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Abstract

To be able to explore visually large amounts alvement data, it is necessary to apply methods for
aggregation and summarization oé tlata. The goal of our researcts li@en to systemize the possible
approaches to aggregation of movement data & framework clearly dming what kinds of
exploratory tasks each approach is suitable forth@rbasis of a formal mobef movement of multiple
entities, we consider two possible views of movendatt, situation-oriented and trajectory-oriented.
For each view, we discuss the appropriate methodataf aggregation andetlvisualization techniques
representing the results of aggrega and supporting data exploratioh.special attention is given to
dynamic aggregation working in combination witheiractive filtering and classification of movement

data.

CR Categories and Subject Deptors: H.1.2 [User/Machine Systems]: Human information

processing — Visual Analytics; 1.6.9 [\alization]: information visualization.

Additional Keywords: Movement d@ spatio-temporal data, agga¢ign, scalable visualization,

geovisualization.



1 INTRODUCTION

Visual representations of dateeagssential for enabling a human gsato understanthe data, extract
relevant information, and derive knowledge. It isyglly recognized that vial displays facilitate
effective perception and cognition (McCormickadt 1987), promote ideatiofbykes et al. 2005) and

support analytical thinking (Thomas & Cook 2005).

One of the strengths of visualresentations lies in aiding abstraction and geratadn (Thomas &
Cook 2005). Thus, appropriate positioning and/or appearahvisual elements representing data items
can stimulate holistic perception of multiple data ite®® unit. This mechanism fails, however, when a
large size and/or complex structure of a dataset does not permit representing all data items in a sensible
way, such that none of the visual elements is foitlpartly covered by others. A common approach that

helps in such situations is data aggregation.

Essentially, aggregation is combining severaiadi#éms in a single uin This, on the one hand,
reduces the size of the data (elhimakes it easier to visualizeadato perceive), on the other hand,
promotes abstraction and generalization. Certasiygregation involves information loss. A positive
side of this is an opportity to distill general featres out of fine-detail paiculars. However, when

particulars are (also) relant, it is necessary to use (additioppfipproaches nohvolving aggregation.

Data resulting from tracking of vais kinds of moving agents and etis (animals, vehicles, vessels,
aircrafts, pedestrians, visitors ptiblic buildings, playerand balls in sport games, etc.) are currently
collected in growing amounts. Sudhata, further referred to asovement data, may be useful for many
purposes. However, in order toderstand how to use movementadand before doing any sort of
computational analysis and/or dengi predictive models, an analyst needs first to look at the data and

explore them. In other words, analyst needs an appropriatsualization of movement data.



The visualization of large amounts wiovement data is a hard prelyl. Traditional approaches such
as delineating the trace$ moving objects on a map or in aasp-time cube (Kraak 2003) do not work
because of tremendous overlapping and clutteringcéjesggregation of movement data is necessary

for supporting visual exploration.

2 OBJECTIVESOF THISSTUDY

The topic of this paper is the use of aggrematior visual exploration of movement data. More
precisely, we deal with data about multiple discreéties changing their apal positions over time
while preserving their integrity and identity (i.e. the entities do not split or merge). Movement data
consist of items calledosition records. A position record specifies theagfl position of some entity at
some time moment. It may also specify the valuestloér attributes characieing the movement (e.g.
speed, course, transportation mode, etc.) andéosttite of the moving entity (e.g. heartbeat and blood
pressure). It should be borne in mind that, dbvious reasons, position records can only exist for
sampled time moments rather than all time momiett the sampling is sufficiently fine, the

intermediate positions and attribute values lsa approximated by means of interpolation.
In our study we sought answers to two major questions:

(1) How movement data can be aggregated? Tk&ns1 What approaches to aggregating movement

data exist or may exist? What are the principal difiees? When each of thgpaoaches is appropriate?
(2) How the results of aggregating movementadean be visualized, depending on the way of
aggregation?

By answering these questions we aimed at creatsystematic and comprehensive framework for the
use of aggregation for visual analysf movement datalhe results of our studgre presented in this

paper, which extends an earlier conferempaper (Andrienko & Andrienko 2008). We make a



reservation that our framework ot meant to cover everything ridd to analysis of movement. It
includes only aggregation methods parsition data and visualization techniques suitable for aggregated
position data. It does not include methods for staibanalysis and modelin§uch methods, in which

visualization does not play a significant roley&#®een out of the spe of our research.

The body of the paper is structurad follows. In the next sectiome briefly overview the relevant
literature concerning aggregation obwement data. After that we describe the formal model that helped
us to organize the variety of approaches intostesy. Then we introduce two example datasets, which

are used in the remainder of theper to facilitate the presentatiand explanation of our framework.

3 RELATED WORK

One of the observations that can be made by studiimditerature ishat movement data are often
aggregated using the same appreachs Fredrikson et al. (1999) saggd for another type of spatio-
temporal data, namely, discrete events such asctiaffidents. Fredrikson @i. introduced three basic
types of aggregation, spdtiéS), temporal (T), and categoricaly attributive (A). For the spatial
aggregation, the space is divided into suitable @tngents. The events that occurred in the same
compartment are united in an aggregate. For thpdehaggregation, the time is divided into suitable
intervals. The events that occurréaring the same interval are pagether. The attributive aggregation
unites events characterized by the same or clokewaf analysis-relevant attributes. For numeric
attributes, the closeness of values is defined by digithie value ranges into intervals so that all values
within an interval are considered to be closeesehthree basic types of aggregation can be used in

various combinations.

A number of research papers d#se the application of these types of aggregation to the position
records in movement data. In (Dykes & Mounta®03, Mountain 2005), T-agegation appears in the

form of temporal histogram vene the bars corresponiw time intervals and their heights are



proportional e.g. to the number twfcations visited or the distandeaveled. For S-aggregation, the
territory is divided intocompartments by means of a reguladgiihe results of aggregation, such as
density counts, are representbd coloring or shading of thgrid cells on a map display.x$-
aggregation is done by the grid cells and conseeuime intervals. Theesults are shown on an
animated map display. Analogously to densities, roftlggregated characteristics can be computed and
visualized. Thus, Forer and Huismé&000) compute the total numberp#rson/minutes spent in each
cell. A sophisticated :8'xA-aggregation is suggested in (Woodaet2008). First, position records are
grouped spatially by cells of a regulgrid. Then, temporal (e.g. byydaof the week) and attributive
(e.g. by vehicle types) aggregatiemapplied to each group. The risiare represented by treemaps

(Shneiderman 1992) placed inside each cell.

In all these aggregations, the movement is, in faetyed as a set of independent discrete events, i.e.
each position record is treated as representing ant ®f presence of some entity in some position at
some time. This view does not fully capture the esseof movement as continuous change of spatial
position; hence, it cannot be sufficient for a comprehensive analysis of movement data. Still, it may be

helpful for certain types of analysis (sulsiks, which need to bexplicitly defined.

Another way of aggregating movement data desciribdige literature is baseon considering the data
as a set omoves between predefined places (typically, thacgls are spatial compartments). Each move
is treated as a vector characteribgdts origin and destination (i.e.gtplaces where it starts and ends),
by the start and end times, and, possibly, by additiattabutes such as duration and length (traveled
distance). Moves with coinciding origirand destinations are united irsggregate moves, which are
characterized by the number of the original moves and by other derived attributes such as minimal,
maximal, and average duration and length. This kindggregation may be peesented by the formula
SxS, where the two symbols ‘S’ sid for the place of origin and placé destination. The results may

be visualized as a transition matwhere the rows and columns capend to the placeand symbols in



the cells or cell coloring or shiag) encode the derived attributalues (Guo et al. 2006, Guo 2007). A
disadvantage of such visualization is the lack of spatial context. Aggregate moves can also be visualized
on a map by bands or arrows connecting pairsaations (Tobler 1987, 2005). &hvidths of the bands

or arrows are proportional to the volumes mobetiveen these locations. fdrtunately, such a map

may be illegible because of intersecting and overtappymbols. Therefore, Tobler suggests a specific

method for spatial smoothing of aggregate nsosed generation of continuous flow maps.

In the &S-aggregation, the moves are grouped only acwprid their origin and destination places
irrespective of the time vem they occurred. To take into accoafgo the time, the whole time span is
divided into intervals. Aggregas are built from moves havirgpmmon origin, common destination,
and common time interval when they occurred (whingans that the start ardd time of each move lie
within this interval). This aggregion may be denoted by the formuleSSTxT as it is done according
to the place of origin, place of desttion, time of start, and time efid of each move. The results of the
SxSxTxT-aggregation can be represented, in principlea sequence of transition matrices or flow
maps, one matrix or map per timeerval. The matrices or maps claa put on the screen side by side,
which facilitates comparisons but requires much scspace. Another possibiliig to present them one

by one in the animation mode, which mayléss effective (Tversky et al. 2002).

A different approach to represamiaggregate moves can be seeihévisualizatiorof the movement
of tourists in New Zealand (Decki & Forer 2000) (discussed in Andrienko & Andrienko 2007). The
moves are shown in a perspective view where thiécaedimension representne divided into daily
intervals. For each break between two successiveititaesals, there is a horizontal plane where a map
of New Zealand is drawn. The movements of therisbs are representeas lines connecting the
locations of the major tourist desdtions on successive planes. Tnghtness of a line corresponds to

the number of people that moved from the origin tioca(on the upper plane) to the destination location



(on the lower plane) during the respective time interval. To make the view clearer, the authors omitted

minor flows.

In all aggregations discussed so far the resutssnameric values such as counts, sums, statistical
means, etc. Buliung & Kanaroglo@Q04) derive a kind of geometricramary of several trajectories.
The authors use functions of ArcGIS to build aneex hull containing the djectories, compute the
central tendency and dispersiontbé paths, and represent the resalisa map as the averaged path.
Such geometric summarization can work well only wtientrajectories are similar in shape and close
in space. It can be applied, for example, to groups of similar trajectories resulting from clustering.
Grouping of trajectories by similarity and/or closeness of the routes followed by geometric and/or
numeric summarization may be call®-aggregation (i.e. route-bage The paper (Andrienko et al.
2007) contains examples of combining route-based gngug trajectories by eans of clustering with
SxS- and $SxTxT-aggregation. It should be noted thatite-based grouping does not guarantee that
each trajectory is put in some group as there mayalpectories whose routes significantly differ from
all others. Hence, a result of R-aggregation may cbosiaggregates and solitary trajectories. For the

sake of uniformity, the latter can be repented as aggregates of magnitude one.
Hence, there is a variety of approastio aggregating movement data:

e S-, T-, and A-aggregation and thebpmbinations, in particular,x3 and &TxA, which are applied

to the position records tredt as independent events;

e SxS- and SSxTxT-aggregation, where the data are treaedstraight moves between predefined

places while the actual paths are ignored;

e R-aggregation, which is applied to trajges with close and similar routes.

The formal model presented in the next sectionaamhto help in defining the applicability conditions

of each approach and understanding vidvad of analysis each approach permits.



4 THEORETICAL BACKGROUND

In our earlier papers (Andn&o & Andrienko 2007, Andrienko et.aP008) we introduced a formal
model of collective movement ohultiple entities as a functiop: E x T — S where E is the set of
moving entities, T (time) is theoatinuous set of time moments and Bae) is the set of all possible
positions. Another representationuig,t)=s, &E, teT, seS, which shows that @d t are independent
variables and s is a dependent variable. The fungiiccan be extended to include also various
movement attributes (speed, direction, etc.) and/or movement-relaibdtastrof the entities such as
heartbeatu: Ex T — Sx A; x Az x ... x Ay or u(e,t)=(s, & &, ..., &). These additional attributes are
dependent variables, analogously to the space. Fealteeof simplicity, we shall use the basic form of
the functionu in the following discussion; however, everythiwbat is stated below applies also to the

extended form.

As it is argued in (Andrienko & Andrienko 2006), order to analyze data having two or more
independent components, one may need to decontpeseriginal function ofseveral vaables into
multiple single-variable functions (of course, telsould not be understood literally but as a metaphor
for what is done in practice). Farfunction of two independent varlab, there are always two possible

decompositions.
Hence, as a function of two independent variahlessn be decomposed in two complementary ways:

-{pe T > S| ee E}, where each functione: T — S describes the movement of a single entity. We
shall call the functiom, thetrajectory of the entity e. The decompositionofnto a set ofie may thus

be calledrajectory-oriented view;,



-{u: E—> S | te T}, where each functiom: E — S describes theaituation at a time moment t,
consisting of the spatial positions (and, possibadditional attributes) of all entities. The

decomposition of. into a set ofi; may be calledituation-oriented view.

Note that the set qfi; is ordered according to the time. Thetecally speaking, iis continuous: a
certain situation exists, in princglfor any element of the continuaet T. In practice, however, only a

finite set of different sitations can be retrievedoin the data and explored.

Figure 1 gives a graphical illustration of the twagible views of the movement of multiple entities.

L < SR

\ ta \ T T tN-/ N,
Situations

Trajectories
Figure 1. A graphical illustration of the two possible viswf the movement ahultiple entities.

Each of the views permits a different kind of analyset us consider first the situation-oriented view.
Each situation is a set of discrete entities (possvlyy some attached characteristics) distributed over
space. In analyzing this spatial distribution andcisinge over time, one can be interested in two

distinct things:

- the absolute positions of the entitiwgh respect to the space, itbe presence and density of entities

in different parts of the space, apossibly, general characteristicstibé movement in different parts;



- the relative spatial positions of the entities with respect to othersjhether the entities form spatial

clusters, alignments, or other arrangens and what entities are isolated.

These two foci of interest c&spond, respectively, to the abdelland relative views of space
(Peuquet 1994, 2002). According to thlesolute view, space is an independently existing container
where the entities are placed. According toriiative view, space is a positionaltabute attached to

the entities.

The absolute view focuses on space as the sulmatter. Movement that occurs in space is thus
considered as a property of the space. Respectivesentdsks are, for exangplstudies of the use of
space, its accessibility and permiigb (the ease or difficulty of mang in different directions), in
particular, in urban planning. We shall use the tgpate-centered to denote the class of analysis tasks
supposing the absolute view of space. Note thatdinetities of the moving dities are irrelevant for
space-centered analyses and maygbered. This means, in particular, that the data may be aggregated
in such a way that multiple entities are handled ttogreas a unit. Another implication is that the
positions of the entities at different time momentgéther with other attached characteristics) may be
treated asndependent discrete events. Hence, the aggregation methadstable for independent discrete

events (i.e. the S-, T-, and Aygregation and their combinatiorak applicable in this case.

The relative view, in contrast, foseis on the entities as the subjectteraMovement is considered as
a property of the entities while spaisetreated as a collection ofladonships between the entities.
Analysis tasks requiring such a view will be calkstity-centered. An example is the investigation of
movement patterns in a poptibn of animals: whether the animaend to move in large or small
groups, in pairs, or separately from others, whetthergroups have leaders, whether they are arranged
in a particular way (such as the V-shape of a flotklying gees), etc. Thaentities of the moving

entities are important in this case since it is necgsedrace the groupings and arrangements over time.



Hence, any kind of aggregation where multiple tesdtiare merged into a single unit would not be

suitable.

Let us now switch to the trajectory-oriented vielvmovement. The distinicn between the absolute
and relative views of gjge and, respectively, betwegpace-centered and entidgntered analysis tasks
also applies here. In the space-centered tasks, #hgstimvestigates the corutwvity of the space (the
ease or difficulty of getting fronone place to another), the majoouils, typical routes, the use of
existing pathways, and so on. Examples of such tasks can be found in urban and transport planning anc
in ecological studies (landscape connectivity). Ashie respective class of tasks within the situation-
oriented view, the identities dhe moving entities are irrelevanhd hence, it is suitable to apply
aggregation techniques where multiple entities are merged. Th8s,a8d SSxTxT-aggregation can
support the analysis of the space connectivity @sdvariation over time R-aggregation can be

instrumental in studies of the major flovigpical routes, and the use of pathways.

In entity-centered tasks, the andlisinterested in similarities and differences among the movement
behaviors of the entitiesnd in various kinds ofelative movements. convergence, divergence,
following, joint movement, parallel movements, oppositevements, and so on. Such tasks arise, for
example, in studies of animal behaviors, in paréicuhteractions between difnt animal species. As
with the situation-oriented viewgaggregations where multiple entgi@re considered jointly are not
suitable for entity-centered analysis tasks. Howeasra trajectory of an entity is a complex spatio-
temporal construct, it may be appropriate to agageegn some way the tegtory of each entity and
compare the aggregated trajectories of differentities, for example, aveled distances by time
intervals (T-aggregation) or amourtktime spent in different plac€S-aggregation). With the help of
such aggregates, it is possible to investigate ceatgiects of similarity odifference of the movement

behaviors, but, apparently, analysig@htive movements requires other methods.



Table 1 summarizes our argumentation concerrireg possible views ofmovement, respective

analysis tasks, and suitable aggregation techniques.

Table 1.Classes of analysis tasks and aglitty of aggregation techniques.

Class of tasks Space-centered Entity-centered

View of (movement as a property of space)| (movement as a property of entities

movement

Situation- Tasks exploration of space use, Tasks exploration of collective

oriented accessibility, permeability movement patterns (grouping,
Agaregation S, T, A, ST, SxA, TxA. separation, spatial arrangement, etc.)
SxTxA; applied to the position records| Adaregation current methods are not
treated as independetiscrete events | applicable

Trajectory- Tasks exploration of space connectivity Tasks comparison of the movement

oriented major flows, routes, use of pathways | behaviors

Aggregation SxS, R, R«SxS; applied to| Aggregation S, T, A, &T, SxA, TxA,
the entire trajectories or to fragments | SxTxA; applied separately to the

connecting predefined places position records of each entity

- SXSTxT, RxSxSxTxT; applied to the| Tasks exploration of relative
fragments made during the chosen timeanovements and interactions

intervals Aggregation current methods are not

applicable




In the next section, we shall introduce two examptas#ds that will be usddr the illustration of the

aggregation methods listed in Table 1.

5 EXAMPLE DATASETS

The first example dataset results from GPS-traglof 17,241 cars in Milafitaly) during one week
from Sunday to Saturday (the data have beadlkiprovided by Comune di Milano (Municipality of
Milan) for the use within the project GeoPKDD). The dataset consists of more than 2 million records,
which is too much not only for ef€tive visualization andhteractive exploration without the use of
aggregation but even just for loading in the compotain memory. Each recormdcludes car identifier,
time stamp (date and time of the day), geograploigatdinates, and speed.elime intervals between
the records of the same car anegular, mostly ranging from 30 to 45 seconds while there are also
larger intervals ranging frorseveral minutes to several days. Weduthe large intervals as dividers of
the position sequence of each car into subsequencies) are treated as trajecis (more precisely, as
discrete representations of trajeas). Generally, there is no uniquay to build trajectories from a set

of position records. The paper (Amehtko et al. 2007) discusses seV@massible methods; the division

by temporal gaps is one of them. A temporal igag time interval between consecutive position records
of the same entity with the length exceeding a spetifireshold. For the Milan dataset, we chose the

threshold 30 minutes, whichquuced about 176,000 trajectories.

The second example dataset is not so challengingrins of the size but suitable for illustrative
purposes. The dataset consists of 1886 positiordgaescribing the seasonal migration of 19 white
storks during the period fromulyust 1998 till May 2006. The data have been collected in Vogelwarte
Radolfzell (http://www.orn.mpg.de/vwrado_html/), apdetment of the Max Planck Institute for
Ornithology, Germany. The time intervals betweenrdwords range from 1 day to 220 days, while the

median time intervals are 1 or 2yda(the time spacing differs froranimal to animal). To build



trajectories, we divided the record sequences aguprii the migration cycle, so that a trajectory
describes the path of a stork te tbouth in late summer and autumd aeturn back in spring next year,
plus major movements in the southern regionsnduthe winter period. As a result, we obtained 34
trajectories. The maximum numbertodjectories per animal is 5 (2 of the 19 animals have been tracked

during 5 consecutive years).

In the following sections we demonstrate thee of different aggregation methods and the

visualization techniques suita&blor viewing and exploring éhoutcomes of the aggregation.

6 SUPPORTING THE SITUATION-ORIENTED VIEW

We use the term “situation” to denote the spatialtjpps of all moving entities and the values of the
movement-related attribesg including speed, direoh, acceleration (cinge of speed) and turn (change
of direction) at some time moment. In the situatoiented view, an analysboks at situations at
different time moments and considdhe evolution of a situation over time. For practical reasons, the
analyst cannot explore the situation of each seddndhe one hand, this would require too much time
and effort; on the other hand, the gafale data may not allow this because of larger time intervals
between the measurements. A reasonable approath aggregate the data by time intervals of

appropriate lengths.

SxT-aggregation can adequigtesupport the consefation of aggregate sitians on time intervals.
Besides dividing the time into intervals, the space (he territory where the entities move) is divided
into appropriate compartments. Then, various aggregates are computed for each pair of space
compartment and time interval from the position resdrtding in this compartment and this interval:
number of different entities, number of visits, totame spent, statistics of the movement-related
attributes (minimum, maximum, average, median).€eitie aggregation can be done in the database and

only the results are loaded in thr&ain memory. In our prototype implementation, spatial compartments



are defined by building a regulaeatangular grid of a desired réston. This is sufficient for our
experimental and illustrative purpess and the extension to arbitrarily shaped areas, such as traffic

analysis zones (used in transportation planningoad segments, is quite straightforward.

The results of the >&-aggregation are time series of attribute values related to the spatial
compartments. They can be visualized using varteakniques suitable for time series, for example,
animated map or time graph. For example, FiguredRFagure 3 demonstrate different visualizations of

the Milan data aggregated by grid cells and hourly time intervals.
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Figure 2. Three screenshots of an animatealp representing results of Gaggregation.

Figure 2 presents three screenshots from an agihmagp. Each state of the map corresponds to one
hourly interval and portrays the median spedéasthe cells during that interval. We use the
representation by graduated symbols in the mode of “visual compa(i&odtienko and Andrienko
2006), in which the symbol size oportional to the difference beten the represented value and a
chosen reference value (we have chosen 30 km pey &odi the color denotes tegn of the difference

(in our example, red means positive and blue meaagative). The animated map can be used for



studying how the median speeds in dif& parts of the territory vamgver time. Thus, it can be noted
that there is a system bElt roads around the city where thedia@ speeds are generally much higher
than in the other parts of the city. Howeverthe interval 17-18 hours the speeds on the northern and
eastern belt roads are quite lowhich may indicate traffic congeshs. On the east, the situation
improves in the interval 18-19h. the interval 19-20h, the medianeguls increase on all belt roads and

adjacent streets, but still tleeare places on the northeast where the speeds remain low.
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Figure 3. A temporal histogram showing the temporali@aon of the frequencdistribution of the

values of median speeds by hourly time intervals.

In Figure 3, the aggregated data fralhcells are put together in antporal histogram, where each bar
shows the frequency distribution of the values of medipeed for one hourly time interval. The whole
diagram depicts the variation tfe frequency distributions overetlweek, from Sunday to Saturday.

The colors of the bar segments correspond to inefalhe values of the summary attribute “median
speed”. The chosen breaks are 15, 30, 45, 60, 80, arkhi/B0Yellow is assignetb the interval from

45 to 60, the shades of red remmismedian speeds below 45, and shades of green are used for
median speeds over 60 km/h (the color legend can be seen on the left of the histogram). The heights of
the bar segments are proportional to the numbettseeodompartments where the median speeds fitted in

the respective intervals. Gray segments show thebets of the compartments with no occurrences of

tracked cars during the corresponding time intervalge temporal histogram demonstrates a clear



periodic pattern. The number ofrapartments with low speeds (red segments) is especially high in the
morning hours, then slightly decreases towar@srtidday, but increases again in the afternoon, and
then rapidly decreases. It may be noted that tkeedpariation patterns of the days from Monday to
Thursday (days 2-5) are similar to each other différent from the patterns of Sunday, Friday, and
Saturday (days 1, 6, and 7). ThedBy pattern is more similar tthhe weekend pattern than to the
workday pattern. After detecting this unexpected pegtyliawve found out thathat particular Friday

was a Friday before Easter, which may explain its similarity to a weekend.
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Figure 4. The mosaic diagrams show the variatiothaf median speeds inatfal compartments by

hour of day

days of the week (columns of the diagrams) lamars of the day (rows of the diagrams). The cells



are colored according to the speeds. The breaks dord for the speed intervals are the same as in

Figure 3. Slow speeds are shown in shadesdand fast speeds in shades of green.

Since the temporal variation of the traffic cheteristics clearly depends on the daily and weekly
temporal cycles, it is reasonable to explicitly take thto account in the aggregation. For such a kind of
aggregation, the time span of theéade divided into intervals accordj to one or more temporal cycles:
times of the day, days of the week, and/or moofhthe year, whatever ippropriate. Thus, Figure 4
represents aggregates obtained whthuse of two temporal divisions: according to the days of the week
and according to the hours of the day. The first divigimups together data referring to the same day of
the week irrespective oféhdate. The second divisignoups together data frodifferent days referring
to the same hour of the day. As auk, aggregated values have been computed for each combination of
space compartment, day of the week, and hour of the day. The visualization by “mosaic” diagrams
shown in Figure 4 is especially suitable for datmregated according to two temporal cycles. Each
diagram summarizes the daily and weekly patterrthetraffic in the corresponding compartment. The
columns of the diagrams correspond to the dayseofvitek and the rows to the hourly intervals of the
day. The colors of the “tiles” of the “mosaics” encdle values of the median speed in the respective
days of the week and hours of the day. The color encoding is the same as in Figure 3: green correspond
to fast speeds and red to slow spge@d particular, dark red repressmspeeds below 15km/h). It may be
seen that the speeds are always very low in the gityeexcept for the northwestern part. The diagrams
in the compartments on the western and easterrrdsds are mostly green tocontain red or yellow
spots indicating decreased speeds. Timuthe northern padf the eastern belt roatle red spots in the
diagram indicate very low speedstire morning hours of the work yla In some compartments on the
northwest the speeds are also lovth@ mornings of the work days but also in the midday and afternoon

on Wednesday and Thursday. On the northern belt esuécially the eastern part of it, the situation



appears quite bad. In some compartments, the sedvery low during the whole day and increase

only in the night.

Figure 5 demonstrates the application of tk&-&ggregation to the datbout the seasonal migration
of the white storks. The data have been aggredatedonths irrespective of the years, i.e. the records
for the same month from different years haverbgut together. In the bar diagrams, each bar
corresponds to one month, and theghtis proportional to the numb of birds that visited the
respective compartment in that month. The bars oémdifft months have differenblors. In particular,
the shades of orange and red correspond to ménatinsAugust to October @ginning of the migration
season), the shades of blue andetiobrrespond to the winter months, and the shades of cyan and green

to the spring months.
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Figure 5. The bar diagrams show the pease of white storks in spat@ompartments (grid cells) by

months irrespective of the year.

The aggregations we have demonstrated so fanadlacapture such an imgant characteristic of
movement as the direction of the movement. \Mggest a method where the data are aggregated not

only by space and time but also by the direction (cQuides kind of aggregation can be denoted by the



formula STxD, where D stands for “directn”. Movement directions areteh indicated in the original
track records. If this is not the case, they carcdmaputed from pairs afonsecutive positions of the

same entity.

The directions are specified in movement dasanumeric values typically representing angular
degrees from 0 to 359. For thexT«D-aggregation, we suggest to digi this range into intervals
corresponding either to founain compass directions (north, eastith, and west) or to four main and
four intermediate directions. Position records rfgtiin the same spatial compartment and temporal
partition are additionally grouped by the movementadfiogs. A separate group is made from records
where the speed is below a chosen threshold. Thisated as the absencembvement (in real data
consecutive position measurementg never exactly the same euben the object does not move,
which means speed values of non-moving objects ditigr from zero). Then, various counts and

statistics of attribute valuese computed for the groups.

To visualize the resulting aggregate data, we sstggespecial techniqum which the data are
represented on a map by directiobal diagrams. Analogously to tkend rose used in meteorology,
the bars are oriented in four eight compass directions and themdéhs are proportioh#o the values
of the currently selected summary attribute cqroesling to the respective directions. We demonstrate
this technique by the example of thrk data (Figure 5). As in th@evious example, the data have
been aggregated by grid cells and by months,aalditionally by eight coms directions. The speeds
below 1 km/h have been treated absence of movement. Figurecéntains screenshots from an
animated map corresponding to fomonths: August, September, March, and April (these were the
months of the most intensive maonent). The represented summaryihatite is the number of distinct
birds. The bars in the directidnaar diagrams are colored dependomgtheir orientation; a particular
color is assigned to each directidrhis helps in gaining an overall view of the prevailing movement

directions in different parts of ¢hterritory. Besides the directional bars, some diagrams include gray



circles representing the groups etords with the speeds below thestn threshold. The radii of the
circles are proportional tthe values of the currently selectedmmary attribute computed for these

groups of records. The radii can be easdynpared with thengths of the bars.

From the screenshots in Figure Tdn be easily seen that ingust most movements occurred over
the territory of Europend Middle East towards southeast aodth. In September most movements
were over Middle East and northeastéfrica towards south and southwels the areas closer to the
equator there were more movements towards west while some birds stayed without major
movements. In March we can see massive movemeert Africa towards the north; there are also
northeastern and northwestern movements. In Apré@gemovements towardsethorth in northeastern

Africa and movements towards the west andhwest in Turkey and Eastern Europe.
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Figure 6. The directional bar diagrams show the stodvement data aggregated by grid cells (S),
months (T), and eight compassetitions (D). The lengths difie bars are proportional to the
numbers of the birds that movedtire respective directions. The radii of the circles are proportional

to the numbers of the birds with the spebdlow a selected threshold (here 1km/h).



Visual exploration of movementith the use of this kind of ditgy technique can be supported by a

number of interactive facilities:

— switch from one summary attrituto another, e.g. from the numbs the moving entities to the

average or median speed;

— select another temporpartition, i.e. another interval, month,ydaf the week, timef the day, etc.,

depending on how the data have been aggregated,;

— hide some directions in order to focus on témaining direction(s), e.g. to see where northward

movement occurs;

— choose the mode of presenting only the domirdirgction(s) in each spatial compartment. A
direction is treated as dominant when the cpading value of the current summary attribute exceeds
the highest value among the remaining directions blgasen threshold, which may be either absolute

(i.e. minimum difference between the valuesrelative (i.e. minimum ratio).

In the case of city traffic data, the<BxD-aggregation together witthe visualization can support a
detailed exploration of the traffitow along a selected street. Anaawple is shown in Figure 7. To look
at the traffic on the northern belt road of Milan, we have selected only the space compartments (grid
cells) covering this road. The data have been aggregatcording to the founain compass directions.
The bar diagrams represent the median speeds @athern (green) and westépurple) directions. The
diagrams are substantially asymmetric, which mefierent speeds of the awement in the eastern

and in the western directions. Lower speedsyrin, signify higher obstiction to the movement.



Milanino Balsamo e T s

Figure 7. The bars represent the median speeds ahthement toward the east (green) and west

(purple) between 11 and 12 AM on Wednesding a motorway on the north of Milan.

7  SUPPORTING THE TRAJECTORY-ORIENTED VIEW

In the trajectory-oriented view, collective movemait multiple entities isconsidered as a set of
trajectories of the entities. In ptaal tasks, the entire trajectory each entity made during the whole
period of the observation is usually divided into pegfesenting different trips of this entity; the term

“trajectory” is also pplied to such a part.

In analyzing trajectories, one may be interestederotiigins and destinations tife trips, routes, start
and end times, durations, distances, variation ofspgeeds along the routes, intermediate stops, etc.
When trajectories are numerous, it is impracticablext@mmine each of them in detail. They need to be
aggregated in such a way that the distribution oféevant properties over the set of trajectories could
be seen. For certain properties, the aggregation bwaaquite traditionalThus, a frequency histogram
can appropriately represent the distribution of thedtpations or distances. Mospecific aggregation
and visualization techniques are regdirfor the spatial properties (gins, destinations, and routes) and

for the spatio-temporal properties (sp@adation and intermediate stops).



The general approach is to group ttegectories by similarity in termsf the propertieselevant to the
current focus of the exploration. Then, the groups need to be represented in a summarized way, which
appropriately conveys the relevanbperties. The easiest case is whwn analyst focuses only on the
origins and destinations of the trips, for examfde,exploring space connectivity. In such a case, the

trajectories may be grouped bythorigins and destinations.

7.1 Aggregation by origins and destinations

In this method, which may be calledSaggregation, two approaches possible. One is to refer the
starts and ends of the trajectories to predefined axfesderest, for example, city districts. Then, for
each pair of areas, the trajectories starting enfifst area and ending in the second area are grouped
together. This applies also to the pairs wherditeeelement coincides witthe second one. The other
approach is to define areas on the basis of spatistiecing of the start and end points of the trajectories.
It is reasonable to assign meaningful names to thdtirgsalusters so that they could also be used as

the names of the origins addstinations of the trips.

For each group of trajectoriesttva common origin and a common destination, the group size and the
statistics (minimum, maximum, meangdian, etc.) of the numeric properties of the trajectories such as
trip durations and distances are @uted. The results may be displayed in the form of origin-destination
matrix where the rows correspond to the origins, oolsi to the destinations, and the cells contain the
values of the computed aggregates. The valugikeircells may be represedteisually by graduated
symbols or diagrams. In our experimental softwHre,matrix display is linked to a map: clicking on a

row, column, or cell highlightshe corresponding areas on the map.

Another possibility for the aggregan is to account not only for thereas where a trajectory starts and
ends but also for all intermediate areas visitedtHgy trajectory. This mearnthat each trajectory is

generalized into a sequencenadves between areas. Aove is defined as a tuple {pt;, p2, t), t1 < b,



where p and t are the place and tin& the start andpand t are the place and time of the end. An
aggregate move combines moves with the same place ofdtat and the same place of the end. It is
characterized by the number of therakntary moves it combines andiwgas statistics of the duration,
distance, speed, time, etc. computed from theeats@ trajectory fragments. These characteristics can

be visualized in a matrix display like in the case of complete trajectories. The aggregate moves can also
be shown on a map display asedted lines (vectord)etween areas. The widths of the lines may

represent the values of desgted summary attribute.
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Figure 8. Summarization of trajectas into aggregate moves.

To investigate and compare the movement between the places in different time periodSxThad S
aggregation is used. The time is partitioned into linearly ordered intervals or according to temporal
cycles. The $S-aggregation, as described above, is theplied separately tdhe trajectories or

fragments of trajectories made during each of theteat partitions. For example, Figure 8 presents the



screenshots of a map and an origin-destinationixnagpresenting the movement between regions in
Milan in the time from 5 to 6 AM on Wednesday. The regions “centre”, “north west”, “exit NW”, “exit
N” and so on have been definedeiractively by drawing #ir outlines on the map display. On the map,

the widths of the arrow symbols represent the remsibf the moves betwedime regions connected by

the arrows (the particular shape of the arrow symbols is used for a better differentiation of opposite
moves). The same information is shown in the cells of the origin-destination matrix by sizes of the
squares. It can be seen that ighest number of moves in the sedettime period is from “north east”

to “centre”; close to it are the nueats of moves from “south west” teentre” and “exit NE” to “north

east”. The dark grey shading in the first columnhaf matrix display, which contains the names of the
regions, represents the total number of the mavegnating in @ch region. The highest number of
moves originates from “north s@. Analogously, the shading indhcaption of the matrix display
represents the total numbers of theves ending in each of the regsoffhe most frequent destination

of the moves in the selected time period is “centre”.

The SSxTxT-aggregation described this subsection supports the analysis tasks where the routes
used for getting from place to place are irrelevant, such as analyses of space connectivity and flows
among places. For analysis tasks where routes aremgléva necessary to have methods for grouping

trajectories according to the routes andpi@senting the routes in a summarized way.

7.2 Aggregation by routes

In all aggregations discussed so far it is possiblspecify in advance the @ups to be produced in
terms of the properties of their members. Thus, »it-8ggregation of track records, the groups are
defined in terms of the spatial positions (whiolst fit in predefinedpace compartments) and time
references (which must fit in predefined temporal partitions).xhix®-aggregation, the intervals for

the values of movemertirection are additionally specified. InxS-aggregation of trajectories, the



groups are defined through pairs of areas in which tiggnerand destinations of the trajectories or their
fragments must fit. In &xTxT-aggregation, predefined temporaltgans for the start and end times

of the trajectories or fragments are added.

In grouping by routes, it may not be possible to gpeeify a finite number of prototype routes for
putting trajectories into groups basaad their similarity to this or thgirototype route (unless the use of
existing pathways is investigated). When the possiales are not known in advance, the trajectories
may be grouped by means of clustering. In (Andrienkal.e2007) a clustering toa described that is
capable of using different measures of similabigtween trajectories, alsmlled distance functions.
One of the distance functiondescribed in the paper computdise average distance between
corresponding points of two tegjtories. It can be used for clustering of trajectoriesyagity of their
routes. It should be notebat a clustering algorithmoes not necessarily puaeh trajectory into some
group. When a trajectory is not similar enough (in gemwh a given distance threshold) to a certain
minimum number of other trajectorieis,may be treated as “noise”gi.not included in any cluster,
which seems quite natural. Hence, clustering is not a tool for aggregatingjeadtdries but a tool for

finding groups of similar trajectories.

A detailed discussion of the use of clustering inyanag trajectories can bednd in (Rinzivillo et al.
2008). Here we shall focum the topic of representing a group ohiar trajectoriesn a summarized
way for enabling interpretation by an analyst. Asgible approach, which has been mentioned in the
literature review, is to build aenvelope around a group and, addisilbyy show the central tendency,
i.e. a kind of “average trajectoryBuliung & Kanaroglou 2004). A disadveage of this approach is that

it does not provide informatioabout the intra-group variance.

Our idea is to represegtoups of trajectories bgggregate moves between small areas. This is similar

to what is described in the pieus subsection except that the ar@ae not pre-specified but defined



automatically using characteristic points of the triaees, i.e. starts, endsyrns, and stops. The areas

are built as circles around clust@fscharacteristic points from multgtrajectories and around isolated
points. The radii vary within a user-specified rangete that the areas so produced play an auxiliary

role and do not need to be vaduzed (usually they are numerous and clutter the display). Let us
demonstrate by an example how this approach can allow the analyst to see both the commonality and the

variance among trajectories of a group.
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Figure 9. Left: an example of a cluster of trajectorggsuped by the routes. Middle: Aggregate moves
summarizing the cluster. Right: Only the major ffogpecifically, the moves occurring in at least

30 trajectories) are visible.

The screenshot on the left of Figure 9 shows an exaai@ cluster of trajectories. The trajectories are
represented as lines; the hollow small rectanglak mhair beginnings and the bigger filled rectangles
mark the ends. A high variability of the trajecewiin the cluster is ticeable whereas the main

characteristic features of the cluster as a whole are difficult to grasp.

In the middle of Figure 9 a result of summarizatdrhe cluster is shown. Ehtrajectories have been

summarized into a collection of aggregate moveaw/den small areas, which have been automatically



built around the characteristic points of the trajeetor(the areas have been hidden to reduce the
clutter). The aggregate moves are represented bysrvehich indicate the directions of the movement.
The thickness of an arrow is proportional to the nundferajectories in which the respective move
occurs. In this summarized representation we cdicenthat a large part dhe movements occurred
along one of the major streets fraime northeast to the center. Wever, the numerous thin arrows

clutter and confuse the view.

In visualization of movement daté is common to omit minor flows for the sake of clarity (e.qg.
Drecki & Forer 2000, Tobler 1987). In a computer-bassdalization, this can b#one in an interactive
way. By hiding minor aggregate moves through intéradiltering, one can see mmclearly what is in
common between the trajectories in the group. Toaghe right of Figure 9 only the aggregate moves
occurring in at least 30 trajectories are shown. Oneclzarly see that the major part of the cluster of

trajectories go from the northeast of Milanvards the center along the same street.

By interactively changing the filter, the analystyn@ntrol the amount of visible detail and thereby
gradually build a comprehensiwenderstanding of the clusterhds, by lowering the limit for the
minimum number of trajectories in which a move must occur,ati@yst may detect smaller flows

going parallel to the prcipal flow as well as branching and merging of flows (Figure 10).



Figure 10Interactive filtering ofaggregate moves allows the analystdatrol the level ofletail in the
summarized representation of thaster. From left to right: themoves occurring in at least 15, 8,

and 4 trajectories, respectively.

As may be noted from the screenshots in Figuar®Figure 10, the arrowspresenting the aggregate
moves not always exactly fit in the streets of tity @lIthough the fit is mdfy quite good). For a better
fit, it might be reasonable to take into accotlv@ background geographicafonmation in building the
areas to be used as the starts emdls of the aggregate moves. Thusexploring the city traffic, it is
appropriate to build areas arountest crossings and highway exit$he development of an automated
procedure for generating such areas is out of thpesof our current resedr. We would only like to
note that it would not be suitable tse all existing street crossings of a city, which are usually very
numerous and very dense in space. An attempt to take all street crossings into account would result in a
very low level of aggregation angeneralization and excesgsilevel of detail. Hence, an intelligent

method for selecting appropriateesit crossings would be needed.

Figure 11 demonstrates that the suggested sumatiann method works well aldor the trajectories

of the white storks. Note that this is quite a défarkind of movement thaim the case of the cars,



which only move along the streets. Hence, an indubitdblentage of this approach is its wide range of

applicability, incuding constrained and free movement.

Figure 11A cluster of similar trajectories of white sksr Left: the trajectoriesomprising the cluster.

Right: the cluster in the summarized form.

The approach to summarizing groups of similar ttajges presented in thgibsection is, essentially,
SxS-aggregation. The combinationroiute-based grouping and theSsaggregation may be denoted as
RxSxS-aggregation. To tak&to account also the temporal aspdbe approach can be extended to
RxSxSxTxT-aggregation, where the time spardivided into appropriate t@rvals, the trajectories are
divided into fragments made dng these intervals, and thenx®S-aggregation is applied to the

fragments corresponding to each of the intervals.



7.3 Some open problems in aggregation by routes

The illustrations in Figure 9 and Figure 10 show hawgingle group of similar trajectories can be
explored. It is yet an open problem how to suppatetkploration of multiple groups of trajectories. The
source of the problem is that trajectories are digfint in space; they intersect and overlap. As a
consequence, summarized representations of grolupsajectories also intersect and overlap when
drawn on the same map display. Inaahitrary set of trajectories, like in the Milan dataset, there may be
multitudes of different routes and, hence, numergumips of similar trajectories. Putting them all
together on the same map or in a space-time cublsras@ completely incomprehensible picture. In

fact, even a few groups of trajectorimay be hard to explore together.

On the other hand, it does not seesalistic that an alyst can consider hundredf clusters one by
one. A more reasonable scenariaghat the analyst has a certain foaisnterest, for example, typical
routes towards the centre of Milan or between twodisgyricts. The analyst would apply clustering only

to the trajectoriesorresponding to his/her focus anérrexplore only big clusters.

It would be very helpful for the analyst to hama overview display of all clusters in a “small
multiples” style, where each cluster is represented on a separate map. Since each of these maps has to |
quite small, the clusters need to be representetich a way that only the principal features of each
cluster are visible, but these feasirare very easy to grasp. The idemonstrated in Figure 9 does not
suit well to the purpose: when a map is zoomed thet arrows representing aggregate moves become
too short to be legible. A more schematic repregemn with much lower level of detail is needed.
Automated generation of such highdghematic representations iseoaf the topics of our ongoing

research.

Another open problem is clustering of large amouwdtsrajectories. All aggregations suggested for

supporting the situation-oriented view can be damea database by meams standard database



operations. This approach worksitguwell for the whole Milan dataset. However, operations suitable

for grouping and aggregation of trajectories according to the routes are not yet available in databases.
Clustering of trajectories is now done in the meemputer memory, in which the whole Milan dataset
simply does not fit. Therefore, we can apply tdusig only to subsets of trajectories. Moreover,
clustering is quite a time-consumipgocedure, which additionally limitselsize of a subset suitable for

an interactive analysis session. Tineit depends on the length of trajectories in terms of the number of
points. In case of the Milan dataset, about 2000 trajectories caralyeezhrelatively comfortably and

6000 trajectories require certain patience. It sthdag noted, however, that even these numbers of
trajectories are much more than can be analymedeans of only visualna interactive techniques

without clustering and aggregation.

At present, we together with our partners developing a method for clustering large sets of
trajectories. The idea of the approach is following. @halyst first selects a sample of trajectories from
the database and applies the available clustering tpemito this sample. For each cluster of interest,
one or several representative trajectories are ahds$een, the remaining trajectories from the database
are compared to the representative trajectories by means of the same distance function as has been us
for the clustering. If the distance afnew trajectory to one of the representative trajectories is below the
distance threshold (which is one oétharameters of the clustering), the new trajectory is attached to the
respective cluster. This procedure works much faktar the initial clusteringn which every trajectory
needs to be compared with every other traject@uyr pilot experiments yided promising results.
However, a full implementation of the approaclkyuiees solving two sub-problems: selection of an

appropriate sample and selectiorappropriate cluster representatives.



7.4 Dynamic aggregation

As mentioned in the previous subsection, clusteaind aggregation of trajewies is now done in the
main memory, which limits the amount of data tbah be analyzed. On tlwher hand, this offers
interesting opportunities for int&ctive analysis. Gn of them is dynamic aggregation. dynamic
aggregator is a special kind of object which is linked tovsral other objects (members of an aggregate)
and computes certain summary attributes sucthasmember count and the minimum, maximum,
average, median, etc. from the attribute valuesefitambers. The aggregator reacts to various kinds of
interactive filtering applied to its members by atijug the values of the summary attributes: only the

members that pass through the current filtetaken into account in computing the values.

In our experimental software, we have twpds of dynamic aggregators of movement dajgregate
moves and summation places. Aggregate moves have been introgllidefore. An aggregate move is
defined by two places (areas) A and B and is “awarlldfajectories that visit A and B in this specific
order without passing any intermet@igpolace. The memberd the move are theespective trajectory
fragments. An aggregate move produces the cofiitts members and statistical summaries of the
lengths of the fragments, their durations, and speedsimination place is an area in space which is
“aware” of all trajectories passing through it and stdhespositions and times of entering and leaving
the area. The fragments of the trajectories lyimgjde the area are the members of the place. A
summation place counts its members and compsteh summary attributes as the minimum,
maximum, average, median, and total time spent in &g atatistics of the speeds, etc., as well as the
number of starts (first points dfajectories) and the nurer of ends (last points). In particular, the
places where aggregate moves originat end are summation placesislalso possible to create other

summation places, for example, in cells of a regular grid.



Aggregate moves are visually represented on ja Inyaarrows, as shown in Figures 8-11. They can
also be represented by symbols in cells of agiredestination matrix (Figure 8). Summation places
may optionally be visualized on a map by drawingdb#dines of the areas and/or filling the interiors.
Irrespective of whether the places themselves laoevis or not, current values of selected summary
attributes may be visualized on a map by graduatetals or by diagrams. Is also possible to use

non-cartographic displays such as scatterplogligh coordinates plot, or frequency histogram.

The interactive filterswhich make dynamic aggregates mvpute the values of the summary
attributes, include temporal filter (setion of a time interval), spatial filter (selection of a “window” in
space), attribute filter (selection tfajectories by their attributes such as duration and length), and
cluster filter (selection of clustgrsin re-computing, the aggregates take into account only the active
members, i.e. the members that have passed thaughrrently set filters. When an aggregate move
has no active members, it does not appear on a ataprwise, the thickres of the corresponding
vector is adjusted to the currerdlue of the represented summatirilbute. The same happens to the
symbols or diagrams representing the summatsibates attached to the summation places. In
particular, when some cluster trhjectories is selected, thensmnation places and aggregate moves

summarize only the trajectoribglonging to this cluster.

We would like to stress the difference between the filtering of aggregate moves, which has been
demonstrated in Figure 9 and Figure 10, and dyoamaction of aggregate moves to filtering of
trajectories. These are two independent mechanistish can be used septaly or in combination.

The filtering of aggregate moves can hide some of them from the view but does not change the values of
their attributes. When filtering is applied to trajeasr the values of the attributes of some aggregate
moves change. This may affect the visual appearinitee aggregate moves; [rarticular, some moves

may become invisible because none of their membexstiige. If, additionally tahis, some filtering is



applied to the aggregate moves, it may happen teanekv attribute values change the satisfaction of

the filter conditions: a previously active move ntasn into inactive and bkidden and vice versa.

Let us now present an example wding the dynamic aggregationr fthe exploration of the paths
people take for getting from onegien to another. Irthis example, we would like to detect the
frequently used paths from the outskirts of Milan te tenter. We select from the database a subset of
trajectories ending in the centre and starting véteee (for technical reasons, which have been
explained before, we load a subset of trajectaniade during one day, specdily, on Wednesday). We
apply the clustering tool to the teatories, which gives us 37 clusters of trajectories and quite large
proportion of “noise”, i.e. trajectories not includedany cluster. Many of the clusters are very small.
We exclude them from the view and look only a ttlusters containing &tast 20 trajectories. The
result appears on the map display as shown gargi 12, right. To make the view clearer, we have

filtered the aggregate moves: only the moves wowin at least 5 trajectories are visible.
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Figure 12Left: the major routes to the center of Mil&tight: three alternative routes to the centre

starting in the same area.

It may be seen that the arrows representingatigregate moves on the map are differently colored.
This is because the aggregate moves, as dynamiegaggrs of fragments dfajectories, are “aware”
not only about the filtering applied to the trajectof(iesthis case, cluster sekion) but afo about the
classification of the trajectories atite colors assigned to the clas§esthis case, the classes are the
clusters). If all active members of an aggregatearbelong to the same class, the corresponding arrow
will have the color of this class. The dark geyows correspond to threoves whose active members
belong to two or more classes. Thus, in Figure 12see that the major routes “mix” in the centre;

besides, there are some overlapsoates in other parts of the city.

By exploring the map, we detect that three differenttes are used for getting from the northeast of

the city to the centre. They are showm orange (cluster 8), dark gre@tuster 9), and dark blue (cluster



10). Note that this is the only case of the use wvéis¢ alternative routes from the same region to the

centre. To focus on these routes, we deselect alhdusters. The result is shown in Figure 12 (left).

It may be noted that, apparently,tradl trajectories included in therée clusters really start in the
same area. Thus, a great part of the orange clusterscivtom a place situated more to the south than the
origins of the majority of the trajectories. We apply additional spatial filtering to the trajectories in order
to consider only the trajectories tiviclose origins on the northeast Milan. The aggregate moves

adjust the appearance of the arr@avaccount for the additional filter.

After the filtering by the origin, we can see that tgeeen” route, which is the most direct among the
three, is taken more frequently than the oth&hss is what could be expected based on the common
sense. But does this proportion keep over the evidaly? And what makes some people choose the

longer routes?

We apply the temporal filter in order to investigate the use of the three routes in different time
intervals of the day. Figure 13 pesds the screenshots of the mapde for 2-hour time intervals
starting from the interval 5-7h amuhding with the interval 19-21h (theneas only very little movement
before 5h and after 21h). For each time interva,afgregate moves summarize only those fragments

of trajectories which fit in this interval.
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Figure 13The use of the three alternatnates from the northeast tcetbenter of Milan in different
times of the day. Upper row, from left tghit: 5-7h, 7-9h, 9-11h, and 11-13h. Lower row, from left

to right: 13-15h, 15-17h, 17-19h, and 19-21h.

It can be seen that thelative frequencies of the use of ttieee routes vary over time. Thus, the
“blue” route is as frequent as thgreen” route in the interval 17-1%nd only slightlyless frequent in
the intervals 5-7h, 7-9h, and 15-17h. In the remgniimes, the “blue” route is used much less
frequently than the “green” one. @lirequency of the use of theramge” route is gte low throughout

the day but somewhat increaseshe intervals 9-11h and 15-17h.

A possible reason for choosing oneaoiother route may be the traffitcustions on different roads: if

the movement on some road is obstructed, a dmagr prefer to use anothevad. In order to check

whether the popularity of the “green”, “blue”, and “orange” routes is relat@tbgtructed traffic, we



built a rectangular grid over theerritory and generated summatigiaces in the cells. Then we
visualized the median speeds in the summation plasddooked at the vatian of the speeds over
time. In Figure 14, the median speeds are repteddny bars of proportiohaizes. The screenshot
fragments show the northeastern corner of thetdeyr since it is in this area where the decisions
concerning the choice of the route are made. Theititeevals are from 7-9h to 17-19h. It may be seen
that in the intervals 9-11h and 1%h (in the middle of the upper ataver rows), when the frequency
of the “orange” route increases, the movement orother two routes is verglow. This may be the
reason why some drivers prefer to go by the “oedmgute. In the intervals 7-9h and 17-19h, when the
“blue” route gains its maximum popuity;, the median speeds on this r@are relatively high. It seems
that the movement at the fork okthblue” and “green” routes is quite sthucted in these time intervals.
Perhaps, the highway exit, whichused in the “green” route, is very busy, and some drivers prefer to

continue moving along the highwaye. choose the “blue” route.
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Figure 14The median speeds of the dnig on the northeast of Milan wtifferent times of the day.
Upper row, from left to right: 7-9h, 9-11h, ahd-13h. Lower row, from left to right: 13-15h, 15-

17h, and 17-19h.

This example demonstrates the use of dynamic agtjoegfor the detailed exploration of the use of

particular routes in different timatervals. Generally, the range of applicabibfydynamic aggregation



in terms of possible analysis tasks is rather wide. lirhitation with regard to the size of data is posed
by the in-memory processing; however, it may be exgktiat the progress of the computer hardware
and database technologies will soon permit dyndittecing and dynamic aggregation of large amounts

of data without loading all data in the main memory.

8 CONCLUSION

Current positioning anddcking technologies enabdellection of huge amounts of movement data. To
make sense and use of such data, scalable anahgsisualization tools anery much needed. Visual

exploration of massive movement data necdssitaggregation and summarization of the data.

The goal of our research has been to systemeexisting and, possibly, not yet existing approaches
to aggregation of movement dat&oira framework clearly defining whiinds of exploratory tasks each
approach is suitable for. For this purpose, we have used an abstract model of movement of multiple
entities as a function of two variables. This model substantiates the possibility of considering movement
data from two different perspectives, which we citillagion-oriented view and trajectory-oriented view.
These two views support different classes of analysksta hus, the situation-oriented view is required
for such tasks as investigation of space use, abdégsiand permeability; thérajectory-oriented view

is required for studies of space coringty, movement flows, routes, etc.

Another dimension for distinguishing the possible st@sof analysis tasks is according the focus of
analysis: space-centered (investigation of the prigsedf space with respect to movement) or entity-
centered (investigation of the behara of the movement entities arelationships between them). We
have found that analysis methods based on agipaget movement data rgabe inappropriate for
entity-centered analysis tasks. However, it mayubeful to apply aggregat to outcomes of other
analysis techniques, such as automated patteracértn, for representing these results in a summarized

form.



In this paper we have considertte aggregation of original movement data, which is suitable for

space-centered analysis tasks. We have investigdimth aggregation methodse appropriate for the

situation-oriented view and for the trajectonyemted view of movenmmd. The following table

summarizes the aggregation methads the possible visualization textpues applicable to the results

of aggregation.

Table 2. Aggregation and visualization methodgporting two possible views of movement.

View of Aggregation methods Visualization methods
movement

Situation- S (according to the presence in a spaceAnimated map or map series with
oriented: compartment)SxT — applied to the shading, graduated symbols, or diagra

investigation of

space use and

position records treated as independe

discrete events

hrepresenting the summary attributes

Static map with bar diagrams or other

accessibility diagrams representing local variation
over time in each space compartment
Temporal histogram

Situation- SxTxD (according to the movement | Animated map or map series with

oriented: direction) — applied to the position directional bar diagrams

investigation of
space
permeability/

impedance

records treated as independent discre
events (after computing the movement
directions, which requires two or more

consecutive records).

(e

Trajectory-

SxS (based on the orilg and destination

Flow map with arrows representing the

ms



oriented:
investigation of
space
connectivity and

flows between

of a trip) — applied to the entire
trajectories or to fragments connecting

predefined places

SxSxTxT — applied to trajectory

fragments made during the chosen tim

directions and amounts of movement

Origin-destination matrix

Animated flow map or series of flow

maps

e
Animated matrix oseries of matrices

laces :
P intervals
Trajectory- R (route-based) — applied to the entire Collection of flow maps (each route on
oriented: trajectories or to fragments connecting separate map)

investigation of
routes and use of

pathways

predefined place®xSxS — summarizes

results of R-aggregation

RxSxSxTxT — applied to trajectory
fragments made during the chosen tim

intervals

Flow map with interactive route

selection

Animated flow map or series of flow

@naps

In presenting the aggregation amdualization methods, we haveedstwo real example datasets

describing constrainednd free movements. By these two exdes, we have demonstrated the

generality of the principles and approaches.
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