17,645 research outputs found

    Mapping Tasks to Interactions for Graph Exploration and Graph Editing on Interactive Surfaces

    Full text link
    Graph exploration and editing are still mostly considered independently and systems to work with are not designed for todays interactive surfaces like smartphones, tablets or tabletops. When developing a system for those modern devices that supports both graph exploration and graph editing, it is necessary to 1) identify what basic tasks need to be supported, 2) what interactions can be used, and 3) how to map these tasks and interactions. This technical report provides a list of basic interaction tasks for graph exploration and editing as a result of an extensive system review. Moreover, different interaction modalities of interactive surfaces are reviewed according to their interaction vocabulary and further degrees of freedom that can be used to make interactions distinguishable are discussed. Beyond the scope of graph exploration and editing, we provide an approach for finding and evaluating a mapping from tasks to interactions, that is generally applicable. Thus, this work acts as a guideline for developing a system for graph exploration and editing that is specifically designed for interactive surfaces.Comment: 21 pages, minor corrections (typos etc.

    Dynamic Influence Networks for Rule-based Models

    Get PDF
    We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rule-based models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.Comment: Accepted to TVCG, in pres

    Process Mining of Programmable Logic Controllers: Input/Output Event Logs

    Full text link
    This paper presents an approach to model an unknown Ladder Logic based Programmable Logic Controller (PLC) program consisting of Boolean logic and counters using Process Mining techniques. First, we tap the inputs and outputs of a PLC to create a data flow log. Second, we propose a method to translate the obtained data flow log to an event log suitable for Process Mining. In a third step, we propose a hybrid Petri net (PN) and neural network approach to approximate the logic of the actual underlying PLC program. We demonstrate the applicability of our proposed approach on a case study with three simulated scenarios

    Visualization of state transition graphs

    Get PDF
    State transition graphs are important in computer science and engineering where they are used to analyze the behavior of computer-based systems. In such a graph nodes represent states a system can be in. Links, or directed edges, represent transitions between states. Research in visualization investigates the application of interactive computer graphics to understand large and complex data sets. Large state transition graphs fall into this category. They often contain tens of thousands of nodes, or more, and tens to hundreds of thousands of edges. Also, they describe system behavior at a low abstraction level. This hinders analysis and insight. This dissertation presents a number of techniques for the interactive visualization of state transition graphs. Much of the work takes advantage of multivariate data associated with nodes and edges. Using an experimental approach, several new methods were developed in close collaboration with a number of users. The following approaches were pursued: • Selection and projection. This technique provides the user with visual support to select a subset of node attributes. Consequently, the state transition graph is projected to 2D and visualized in a second, correlated visualization. • Attribute-based clustering. By specifying subsets of node attributes and clustering based on these, the user generates simplified abstractions of a state transition graph. Clustering generates hierarchical, relational, and metric data, which are represented in a single visualization. • User-defined diagrams. With this technique the user investigates state transition graphs with custom diagrams. Diagrams are parameterized by linking their graphical properties to the data. Diagrams are integrated in a number of correlated visualizations. • Multiple views on traces. System traces are linear paths in state transition graphs. This technique provides the user with different perspectives on traces. • Querying nodes and edges. Direct manipulation enables the user to interactively inspect and query state transition graphs. In this way relations and patterns can be investigated based on data associated with nodes and edges. This dissertation shows that interactive visualization can play a role during the analysis of state transition graphs. The ability to interrogate visual representations of such graphs allows users to enhance their knowledge of the modeled systems. It is shown how the above techniques enable users to answer questions about their data. A number of case studies, developed in collaboration with system analysts, are presented. Finally, solutions to challenges encountered during the development of the visualization techniques are discussed. Insights generic to the field of visualization are considered and directions for future work are recommended

    MDA-Based Reverse Engineering

    Get PDF

    Analyzing Visual Mappings of Traditional and Alternative Music Notation

    Full text link
    In this paper, we postulate that combining the domains of information visualization and music studies paves the ground for a more structured analysis of the design space of music notation, enabling the creation of alternative music notations that are tailored to different users and their tasks. Hence, we discuss the instantiation of a design and visualization pipeline for music notation that follows a structured approach, based on the fundamental concepts of information and data visualization. This enables practitioners and researchers of digital humanities and information visualization, alike, to conceptualize, create, and analyze novel music notation methods. Based on the analysis of relevant stakeholders and their usage of music notation as a mean of communication, we identify a set of relevant features typically encoded in different annotations and encodings, as used by interpreters, performers, and readers of music. We analyze the visual mappings of musical dimensions for varying notation methods to highlight gaps and frequent usages of encodings, visual channels, and Gestalt laws. This detailed analysis leads us to the conclusion that such an under-researched area in information visualization holds the potential for fundamental research. This paper discusses possible research opportunities, open challenges, and arguments that can be pursued in the process of analyzing, improving, or rethinking existing music notation systems and techniques.Comment: 5 pages including references, 3rd Workshop on Visualization for the Digital Humanities, Vis4DH, IEEE Vis 201
    • …
    corecore