3 research outputs found

    Survey of Transportation of Adaptive Multimedia Streaming service in Internet

    Full text link
    [DE] World Wide Web is the greatest boon towards the technological advancement of modern era. Using the benefits of Internet globally, anywhere and anytime, users can avail the benefits of accessing live and on demand video services. The streaming media systems such as YouTube, Netflix, and Apple Music are reining the multimedia world with frequent popularity among users. A key concern of quality perceived for video streaming applications over Internet is the Quality of Experience (QoE) that users go through. Due to changing network conditions, bit rate and initial delay and the multimedia file freezes or provide poor video quality to the end users, researchers across industry and academia are explored HTTP Adaptive Streaming (HAS), which split the video content into multiple segments and offer the clients at varying qualities. The video player at the client side plays a vital role in buffer management and choosing the appropriate bit rate for each such segment of video to be transmitted. A higher bit rate transmitted video pauses in between whereas, a lower bit rate video lacks in quality, requiring a tradeoff between them. The need of the hour was to adaptively varying the bit rate and video quality to match the transmission media conditions. Further, The main aim of this paper is to give an overview on the state of the art HAS techniques across multimedia and networking domains. A detailed survey was conducted to analyze challenges and solutions in adaptive streaming algorithms, QoE, network protocols, buffering and etc. It also focuses on various challenges on QoE influence factors in a fluctuating network condition, which are often ignored in present HAS methodologies. Furthermore, this survey will enable network and multimedia researchers a fair amount of understanding about the latest happenings of adaptive streaming and the necessary improvements that can be incorporated in future developments.Abdullah, MTA.; Lloret, J.; Canovas Solbes, A.; García-García, L. (2017). Survey of Transportation of Adaptive Multimedia Streaming service in Internet. Network Protocols and Algorithms. 9(1-2):85-125. doi:10.5296/npa.v9i1-2.12412S8512591-

    System Level Performance Evaluation of Distributed Embedded Systems

    Get PDF
    In order to evaluate the feasibility of the distributed embedded systems in different application domains at an early phase, the System Level Performance Evaluation (SLPE) must provide reliable estimates of the nonfunctional properties of the system such as end-to-end delays and packet losses rate. The values of these non-functional properties depend not only on the application layer of the OSI model but also on the technologies residing at the MAC, transport and Physical layers. Therefore, the system level performance evaluation methodology must provide functionally accurate models of the protocols and technologies operating at these layers. After conducting a state of the art survey, it was found that the existing approaches for SLPE are either specialized for a particular domain of systems or apply a particular model of computation (MOC) for modeling the communication and synchronization between the different components of a distributed application. Therefore, these approaches abstract the functionalities of the data-link, Transport and MAC layers by the highly abstract message passing methods employed by the different models of computation. On the other hand, network simulators such as OMNeT++, ns-2 and Opnet do not provide the models for platform components of devices such as processors and memories and totally abstract the application processing by delays obtained via traffic generators. Therefore the system designer is not able to determine the potential impact of an application in terms of utilization of the platform used by the device. Hence, for a system level performance evaluation approach to estimate both the platform utilization and the non-functional properties which are a consequence of the lower layers of OSI models (such as end-to-end delays), it must provide the tools for automatic workload extraction of application workload models at various levels of refinement and functionally correct models of lower layers of OSI model (Transport MAC and Physical layers). Since ABSOLUT is not restricted to a particular domain and also does not depend on any MOC, therefore it was selected for the extension to a system level performance evaluation approach for distributed embedded systems. The models of data-link and Transport layer protocols and automatic workload generation of system calls was not available in ABSOLUT performance evaluation methodology. The, thesis describes the design and modelling of these OSI model layers and automatic workload generation tool for system calls. The tools and models integrated to ABSOLUT methodology were used in a number of case studies. The accuracy of the protocols was compared to network simulators and real systems. The results were 88% accurate for user space code of the application layer and provide an improvement of over 50% as compared to manual models for external libraries and system calls. The ABSOLUT physical layer models were found to be 99.8% accurate when compared to analytical models. The MAC and transport layer models were found to be 70-80% accurate when compared with the same scenarios simulated by ns-2 and OMNeT++ simulators. The bit error rates, frame error probability and packet loss rates show close correlation with the analytical methods .i.e., over 99%, 92% and 80% respectively. Therefore the results of ABSOLUT framework for application layer outperform the results of performance evaluation approaches which employ virtual systems and at the same time provide as accurate estimates of the end-to-end delays and packet loss rate as network simulators. The results of the network simulators also vary in absolute values but they follow the same trend. Therefore, the extensions made to ABSOLUT allow the system designer to identify the potential bottlenecks in the system at different OSI model layers and evaluate the non-functional properties with a high level of accuracy. Also, if the system designer wants to focus entirely on the application layer, different models of computations can be easily instantiated on top of extended ABSOLUT framework to achieve higher simulation speeds as described in the thesis

    Analyzing transport and MAC layer in system-level performance simulation

    No full text
    corecore