of the CBCT imaging, tissue close to the X-ray source
are scanned with more beams than those at the detector side. This can lead to
aliasing artifacts, which can be seen as stripes in the image.

In order to reduce the artifacts, different filters can be tried. Furthermore,
iterative reconstruction algorithms seem to be able to reduce artifacts and different
artifact removal algorithms have been proposed [70].
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2.6 Radiation Therapy
In radiation therapy, radiation is used to damage cancer cells and ultimately cause
necrosis in the cancer cells. Similarly to chemotherapy, there is a trade off between
successful cancer treatment and toxicity. In the following, a brief introduction to the
mechanisms of radiation therapy, its different types and radiation therapy planning
will be given.

2.6.1 Principle of Radiation Therapy

The goal of radiation therapy is to cause necrosis in cancer tissue, whilst preserving
healthy tissue. Through ionizing radiation, double-strand breaks (DBS) are intro-
duced in the DNA of the cell. As the tumor cells are growing fast in comparison
to healthy tissue, the genetic damage leads to problems in the duplication earlier.
In addition to that, most cancer types stem from a mutation in the DNA repair
mechanisms. Hence, cancer cells are more susceptible to radiation therapy than
healthy cells. This said, ionizing radiation causes mutations also in healthy tissue,
leading to a risk of secondary tumors due to the radiation therapy. Thus, it is crucial
to spare healthy tissue around the tumor.

The type of radiation therapy used is determined by the desired clinical outcome.
For instance, in adjuvant radiation therapy to localized breast cancer surgery, it
might be the goal to necrotize potential metastatic tumor cells. Therefore, the whole
breast is radiated. On the other side, in brachytherapy of localized prostate cancer,
the goal is to only treat the tumor and spare the surrounding healthy prostate tissue.
Even more crucial, in stereotactic radiation therapy, or radiosurgery, it is of utterly
importance to spare the surrounding tissue. An application is the removal of brain
tumors, where the surrouding brain needs to be preserved.Therefore, a good spatial
accuracy is needed for radiation therapy.

2.6.2 Dose Distribution

Generally, the absorbed dose is dependent on the depth in the tissue, the energy of
the incoming photons, the tissue composition, the intensity and the shape of the
beam. A phantom is used to estimate the delivered dose for new machines and create
a models for the delivered dose in the patient. However, the dose in the patient is
estimated by considering the radiation transport inside the tissue.

One effect, which needs to be consider, is the dose build-up. When the photons
arrive at the skin, secondary electrons are emitted through the photo electric effect.
These electrons are high in energy and are therefore also considered as ionizing
radiation and add up to the delivered dose. These secondary electrons are created
within the first few centimeters of the tissue; creating the so called ’build-up zone’.
In this zone, the dose increases with depth as more and more secondary electrons are
contributing to the total ionizing radiation. However, these electrons are stopped
easily through the tissue, such that after the build-up zone, they experience a nearly
exponential decay. For treatment in deeper laying body regions, this prevents over-
radiation of the skin. However, when treating skin cancer, it poses a hindrance, as
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the skin is barely radiated. This problem can be overcome by placing a bolus on
the skin prior to the treatment. The bolus then covers the build-up zone, such that
the skin is treated with the maximum intensity. The depth of the build-up zone is
dependent on both the energy of the photons and the tissue composition, leading to
a larger build-up zone for higher energetic photons. This phenomenon can be used
to treat deeper laying structures without over-radiating outer anatomical layers [60].
A sketch of the dose build-up is shown in Figure 9.

Figure 9: A sketch of the build-up zone with the approximated delivered dose.

The above mentioned effect is only one of those, which needs to be taken into
consideration. Generally the absorption is dependent on the electron density of the
medium itself and the intensity of the beam at this location. As bones are dense
tissue with a Houndsfield Unit (HU) of 1700 for the outer bone and 301 for the
inner bone [71], tissue, which is radiated with a beam passing through a bone first,
receives less radiation than tissue treated without a bone in the pathway. Thus, it is
necessary to model the dose distribution prior to the treatment, in order to ensure
the right dose at the target volume without harming surrounding tissue.

2.6.3 Treatment Planning

As described in Section 2.6.2, the delivered dose is dependent on the body constitution.
The target volume is typically defined in the following way: First, the tumor itself
needs to be identified and segmented in the image from the surrounding tissue.
The tumor volume is called the gross tumor volume, short GTV. Secondly, a
margin is drawn around the tumor accounting for non-imageable tumor spread. This
volume is called the clinical target volume (CTV). Thirdly, due to uncertainties
in treatment planning, such as movement of the tumor between the planning and
the treatment, another margin needs to be drawn around the CTV, to ensure the
treatment of the tumor. This last volume is then called planned target volume
(PTV) [72].



28

During treatment planning, another type of volume needs to be segmented and
taken into account. These are the organs at risk (OAR). Goal of the treatment
planning is to minimize the radiation exposed to the OAR, whilst maintaining the
planned dose in the PTV. The organs usually need to be segmented manually from
CT images prior to the treatment. An example is the treatment of prostate cancer,
where the OAR are the bladder and the rectum. An over-radiation of the OAR can
lead to side effects such as (fecal) incontinence or inner bleeding.

The time needed for this segmentation varies between different tumor sites, clinical
protocol and clinician. For example, for head and neck cancer, the segmentation takes
between 25 and 145 minutes [73]. This does not only reduce the cost-efficiency of the
treatment, but also worsens the clinical outcome due to the delay of the treatment
[74]. In addition to that, on-couch adaptation to the anatomy of the day becomes
unfeasible and, in the case of a significantly changed anatomy, the treatment needs
to be rescheduled. The segmentation time poses, therefore, a hindrance in clinical
outcome and cost-efficiency.

In the past, conventional image segmentation methods have been used to automate
the segmentation process, such as thresholding and smoothening [75], multi-atlas
approaches [76] and more recently Laplacian meshes [77]. However, for some anatom-
ical regions, such as the pelvis, the structure can change significantly, such that the
classical approaches are unable to provide a sufficiently accurate segmentation.
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2.7 Deep Learning
Deep Learning is a part of the more broad subject of artificial intelligence. Generally
spoken, deep learning uses an artificial neural network to conquer a task. It is deep
in comparison to classical machine-learning approaches like support vector machines
(SVM), which can be thought to use only one layer of neurons. In contrast to this,
deep learning uses several to several hundreds of those neural layers.

2.7.1 The Neuron

Each neuron can be seen as a connection between a lower and a higher layer. The
general structure is multiplying of the input by weight, adding a bias and executing
an activation function. Thus, its mathematical operation can be written as:

f(x) = A(wx+ b) (28)

with A: the activation function, w: the weights and b: the bias. Through the
learning process, both the weights and the bias are usually learned. In some cases,
also parameters of the activation function need to be learned.

Each neuron then forwards its output to another neuron and creates, thus, a
neural network.

2.7.2 Loss Functions

In order to measure how well the model performs, the output is mapped to a single
number. This loss function or error function can, therefore, be used to adjust the
network to an desirable result. In the following, the loss functions used in this work
will be defined.

For pixel-wise output, such as image segmentations, a simple loss function is the
binary categorical accuracy. It is defined as the percentage of the pixels, which
are correctly classified.

For medical segmentations, as large parts of the image are belong to the back-
ground, the binary categorical accuracy can lead to false classification of the whole
image to the background class. Therefore, a definition of the loss using the inter-
section and union of the segmentation with the ground truth is helpful. One loss
function is the jaccard loss, also called jaccard distance, which is based on the
jaccard index defined as [78]:

r = | X ∩ Y |
| X ∪ Y |

(29)

The jaccard loss can then be defined as:

J = 1− r (30)

Similarly, the Sørensen-Dice coefficient is defined by intersections:

DSC = 2 | X ∩ Y |
| X | + | Y | (31)
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This can be rewritten as:

DSC = 2TP
2TP + FP + FN

(32)

with TP : true positives, FP : false positives and FN : false negatives. The dice loss
can then be defined as 1−DSC.

2.7.3 Back Propagation

Back propagation is the key part of the training of the neural network. Mathematically
each parameter, weight and bias of the network can be seen as a dimension in the
multi-dimensional solution space. The goal of the training is to find the global or
at least local minimum of a loss function, which can be seen as the error of the
current state. Therefore, the network can be trained by decreasing the loss iteratively.
This can be done through different learning algorithms, which are mostly based on
gradient descend. Here, the gradient at a certain point is calculated and, following
the gradient, the parameters are updated and the loss function decreased. The
calculation of the gradient is based on the chain rule:

∂f(g(x))
∂x

= f ′(g(x)) · g′(x) (33)

This can be iteratively done for as many functions as necessary, which are inserted
into each other. In back propagation, first the innermost gradient is calculated at
the output side of the network. Then using the chain rule, every other gradient is
calculated using the gradient of the connecting neurons. The update rule for each
parameter is here defined as:

w ← w − α∂L(w)
∂w

(34)

with L: loss function, α: learning rate and w: parameter to be updated.
The learning rate is a hyper parameter, which needs to be defined by the developer.

A hyper parameter is a user defined parameters, which is not learned by the model.
A too high learning rate hinders conversion by jumping in the space of the loss
function, whereas a too low learning rate converges only slowly and might find a
local minimum far from the global one.

2.7.4 Learning Algorithms

As mentioned above, most learning algorithms are based on the gradient descend.
However, for a large data size, it is inefficient to sample through the whole dataset
in order to calculate the gradient. It can be shown that the accuracy of the gradient
increases with

√
N , when N is the number of samples. Therefore, the sample size

needs to be four times larger to double the accuracy. The learning speed can be
improved, by stochastically sampling through the dataset while training. This is
called stochastic gradient descend (SGD). The update rule is here the same
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as in gradient descend with the difference that the loss function and its respective
gradients are only calculated using a subset of the dataset.

In order to achieve a smoother convergence, the preceding gradients can be taken
into account. This results in a smoother movement inside the loss space, as a decaying
average of the before calculated gradients is taken [79]. An update rule for this is
the so called RMS-Prop:

wi ← wi−1 − α
∂Li(w)
∂w

− β∂Li−1(w)
∂w

(35)

For this the gradients of each iteration is saved.
Another option to improve the convergence, is the use of the second moment of

the gradient. This approach, called Adam, has been suggested by Kingma and Ba
[80]. The update algorithm is here defined as [80]:

1. calculate gradient: gt ← ∇wft(wt−1)

2. update first moment: mt ← (β1mt−1 + (1− β1) · gt) / (1− βt1)

3. update second moment: vt ← (β2vt−1 + (1− βv) · g2
t ) / (1− βt2)

4. update parameters: wt ← wt−1 − αmt/(
√
vt + ε)

2.7.5 Activation Functions

Activation functions play an essential role in deep learning, as they introduce the
non-linearity. Hornik and colleagues [81] showed that a multi-layer neural network
with a squashing activation function is able to approximate any Borel measurable
function2 given that it has sufficiently many hidden units. Therefore, a neural network
can be seen as an estimator for any function. Based on this result, deep learning is a
method to estimate an unknown functional relationship between a certain input and
output.

Several activation function exist, which can be used for training neural networks.
The idea behind the first activation functions was to imitate neurons, which have a
binary output. Thus, one possible activation function is a step function. However,
with such a function, the gradient is either 0 or infinite, and therefore no back
propagation is possible. To overcome this problem, the sigmoid function can be
introduced. The shape is similar to a step function with the difference that it is
smooth. The sigmoid function is defined as:

σ(x) = ex

ex + 1 (36)

Another choice is the hyperbolic tangent, which in fact is a scaled and biased
sigmoid function [83]. It is defined as:

tanh(x) = ex − e−x

ex + e−x
(37)

2Every continous numerical function on a Borel measurable subspace of Rd is a Borel measurable
function. However, for an exact definition the reader is referred to "Measure and Integration Theory"
[82]
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Both of those functions are differentiable and therefore the gradients for the back
propagation can be calculated. However, it has turned out, that both of those
functions are prone to the vanishing gradient. This problem mainly occurs in deep
networks. The gradients, as shown in Equation 33, are multiplied through every layer.
Therefore, the gradient decreases exponentially with each layer. If the gradient is
smaller than one, it approximates zero after a sufficient number of layers. Therefore,
layers close to the input are not iteratively improved.

Because of the vanishing gradient problem, the rectified linear unit(ReLU) has
been suggested as an activation function [84]. They are defined as the following:

f(x) = max(0, x) (38)

Dahl and colleagues [84] reported that partially due to the ReLU activation better
results compared to state of the art, which was sigmoid and tanh at the time, could
be achieved.

A further development of ReLU are leaky ReLUs. Here, even at a value less than
zero, the output is not fully inhibited. One advantage is that the gradient is not
vanishing once the input is less than zero. It is defined as:

f(x) = max(αx, x) (39)

with α ≤ 1. This parameter can be treated as a hyper parameter provided by the
user, or trained as a parameter of the neural network. In the later case, it is called
parameterized ReLU (PReLU).

Another activation function is the exponential linear unit(ELU). Preserving
the shape of the ReLU and PReLU for positive x, it replaces the linearity for negative
x by an exponential decay. Thus, similarly to ReLU and PReLU it diminishes the
vanishing gradient problem, but is able to approach better a zero average activation,
which improves the learning rate [85]. It is defined by:

f(x) =

x if x > 0
α(exp(x)− 1) if x ≤ 0

The different activation functions are sketched in Figure 10.

2.7.6 Overfitting and Regularization

If the capacity of a model is higher than the data size of the training set, the model
tends to learn specific cases instead of a general description of the task. This means
that the model performs well on the training data set but poorly on the test set, a
phenomenom known as overfitting. A simple example is when the true distribution
is linear with gaussian noise but the model learns each training point instead of
the linear relationship. This problem can even occur for more complex tasks. For
instance using Google’s inception_v3 network on a mammographic database with
2,500 images for classification into two classes already leads to overfitting, as the
model is capable of remembering each of the images in the training set.
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Figure 10: Five activation functions: sigmoid, hyperbolic tangent, ReLU, PReLU
with α = 0.1 and ELU.

One regularization method is dropout. Here, each neuron is assigned a proba-
bility of being turned on or off during training. Thus, the capacity of the model is
reduced. It has also shown that the accuracy of a model is improved using dropout
[86]. A more interesting proof has been provided by Gal and Ghahramani [87],
showing that dropout is equal to Bayesian approximation of the posterior likelihood.
Therefore, by keeping the dropout active during validation, a Bayesian approximation
can be sampled, which then provides not only a binary output but also an uncertainty
measure for the prediction.

Another regularization method is early stopping. For this, the training is
stopped prior to full convergence on the training set. The validation error usually
starts increasing after a certain point in training, when overfitting occurs. At this
point, the model starts remembering single training data points instead of a general
relationship. Therefore, by stopping early enough, this can be prevented.

Furthermore, data augmentation can be used as a preprocessing. With this
technique more training data can be artificially generated. Options for it are random
cropping, flipping, mirror, rotation, adding of noise and warping. The problem here
is the trade-off between creating too similar samples and samples, which are not
representative anymore. For instance, warping of CT scans can lead to unreasonable
anatomic structures, such that it prevents the model from learning the true anatomical
structure.

2.7.7 Batch Normalization

In batch normalization, the input to a chosen layer is normalized and often whitened.
This is another method to avoid the vanishing gradient problem. Batch normalization
is here done for each batch separately. It has been shown that batch normalization
is able to improve the accuracy and enhance the training speed. For each layer the
input to this layer is normalized and whitened along each input dimension using the
following equation [88]:

x̂(k) = x(k) − E[x(k)]√
Var [x(k)]

(40)
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2.7.8 Layers

The layers are the ’lego blocks’ out of which a network is usually constructed. The
conceptionally simplest layer is a fully connected layer (FC), where every neuron
of the previous layer is connected to every neuron of the following layer. The input is
for each neuron multiplied with a neuron and input specific weight. After this a bias
is added. Therefore, the number of trainable parameters is (N + 1)M with N : begin
the number of incoming neurons and M : being the number of outgoing neurons. Due
to this squared dependency of the parameter count on the size of the network, it
easily becomes inefficient, when considering large input data, such as (3D) images.

An alternative, which is especially useful for images, are convolutional layers
(Conv). A convolution is a mathematical operation, which can be defined in the
following way [89]:

f ~ g(x) =
∫
f(t)g(x− t)dt (41)

In classical image processing, this can be used for smoothening and edge detection
filters. Instead of continuous functions, a discrete convolution is used. The image
matrix is then convolved with a smaller matrix, leading to a transformed image. A
common convolution matrix size is here 3x3, 5x5 or 7x7. The output of this discrete
convolution is then calculated by [90]:

Oij =
 n/2∑
p=−n/2

m/2∑
q=−m/2

Ip+i,q+jfn/2+p,m/2+q

 /mn (42)

with O: output image, I: the input image and m,n: filter width and height. A
moving average filter and a Laplacian filter as examples are shown in Figure 11.

Figure 11: The convolution matrices for a moving average (left) and a Laplacian
filter (right).

In deep learning, the weights of the matrix are learned during training. Typically,
the convolutional filter for the first layer represent different types of edge and frequency
filters [91], whereas features in higher layers represent more complex shapes, such as
car wheels or face shapes [92]. Therefore, by making the model deeper, as to say by
stacking convolutional layers after each other, more higher level representations can
be learned. This knowledge can then be used for example for image classification or
image segmentation. A commonly used term is the receptive field of a neuron. As
the network gets deeper, the field of data a neuron can see from the input through
the stacked convolutions increases. Therefore, the receptive field is a term to describe
what kind of features a neuron could potentially learn. While in the early layers of a
neural network it is fairly small, only allowing simple edge detection, in deeper layers
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the receptive field becomes large, such that larger spatial context such as faces can
be detected. An illustration of the receptive field is shown in Figure 12. Here, the
grid represents the matrix of values in each layer. In the second layer, the neuron is
able to see a field of size 3x3 in the previous layer. In the third layer, the neuron sees
a grid of size 3x3 of the second layer but already a grid of size 5x5 of the first layer.

Figure 12: An illustration of the receptive field of a neuron in the third layer using a
convolutional filter of size 3x3.

Sometimes in literature an activation layer is defined. This means that an
activation function, such as the ones described in Section 2.7.5, are applied to each
neuron. Furthermore, there are dropout layers, which apply the in Section 2.7.6
explained dropout to each neuron.

In addition to that, pooling layers are commonly used. The goal is here to
reduce the resolution of the previous layer. This can work as a regularization but
is mainly necessary in order to construct deeper models with limited memory. In
addition to that, the pooling layer increases the receptive field by a factor equal to
size of its grid. The most common used pooling operation is max pooling. Here, the
maximum value of a grid is propagated to the next layer. The grid size then specifies
the downsampling factor. Other pooling strategies, are average pooling, where the
average of each element inside the grid is taken, mixed max pooling and gated max
pooling [93]. However, the most prevalent pooling layer due to its simplicity and
compute cost efficiency is the max pooling layer. In the following, unless otherwise
specified, the max pooling layer will be meant by pooling layer.

2.7.9 Model Architectures

The architecture of the model largely depend on the application case. However, this
is not strongly correlated to the field of science. For instance, a segmentation model
used for segmenting objects on a street can be good in segmenting different organs in
a CT scan. In the following, the main architecture types shall briefly be described.

Sequential Neural Networks (SNN) have one input and one output. There,
every layer comes after another. These networks can be build using fully connected
layers, convolutions or similar.



36

A subtype of SNNs are convolutional neural networks (CNN), where the
layers of the SNN are convolutional layers. These are especially good for applications,
which have spatial correlation, such as images and movies. An example for a CNN is
the Alex-Net by Alex Krizhevsky [91] or the inception network by Google.

Another idea for increasing the performance of CNNs are residual neural
networks, where residual connections are introduced. In these networks in addition
to the convolutional layers, skip connections are introduced. Through the skip
connections, the information obtained by previous convolutions can be used in deeper
parts of the network. This is especially important, when the network becomes deeper.
This has first been implemented by He and collegues (2015) in their ResNet [94]. It
is also possible to scale those skip connections, which can make the training more
stable. This has been done, for example, in the Inception-ResNet network [95]. A
sketch of a shallow CNN and its residual counterpart is shown in Figure 13.

Figure 13: A sketch of a shallow CNN and its residual counterpart.

Another type of neural networks are recurrent neural networks (RNN). Here,
there are several inputs, which are fed after each other to the network. The network
itself forwards the hidden unit from one iteration of the network to the next. Thus,
there are two inputs to the network at each stage: information from the previous
stage and the new input. An illustration of the simplest RNN with one hidden unit
is shown in Figure 14. RNNs are especially good for sequential information, such as
natural language processing or artificial audio generation. One prominent building
block of a RNN is the long-short term memory(LSTM) [96].

Figure 14: An illustration of a simple RNN. This is a slightly modified version from
Goodfellow and colleagues) [96].
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Deep auto-encoders (DAE) are a type of SNNs, which have the goal of finding
a lower dimensional representation of the input and being able to restore the input
from this low-dimensional representation. This can be used for example for denoising
of speech [97] or images [98]. An illustration for the shape of an DAE is given in
Figure 15.

Figure 15: An illustration of an DAE.

Neural Segmentation Networks (NSN) typically use a structure similar to
auto-encoders, in the sense that a dimensionality reduction is performed followed by a
reconstruction network. Differences exist however in whether the spatial information
is completely omitted such as in the anatomically constraint neural network (ACNN)
[99], or if the spatial resolution is only reduced, as for example in the UNet [100].
The later one has been used for segmentation of CT images of pancreatic tumor
[101], liver [102] and the Xenopus kidney [103]. However, those approaches either
use a 2D-UNet or are in need of another neural network on top of the UNet. One
important improvement to former CNNs are the skip connections, which preserve
more detailed information for the segmentation at a later stage in the network [104].
The structure for a 3-level UNet is illustrated in Figure 16.

Figure 16: An illustration of a UNet3 similar to the one in Hänsch and colleagues
(2018) [2].

In the approach by Hänsch and colleagues [2], a 3-level UNet was used to segment
parts of the female pelvis. In this approach, the 3D images is processed in patches,
meaning that the network is applied to a subset of the actual image, which then
outputs a even smaller subset. Then the receptive field of the network is shifted and
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the next output patch generated. As the network is translational invariant due to
its fully convolutional structure, the network performs similar for the shifted input.
Through overlapping receptive fields, as to say as smaller output size than input size,
consistency in between the classification is tried to ensure.
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3 Research Material and Methods

3.1 Model Architectures
The architecture of a model has several requirements. First, it needs to have enough
capacity to be able to perform the task at hand. However, its capacity cannot be
too high, such that overfitting becomes a problem. Second, the hardware limitations
need to be considered, which include the memory available and the training time.
Third, the size of the model can be constraint by the final application, meaning that
there can be a time constraint in the inference.

In this work, an architecture was developed for different segmentation tasks and
will be compared to a model created by Varian Medical Systems for research purposes
and to the 3-level UNet model developed by Frauenhofer MEVIS.

3.1.1 5-level UNet

One problem of the 3-level UNet proposed by Frauenhofer [2] is the misclassification
of muscle tissue as breast tissue, when applying it to CT scans of the upper female
body. One possible reason for this is the fairly small receptive field of 44x44x44
compared to an image size of approximately 256x256x120. Therefore, the network is
not able to comprehend the anatomical context of the image patch well.

In order to mitigate this problem, a 5-level UNet was developed similar to
Ronneberger and colleagues [100]. The main difference to the Frauenhofer’s approach
is the input and output size of the network. In the 3-level UNet from Frauenhofer, the
input size is 44x44x44 and the output size approximately 12x12x12. A smaller output
size than input size is needed to achieve smoother contours. In the 5-level UNet,
the input size is the full volume of interest (VOI); in the breast case 256x256x112.
The output size can therefore be equal to the input size as no smoothening through
sliding is needed when performing the inference on the whole volume.

In comparison to Ronneberger and colleagues [100], this 5-level UNet, in the
following called UNet5, uses 3D images and replaces up-sampling layers with transpose
convolution layers. The depth of the convolution layers also differ slightly, in order to
stay within the memory boundaries. The filter size is constantly 3x3x3. The depth
of the filters for the first level is 16 and increased by a factor of 2, when moving to
a lower resolution level, to avoid bottlenecking. The transpose convolution use the
same filter depth as the resolution level they are convolving from. Skip connections
are implemented between each level in the downwards path to the corresponding
level in the upwards path.

A sketch of the implemented architecture is shown in Figure 17. At each Conv
block, there is a convolutional, a dropout, a batch normalization and an activation
layer. The order of these layers is described as layer order and is hyper searched.
The architecture uses 6,645,843 trainable parameters.
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Figure 17: The UNet5 architecture with the different sizes of the image in the different
levels and the number of filters for each (transpose) convolution.

3.1.2 BibNet

As an attempt to improve the performance of the UNet5, the BibNet was invented.
Its structure is similar to the UNet5 but it tries to process image information at
different resolution levels. The idea is to preserve high-resolution features and feed
them to lower resolution levels. Therefore, a mesh like architecture is made. The
structure can be seen in Figure 18. The convolutional filter have a size of 3x3x3,
and a depth of 16 in the first resolution level, which is increased by a factor of 2 for
each resolution level change to prevent bottlenecking. The parameter count is due
to the extra intermediate layers increased in comparison to the UNet5 to 7,679,187
trainable parameters.

3.1.3 Slim BibNet

In an attempt to increase the inference speed and reduce the training time, the
number of filters used per layer was reduced by a factor of 4 in comparison to the above
presented BibNet. With this approach, the trainable parameters reduce significantly
from roughly 7.7 million to 482,247.
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Figure 18: The BibNet architecture with the different sizes of the image in the
different levels and the number of filters for each convolution.

3.1.4 BibNet2

Residual networks have shown that by making a network deeper its performance
can be increased. This concept is applied in the further development of the BibNet.
Herefore, the filter size per convolutional layer is kept from the slim BibNet, but
each convolutional block in the downward path is made deeper using residual blocks.
The architecture is sketched in Figure 19. In comparison to the original BibNet, the
trainable parameters are decreased to 4,349,232. One reason for this is the reduction
in the number of filters per convolutional layer. This helps to increase the training
and inferring speed. However, the increased complexity compared to the slim BibNet
should enable the network to retain its segmentation accuracy.
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Figure 19: The BibNet2 architecture.

3.2 Dataset
The images together with the ground truth segmentation are from different hospitals.
These segmentations were clinically used to create treatment plans for cancer patients.

3.2.1 Breast

The breast dataset contains 97 patients with contours for left breast, right breast
and the heart. From this dataset, 8 patients are randomly chosen as a validation set.
The data was reviewed during the course of the thesis, due to inconsistencies in the
segmentation, such as missing slices or clearly wrong segmentations. This was done
by Varian experts. In the following, it will be mentioned whether the revised or the
original data has been used.

3.2.2 Female Pelvis

The initial dataset included 412 patients with ground truths for bladder, uterus and
rectum. Out of this data set, 97 patients are taken for validation. The extended
dataset has 565 patients with ground truths for bladder, uterus and rectum. Out of
this, 92 patients are taken for validation.

3.2.3 Male Pelvis

The male pelvis dataset contains 150 CT images from 3 different clinical sites. From
those images 150 pseudo CBCT (pCBCT) images are generated; one for each CT
image. Thus, the final dataset consists of 150 CT images and 150 pCBCT images.
The dataset is then randomly divided into 240 training images and 60 validation
images. Each image has ground truth segmentations for the bladder, the prostate,
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the rectum and the seminal vesicles. The pCBCT scans contain 67 slices, whereas
the CT scans contain between 100 and 250 slices.

3.3 Computing platform
The training was performed on different local workstations with Nvidia Quadro
graphic cards K80, P4000 and P5000. As a high level interface, a deep learning
framework developed by Varian was used. It builds on top of Keras, which uses
Tensorflow as a backend. Tensorflow itself then uses CUDA 9.0 and the corresponding
cuDNN library.

3.4 Training Strategies
The training of the network is a crucial part for the outcoming performance. As the
inference of a model uses less memory than the training, a different network size can
be chosen for training and inference. The idea behind this is that fully convolutional
networks share parameters for different image sizes. Therefore, by first using smaller
patches of images for training, a larger network parameter-wise can be trained. The
patch size is then increased during inference to match the actual image size. The
limitation of this approach is that a high level representation, in the form of hidden
units, can only be achieved upon the grade in which the inference task is similar
to the training task. This means that when the input patch is small in training
compared to inference, the network cannot perform well. This is because the task in
the inference then differs greatly from the trained task. Therefore, the training in
general is better if the patch size can also be increased during training. However, as
the hardware capacities are limited, using smaller patches can improve the results by
allowing the creation of higher capacity models.

In the training in this work, the patch size is maximized for the available graphics
card. In the breast case, this means that for the training on a Nvidia Quadro P4000
with 8 GB GPU memory, the patch size is set to 256x256x32, whereas on a Nvidia
Quadro P5000 with 16 GB memory, it is set to 256x256x64. In the inference, the
patch size is increased to 256x256x80 on the P4000 and to 256x256x112 on the
P5000. For the female pelvis, a patch size of 192x192x48 is used during training,
due to the differing image size in the training set. During inference, the patch size is
increased to 192x192x64. For the male pelvis dataset, the patch size during training
is 256x256x32 on the P4000 and 256x256x64 on the P5000. During inference, the
patch size is increased to 256x256x64 for the UNet5 and BibNet, and to 256x256x192
for the BibNet2. The large axial size in this case, is due to some CT images in the
training set, which reach from the tigh to the chin.

Furthermore, a decaying learning rate is applied with an decrease from 10−3 to
10−5. Additionally, a hyper search is performed for PReLU and ELU activations and
different random seeds, which influence the weight initialization. As an optimizer,
Adam is used.

The models are created using the python implementation of keras with tensorflow
as a backend. The framework for data augmentation, 3D batch processing and model
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evaluation is based on python.
For most of the models, a so-called hyper search is used. Here, several models

are trained up until a specified number of epochs. These models differ in their
hyper parameters such as activation functions and layer orders. Additionally, the
random seed for the weight initialization is sampled for each model separately. In
this approach, the best model after a few epochs is chosen and then trained until
convergence. The underlying assumption here is that a model that performs well in
the beginning will also perform well at the end of the training. However, this only
holds true if the number of epochs needed for training are similar for the different
models in the hyper search.

3.5 Training - Breast
3.5.1 UNet5 - Breast unrevised

The UNet5 was trained on the unrevised breast dataset using the breasts and the
heart as segmentation targets. The images were downsampled by a factor of two.
The loss function was the jaccard loss with an additional surface loss with weight
1. The learning rate during the hyper search is changed from 10−3 to 10−4 and
afterwards from 5 · 10−3 to 5 · 10−5. During the training of UNet5, the graphic card
was changed from a P4000 to a P5000 after 1000 epochs, which allowed increased
the patch size from 256x256x32 to 256x256x64.

3.5.2 UNet5 - Breast revised

Similarly to Section 3.5.1, the UNet5 was trained. However this time on the reviewed
breast dataset. The loss function was the jaccard loss without an additional surface
loss. The learning rate during the hyper search is changed from 10−3 to 10−4 and
during the auto train phase from 5 · 10−3 to 5 · 10−5. The hyper search searched
through 6 different UNet5 with layer orders either dropout-convolution-activation-
normalization or dropout-normalization-activation-convolution, activation either
PReLU or ELU and varying random seed for the weight initialization.

During the following training period of the UNet5, the graphic card was changed
from a P4000 to a P5000 after 465 epochs, which allowed increasing the patch size
from 256x256x32 to 256x256x64.

3.5.3 UNet3

A 3-level UNet similar to Hänsch and colleagues [2] has been trained on both the
unrevised and the revised breast data set, using a hyper search for activation functions
and layer order. The model was trained until convergence.

3.5.4 BibNet2

In a similar fashion, the BibNet2 has been trained on the revised breast dataset. How-
ever, the layer order was kept fixed to dropout-convolution-activation-normalization
and the activation to ELU. The model was then trained until convergence.
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3.6 Training - Female Pelvis
The task for the female pelvis is to segment the rectum, bladder and uterus. Three
different models have been trained for this: the UNet3, the UNet5 and a Varian
in-house model. The training has been done twice: once for the initial dataset and
once for the extended dataset.

3.6.1 UNet5 - initial Dataset

The training of the UNet5 on the initial dataset used a hyper search for activation
functions, choosing between PReLU and ELU, layer order and random seed. 5
different models have started the training and the worst models have been dropped
after 10 and 20 epochs. The best model was then trained until convergence, which
was after 182 epochs. The training was performed on a P4000 with a patch size of
192x192x48.

3.6.2 UNet5 - extended Dataset

Similarly, the UNet5 has been trained on the extended pelvis data set with the
difference of dropping the first two models at 10 epochs, one at 25 epoch and the
fourth one after 50 epochs. The best model was then continued to train until
convergence, which occurred after 237 epochs.

3.6.3 Other Models

In a similar way, a UNet3, a BibNet, a BibNet2 and the slim BibNet have been
trained on the extended female pelvis dataset. For each model a hyper search was
used. However, only for the UNet3 the layer order and activation function have been
hyper searched. For the other ones, these have been fixed during the hyper search
and, thus, only the random seed was modified. All of the models have been trained
until convergence with changing the learning rate during training from 5 · 10−3 to
5 · 10−5.

3.7 Training - Male Pelvis
The task for the female pelvis is to segment the bladder, the prostate, the rectum
and the seminal vesicles. Four different models have been trained on this anatomical
site: the UNet3, the in-house model, the UNet5 and the BibNet2. For all of the
models, the images were down sampled by a factor of 2 in the axial slices. The
final resolution is therefore 256x256 for the CT scans and 197x197 for the pCBCT
scans. All models used a hyper search in the beginning and were then trained until
convergence.

3.7.1 BibNet2

For the BibNet2, the learning rate during the hyper search was changed from 5 · 10−3

to 1 · 10−4, and during the following training from 1 · 10−4 to 1 · 10−5. The total
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training contained 300 epochs for the best model, which took less than one day.

3.7.2 UNet3

For the UNet3, the learning rate during the hyper search was changed from 1 · 10−3

to 1 · 10−4, and during the following training from 1 · 10−4 to 1 · 10−5. The total
training contained 1050 epochs for the best model, which took less than one day.

3.7.3 Other Models

Similarly, a UNet5 and the Varian in-house model have been trained. Again, a hyper
search was used for changing the random seed and the models have been trained
until convergence.

3.8 Visualizing Filters

The convolutional layers are thought to represent higher level features the deeper in
the network they are located. To verify this thought, the filters of the UNet5 trained
on the revised breast data set, were visualized in the following way:

An image with random noise is fed into the network. Then, the output of the
layer to be visualized is taken and its mean value calculated. This mean value is
maximized by back propagating to the image using gradient ascent. Thus, the image
is iteratively modified to maximize the output of the filter. In our case, a step size of
20,000 and 50 iterations have shown to be reasonable.

3.9 Visualizing Segmentation

For the visualization of the segmentation for the female pelvis, CT images are taken
from the public dataset The Cancer Genome Atlas Uterine Corpus Endometrial
Carcinoma collection (TCGA-UCEC) [105]. These are CT images from female
subjects containing both the abdomen and pelvis, as well as the thorax. The
resolution and window levels are slightly different from the training dataset and, thus,
this visualization also provides a robustness test. In addition to the segmentation of
the neural network, smoothening, hole filling and selection of the largest connected
component as a post-processing (PP) is applied where indicated.

For the visualization of the segmentation for the male pelvis, CT images are taken
from the public dataset The Cancer Genome Atlas Colon Adenocarcinoma collection
(TCGA-COAD) [106]. The images used are from male subjects and contain either
only the pelvis region or are full thorax images. Again the resolution and window
levels are slightly different to the training data and the image quality compared to
the CT images of the training data is worse. This is due to the age of the CT images:
The training images were taken between 2014 and 2017, whereas the CT images used
from the TCGA-COAD are from 1999.
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3.10 Inference Time
The inference time was measured on a Nvidia P5000 GPU or, for the CPU test,
two Intel Xeon CPU E5-2640 v4 with 2.4 GHz have been used. Here, only the pure
inference time was taking into account, not including, for example, the loading of
modules such as Tensorflow. The inference time was then divided by the number of
voxels.

3.11 Distance Measurement
The dice score can be used easily as a loss function during training, as it calculates the
error for each voxel. However, the score itself is not necessarily easy to understand.
As the score is calculated as a percentage of voxel, which are outside of the union of
the ground truth and the segmentation, large organs generally are able to perform
better. A more meaningful measure is the average surface distance. Here, the
distance between the surface of the two volumes is calculated. To account for both
over and under contouring, in this work the root-mean-square (RMS) of the distance
for each surface voxel of the segmentation is taken.
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4 Results

4.1 Breast Models
In the following, the results for the segmentation in the breast case are presented
and discussed.

4.1.1 UNet5 - Breast unrevised

The validation dice loss for the training of the UNet5 on the breast dataset is shown
in Figure 20a. It can be seen that after approximately 150 epochs the validation loss
is stagnating and does not improve until the patch size is increase at the change to a
better graphics card. The two points from here are that the model is able to train
within a couple of hundreds of epochs and that more training does not improve the
validation loss. The second point is that the patch size during training changes the
validation loss significantly. The first saturation was with a validation dice loss at
0.21 and the second at 0.10.

4.1.2 UNet5 - Breast revised

The validation dice loss for the training of the UNet5 on the revised breast dataset is
shown in Figure 20b. The graphics card was changed after 465 epochs. Similar to the
training on the unrevised training set, the validation loss decreases significantly after
increasing the patch size. The model seems to be nearly unchanged after 100 epochs,
leading to only minor improvements. The increased performance in respect to the
validation dice loss after changing to a larger patch size is not necessarily an indicator
for a better performance during inference, because the patch size is automatically
increased to 256x256x112 during inference. Thus, the initial improvement may not
be fully reflected during evaluation of the model. In final evaluation, the dice scores
for the model trained only with the smaller patch size is less than 1% different to
the model trained with the larger patch size for the two breasts. However, the score
improved from a dice score of 0.821 to 0.941 for the heart. In visual inspection, it
could be seen that the inferior heart boundary was not appropriate for the training
with the smaller patch size. Here, the network tend to contour parts of the superior
liver as part of the heart. For the larger patch size, this problem is mitigated.

4.1.3 Model Comparison

For both data sets, a UNet5, a UNet3 and a model developed previously for research
purposes by Varian, from now on in-house model, have been trained on the revised
breast data set. The evaluation is done on 8 patients.

The results on the revised data set are shown in Table 1. It can be seen that
the Varian in-house model performs better for the right breast, whereas the UNet5
performs slightly better on the heart and right breast. On the other side, the time
to compute the inference on one patient is significantly slower in the in-house model
compared to the UNet5. This is due to the architectural design. The UNet5 processes
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(a) Initial breast dataset (b) Revised breast dataset

Figure 20: The validation dice loss during the training of the UNet5 on the initial
and revised female breast dataset, using the breasts and the heart as segmentation
targets. The graphic card and with it the patch size was changed after 1000 epochs
for the initial and 465 epochs for the revised dataset.

the whole image at once, whereas the in-house model has a patch-wise approach.
Therefore, the in-house model needs to perform the inference several times for each
patient, whereas it is needed only once for the UNet5. The training of the model on
the revised dataset did improve the performance of the UNet5. This can be due to
a more consistent dataset, making it easier for the model to learn the anatomical
structures. The improvement is for all structures significant with a p-value of less
than 0.005.

The BibNet2 performs equally well as the UNet5 on the heart, but is worse on
the left breast and better on the right breast. Therefore, its overall performance is
comparable to the UNet5 and the in-house model. However, its inference speed is the
fastest of all on the GPU, reducing the inference time in comparison to the UNet5
by 25% and in comparison to the in-house model by a factor of 46.5. Therefore, as
the scores show no clear difference, this model could be thought as being the best
for this anatomical site.

The inference time per voxel and for a 256x256x112 sized image for both inference
on GPU and on CPU can be seen in Table 2.

The results from the evaluation of the models on the unrevised data set are shown
in Table 3. The models were trained and evaluated on the unrevised dataset, except
for the ’UNet5 retrain’, which was trained on the revised data set and evaluated on
the unrevised set. Interesting to note is that the UNet5 improved for the breasts
by training on the revised data set. This means that the model did improve not
only for the revised data set but also for the non-revised one. Therefore, it can be
concluded that the model was able to learn the anatomical structures better with
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model heart left breast right breast
BibNet2 0.955 0.926 0.955
In-house 0.953 0.939 0.944
UNet3 0.944 0.927 0.922
UNet5 old dataset 0.923 0.878 0.865
UNet5 P4000 0.917 0.821 0.939
UNet5 P5000 0.958 0.942 0.937

Table 1: The median dice scores for the different models evaluated on the revised
breast data set

model GPU voxel (ns) GPU image (s) CPU voxel (µs) CPU image (s)
BibNet2 76.3 0.6 15.3 112.4
In-house 3555.4 26.1 167.8 1231.3
UNet3 1154.6 8.5 90.5 664.0
UNet5 105.6 0.8 13.2 96.8

Table 2: The median dice scores for the different models evaluated on the revised
breast data set

model heart left breast right breast
Varian in-house 0.954 0.906 0.918
UNet3 0.950 0.922 0.906
UNet5 0.951 0.893 0.882
UNet5 retrain 0.956 0.908 0.915

Table 3: Median dice scores for the different models evaluated on the unrevised
breast data set and the median inference time.

the improved dataset. This indicates that the model did not only learn a certain
contouring practice but learned the underlying anatomy.

Score-wise, the UNet5 is for some anatomically structures worse than the UNet3
and, compared to the Varian in-house model, only better for the right breast. However,
the inference time is smaller by a factor of 4 compared to the ResLane and the UNet3.

4.1.4 Visualizing Filters

Axial slices of some of the filters from the different layers are shown in Figure 21 and
Figure 22. The naming of the layers is here C1–C14 for every block shown in Figure
17 on the downward path starting from the first convolutional layer, and E1–E12 for
the layers in the upward path starting from the first transpose convolutional layer.

In the downward path, it can be seen that the first layer has no macroscopic
shapes, whereas the second layer seems to have some pattern recognition. The deeper
the layer is the more complex structures are detected by the layer in the downward
path.

In the upward path, the layers respond to similar features as in the later convolu-
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(a) C1-10 (b) C2-9 (c) C4-2

(d) C5-5 (e) C11-30 (f) C14-61

Figure 21: Axial slices from some of the filters of the convolutional layers of the
downward path in the UNet5 trained on the breast data set.

tional layers of the downward path. Some of the layers, however, seem to represent
more detailed patterns, for example filter 15 of layer E6. This is reasonable, as the
upward path tries to reproduce the segmentation from the low resolution represen-
tation of the downward path. Therefore, some layers have the same macroscopic
information as at the end of the downward path, whereas other layers are more
receptive to the finer textures.

(a) E2-10 (b) E6-15 (c) E9-10

Figure 22: Axial slices from some of the filters of the convolutional layers in the
upward path of the UNet5 trained on the breast data set.
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4.1.5 Visualizing Segmentation

The segmentation of the female breast and heart for three subjects using the UNet5
with and without PP is shown in Figure 23.

(a) Patient 1 without PP (b) Patient 1 with PP

(c) Patient 2 without PP (d) Patient 2 with PP

(e) Patient 3 without PP (f) Patient 3 with PP

Figure 23: The segmentation of breasts and heart of three patients of the TCGA-
UCEC with and without post-processing.
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4.1.6 Contouring Problems

The UNet3 in the breast case has a tendency of misclassifying muscle tissue in
the back and in the arm as breast tissue. The reason for this is that the tissues’
appearance is similar and can only be distinguished by its context. As the receptive
field of the UNet3 is small, it is unable to distinguish between the different areas. This
problem can be mitigated through post-processing by taking the biggest connected
component. It could be seen that this is able to reduce the misclassification as long
as the misclassified tissue is separated and forms a smaller connected component as
the actual tissue.

The UNet5 and the BibNet have similar challenges. These are mostly contouring
a few slices too many in the superior breast or a few slices too many in the inferior
or superior heart.
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4.2 Female Pelvis

In the following, the results for the segmentation of the female pelvis are shown. The
goal here was to segment the bladder, rectum and uterus from CT and CBCT scans.

4.2.1 Training UNet5 - initial Dataset

The validation dice loss of the UNet5 on the initial dataset during the training is
shown in Figure 24a.

The validation dice loss decreases for the first 20 epochs strongly but then remains
between 0.10 and 0.11 for the rest of the training. In this training, the different
models, which are initially created, seem to perform equally, making the value of the
hyper search questionable.

4.2.2 Training UNet5 - extended Dataset

The validation dice loss of the UNet5 on the extended dataset during the training is
shown in Figure 24b.

In this training, the different models, which are initially created, have different
validation losses during the first couple of epochs but seem to be fairly equivalent at
10 epochs. The final validation dice score is around 0.13, which is higher than on the
non-extended dataset. This might be due to different validation data, which could
be harder for the model to learn.

(a) initial female pelvis dataset (b) extended female pelvis dataset

Figure 24: Shown are the validation dice losses during the training of the UNet5 on
the initial and extended female pelvis dataset, using rectum, bladder and uterus as
segmentation targets.
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4.2.3 Model Comparison

The median dice scores for the different models on the initial female pelvis data set
are shown in Table 4.

model Bladder Rectum Uterus
BibNet 0.920 0.816 0.876
Varian in-house 0.90 0.80 0.85
UNet3 0.916 0.806 0.843
UNet5 0.920 0.829 0.862

Table 4: Shown are the median dice scores for the different models evaluated on the
initial female pelvis data set and the median inference time.

The inference times per voxel and for a full pelvic CBCT (192x192x64) on both
GPU and CPU are given in Table 5.

model GPU voxel (ns) GPU image (s) CPU voxel (µs) CPU image (s)
In-house 2193.25 5.17 225.3 513.55
UNet3 1272.7 3.00 101.6 240
BibNet 126.0 0.30 15.6 36.8
UNet5 105.6 0.25 13.0 30.8
BibNet2 76.3 0.18 15.3 36.12
slim BibNet 39.6 0.09 5.6 13.16

Table 5: Shown are the inference times per voxel and for a full image both for GPU
and CPU.

It can be seen that the UNet5 and the BibNet outperform both the Varian in-house
model as well as the UNet3. Furthermore, their inference times are considerably
shorter. One downside to both models is that the training of these models takes
longer as each epoch takes between 500s and 1000s compared to 4s-30s for the Varian
in-house model and the UNet3. However, this difference needs to be in perspective
of the epochs needed for training. The Varian in-house model and the UNet3 usually
require 2000 to 3000 epochs, compared to the approximately 200 epochs for the
BibNet and UNet5. The reason for this is, that the later two train on the whole
image, whereas the former two train only on a small patch. Therefore, each epoch
for UNet5 and BibNet takes longer but allows the model to learn more. The general
training time is in the order of one day to a couple of days.

On the extended dataset, the UNet3 improved, whereas the BibNet and UNet5
stayed approximately the same. The results can be seen in Figure 25 and the median
dice scores are shown in Table 6. Here, the BibNet is as good as the Varian in-house
model, but is outperformed by the UNet3. Furthermore, the UNet5 performs in this
test worse on the rectum compared to the non-extended dataset. This shows one
problem in training DNNs: The training process itself is stochastic and, thus, it
cannot be assured that two trainings converge to the same minimum or have the exact



56

same performance. By training the model on three different organs simultaneously,
it forces the model to have a trade-off between performance on each one of them.
The trade-off itself is, hereby, statistically learned through the applied loss functions.

model Bladder Rectum Uterus overall
BibNet 0.895 0.809 0.878 0.848
slim BibNet 0.871 0.787 0.850 0.804
BibNet2 0.890 0.779 0.864 0.843
Varian in-house 0.897 0.803 0.879 0.855
UNet3 0.918 0.812 0.892 0.873
UNet5 0.903 0.782 0.854 0.851

Table 6: The median dice scores for the different models evaluated on the extended
female pelvis data set.

When performing a two-tailed paired t-test, the differences in the overall mean
values presented in Table 6 are statistically significant with a p-value of less than 5% ,
except for the overall means between UNet5, BibNet and BibNet2. This is reasonable
as those architectures are related to each other. In addition, when using Bonferroni’s
correction, the differences between the in-house model and the UNet5, the UNet3
and the BibNet become statistically not significant. However, when comparing single
structures, several comparisons are statistically not significant, e.g. for the uterus
between UNet5 and BibNet, and between in-house and UNet3. Additionally, for
the rectum between in-house and UNet3, as well as between in-house and BibNet.
For the bladder, the difference is not significant between in-house and BibNet. This
shows how similar the performances of the individual models are compared with the
inter-individual variety.

The slim BibNet performs worse than the other models on average but is still
comparable to the UNet5 for rectum and uterus. This result is not surprising, as the
slim BibNet is a significantly reduced model. On the other hand, the inference time
is reduced by a factor of 2 to 3 in comparison to the UNet5 and BibNet on both
the CPU and GPU. The use case for this model is, hence, when the compute power
poses a limitation for the other models. This can be the case if the inference needs
to be performed on a normal CPU. Here the difference between the in-house model
and the slim BibNet is significant: The in-house model takes 8.5 minutes, whereas
the slim BibNet only takes 13.2 seconds. This can be a strong advantage, when the
model is used in an adaptive treatment setting, where time is a crucial factor. It
also needs to be considered, that here 2 Intel Xeon CPU E5-2640 v4 have been used.
This might be a faster configuration than might be found in a hospital environment.
The inference time there might even be slower, such that the time consumption poses
an argument for the BibNet-4, even though its accuracy is slightly worse than for
the other models.

The root-mean-square of the surface distance has been calculated for the different
models and organs. A boxplot of the distances is shown in Figure 26. The results
correlate with the dice scores, when it comes to the comparison of the different models.
The median rms surface distance is here between 2 and 5mm for the different models.
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Figure 25: Box plots for each of five models both for all organs combined and for
each organ separately for the extended female pelvis data set.

Here, the BibNet performs best on the bladder, whereas, the UNet3 is best on the
Rectum and Uterus.

Figure 26: Box plots of the RMS surface distance for each of the six models both for
all organs combined and for each organ separately for the extended female pelvis
data set.

The inference of the UNet3 and BibNet trained on the extended data set and
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of the UNet5 trained on the non-extended data set is shown for an axial slice in
Figure 27. For each model, the raw output of it and with applied post-processing is
shown. The post-processing takes the largest connected component for each organ
and applies gaussian smoothening. For UNet3, the uterus is not segmented after the
post-processing because the largest connected component was found in the heart.
This could be avoided by selecting an appropriate volume of interest.

4.2.4 Contouring Problems

The contouring of the female pelvis is mainly affected by the artifacts stemming
from the bowel movement. These occur mainly in the superior part of the abdomen
and, thus, influence the superior uterus. All of the tested networks tend to stop
contouring once the artifacts become too strong.

Another problem is that the contouring practices of the rectum are varying in
the ground truth. Especially, the point at which the rectum starts or ends is not
uniform in the training set. Therefore, the models cannot learn a specific contouring
practice. This is a reason for the low scores of the rectum in comparison to bladder
and uterus, which are fairly accurately described.

For the uterus, the main problem are artifacts, which occur in the superior part.
Due to the bowel movement, there are movement artifacts at the superior uterus. This
can make the uterus indistinguishable from surrounding tissue. The contours from
all models seem to avoid the artifacts and, thus, end the contours to early. Reducing
the artifacts could possibly be integrated at different levels. The reconstruction
algorithm could be improved, e.g. using iterative reconstruction methods, which
are more robust to motion artifacts. Furthermore, filtering might be able to reduce
the artifacts. The effect of filters is questionable, however, due to the shape of
the artifacts. Another option is the implementation of an anatomically constrained
model, which is able to produce the contours despite the artifacts. This has been
done for the heart by Oktay and colleagues [99], but requires a significantly more
difficult construction and training of the model. Furthermore, in comparison to the
heart, the pelvis region is more prone to anatomical changes, e.g. due to a more
or less filled bladder and bowel movement. Therefore, it is not clear whether an
ACNN would be able to generate good contours. In a first attempt to create the
auto-encoder part of the ACNN with the same architecture as presented by Oktay
and colleagues [99], the model was not able to learn a representation with a dice loss
of less than 0.28, even though the parameter size of the hidden unit was searched
between 64 and 4098. This might be an indication that the model is unable to learn
the strongly changing anatomical structure of the female pelvis. However, further
investigations are needed to confirm this preliminary result.
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(a) BibNet without PP (b) BibNet with PP

(c) UNet3 without PP (d) UNet3 with PP

(e) UNet5 without PP (f) UNet5 with PP

Figure 27: The segmentation of bladder, rectum and uterus from BibNet, UNet3
and UNet5 on a patient from the TCGA-UCEC with and without post-processing.
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4.3 Male Pelvis
In the following, the results from the different models on the male pelvis are shown.
The median values can be seen in Table 7.

model Bladder Prostate Rectum Seminal Vesicles
BibNet2 0.956 0.886 0.878 0.716
in-house 0.962 0.873 0.856 0.745
UNet3 0.961 0.879 0.866 0.776
UNet5 0.952 0.871 0.880 0.747

Table 7: The median dice scores for the different models evaluated on the male pelvis
data set.

Figure 28: The average surface distances for each of the four model both for each
organ separately for the male pelvis in millimeter.

A paired two sample t-test for means was performed between the BibNet2 and
the UNet3, showing no statistical difference for Bladder and Prostate, but statistical
significant difference for rectum and seminal vesicles. Thus, it can be concluded
that the models perform with similar accuracy for the first two organs but have
different strengths for the rectum and the seminal vesicles. In the evaluation of the
UNet3, in two CT cases each, the bladder was contoured in the liver and the rectum
was contoured in the bowel. The reason for this is the receptive field of the UNet3,
which is small compared to the image size. Therefore, the context of each patch
is unclear to the network. In postprocessing, the largest connected component is
taken, such that smaller misclassifications are unnoticed. However, in whole torso
CT scans, which are partly used for evaluation, the largest connected component
is not necessarily the desired organ anymore. This problem could be mitigated by
choosing an appropriate volume of interest (VOI). Due to this behavior, the mean
value of the dice score for the bladder and the rectum are comparably large for the
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UNet3. The receptive field of the BibNet2 is with 256x256x192 large enough, such
that the whole image is processed in either one or two patches. Therefore, enough
context is available to the network, such that these misclassifications do not occur.

In addition to the dice score, the root-mean-square (rms) of the surface distance
between the segmentation and the ground truth for each organ was calculated. The
results per patient are displayed in Figure 28. Here, the UNet3 is able to perform
best for bladder and seminal vesicles. Whereas, the 20 times faster BibNet 2 is better
on the Prostate and the Rectum. However, only the difference in the seminal vesicles
is statistically significant (p-value < 0.05 ) in a two-way t-test for the mean value.

All models are able to segement the structures with an average error of less than
5mm. The voxel spacing of the input image is 2.34mm in the axial plane and 2.5mm
along the body axis. Thus, the median segmentation accuracy is between 1 and 2
voxels. For the bladder and the seminal vesicles, the median segmenatation accuracy
is for some of the models even below the size of one voxel.

4.4 Contouring Problems
The contouring accuracy in terms of the root-mean-square of the surface distance
is better for the male pelvis compared to the female pelvis. The main reason for
this is the type of imaging data used. While the female pelvis data contains both
CT and CBCT images, the male pelvis dataset is constituted of CT images and
pCBCT images from these CT image. These pCBCT images do not contain the same
artifacts from bowel movement as the real CBCT images. Therefore, the contouring
problem, seen in with the female pelvis, in the lower abdomen due to these artifacts
does not occur in the male pelvis case. Hence, the models are able to contour the
superior part of the organs more accurately than in the female cases.

4.4.1 Visualizing Segmentation

In Figure 29, the segmentation from the UNet3 and BibNet2 with simple PP is
shown for one axial slice in the male pelvis. The slice was chosen in such a way that
all four structures are visible. In addition to that, the three dimensional structures
are shown. As can be seen, the segmentations only differ slightly. For instance, the
prostate is contoured more anterior in the UNet3 segmentation compared to the
BibNet2. This coincides well with the similarity in scores.
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(a) UNet3 (b) BibNet2

(c) UNet3 (d) BibNet2

Figure 29: The segmentation of a male pelvis by the UNet3 and the BibNet2. Simple
PP has been applied.
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5 Discussion
In this work, a 5-level UNet and modified versions of it have been constructed and
applied for segmenting the female breast and pelvis, and the male pelvis. Herein, the
segmentation accuracy is similar or better than the Varian in-house solution for all
the sites and better in the breast case in comparison to the 3-level UNet proposed
by Hänsch and colleagues (2018). The inference time is for both UNet5 and BibNet
10 times faster than the 3-level UNet and 20 times faster than the Varian in-house
solution. The improved version BibNet2 is a factor of 15 faster than the 3-level Unet
and a factor of 45 faster than the Varian in-house solution.

It has been shown for the breast case that improvements in the human drawn
image contours translate to better accuracy of the model. In the pelvis case, the
increase in the amount of training data, did not seem to improve the training results,
which might be due to inconsistencies within the training data, such as different
contouring guidelines and the difference in CT and CBCT images. Hence, it seems
that good quality data are able to improve models, whereas an increase in mediocre
quality data might not improve the outcome. On the other side, one consideration
might be to generate slightly different models for different contouring practices or
image modalities. This would increase the coherence within the train data and, thus,
improve the training.

The segmenting process in the female pelvis is deteriorated due to the artifacts
caused by bowel movements. This especially influences the accuracy in the superior
uterus. For improving the results, either an anatomically constraint neural network
could be tried or an iterative CBCT reconstruction might be able to mitigate the
movement artifacts. The downside of the ACNN is its complex training process, which
makes fast model development unfeasible. Furthermore, due to its fully connected
layer, it is unable to scale to different input sizes.

Another common mistake for the model is to extend the organ for a few slices too
long or a too short. An improvement could be seen in the breast case by training the
model for more epochs, even though the validation loss within the training did not
change. However, this effect cannot be guaranteed and is also affected by differing
contouring standards from different clinics. Thus, either models adapted to each
clinical practice are needed, or the correction effort for the clinician must be small
enough to justify the use of the neural network in comparison to segmenting by hand.

In future work, the accuracy could possibly be improved through using larger
patch sizes during training on graphic cards which provide 24 GB or 36 GB of
memory, such as the Nvidia P40 or V100. In addition to that, refactoring of the
training data or extending the training data could improve the results.

The results of this work seem to generalize over the three anatomical sites, which
have been used. Thus, it gives an indication that the model architectures can be
applied also to different anatomical sites. This might generate a great impact in the
work flow of the radiation therapy planning, as the manual segmenting part might be
replaced by an automatic segmentation. Hence, the time from diagnosis to treatment
for each patient can be reduced, which improves the therapy outcome. Furthermore,
the reduced work time for the segmentation reduces costs for the hospitals. In
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addition to that, a possible application is in regions where less radiologists are
available, such as India and Africa. Through automation of the segmentation, the
hospitals will be able to treat more patients with the same number of radiologist
and, thus, improving the quality of life for people in the developing world.
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