36 research outputs found

    An Empirical Evaluation Of Social Influence Metrics

    Full text link
    Predicting when an individual will adopt a new behavior is an important problem in application domains such as marketing and public health. This paper examines the perfor- mance of a wide variety of social network based measurements proposed in the literature - which have not been previously compared directly. We study the probability of an individual becoming influenced based on measurements derived from neigh- borhood (i.e. number of influencers, personal network exposure), structural diversity, locality, temporal measures, cascade mea- sures, and metadata. We also examine the ability to predict influence based on choice of classifier and how the ratio of positive to negative samples in both training and testing affect prediction results - further enabling practical use of these concepts for social influence applications.Comment: 8 pages, 5 figure

    CasGCN: Predicting future cascade growth based on information diffusion graph

    Full text link
    Sudden bursts of information cascades can lead to unexpected consequences such as extreme opinions, changes in fashion trends, and uncontrollable spread of rumors. It has become an important problem on how to effectively predict a cascade' size in the future, especially for large-scale cascades on social media platforms such as Twitter and Weibo. However, existing methods are insufficient in dealing with this challenging prediction problem. Conventional methods heavily rely on either hand crafted features or unrealistic assumptions. End-to-end deep learning models, such as recurrent neural networks, are not suitable to work with graphical inputs directly and cannot handle structural information that is embedded in the cascade graphs. In this paper, we propose a novel deep learning architecture for cascade growth prediction, called CasGCN, which employs the graph convolutional network to extract structural features from a graphical input, followed by the application of the attention mechanism on both the extracted features and the temporal information before conducting cascade size prediction. We conduct experiments on two real-world cascade growth prediction scenarios (i.e., retweet popularity on Sina Weibo and academic paper citations on DBLP), with the experimental results showing that CasGCN enjoys a superior performance over several baseline methods, particularly when the cascades are of large scale

    Quantifying echo chamber effects in information spreading over political communication networks

    Get PDF
    Echo chambers in online social networks, in which users prefer to interact only with ideologically-aligned peers, are believed to facilitate misinformation spreading and contribute to radicalize political discourse. In this paper, we gauge the effects of echo chambers in information spreading phenomena over political communication networks. Mining 12 million Twitter messages, we reconstruct a network in which users interchange opinions related to the impeachment of the former Brazilian President Dilma Rousseff. We define a continuous {political position} parameter, independent of the network's structure, that allows to quantify the presence of echo chambers in the strongly connected component of the network, reflected in two well-separated communities of similar sizes with opposite views of the impeachment process. By means of simple spreading models, we show that the capability of users in propagating the content they produce, measured by the associated spreadability, strongly depends on their attitude. Users expressing pro-impeachment sentiments are capable to transmit information, on average, to a larger audience than users expressing anti-impeachment sentiments. Furthermore, the users' spreadability is correlated to the diversity, in terms of political position, of the audience reached. Our method can be exploited to identify the presence of echo chambers and their effects across different contexts and shed light upon the mechanisms allowing to break echo chambers.Comment: 9 pages, 4 figures. Supplementary Information available as ancillary fil

    Hot Streaks on Social Media

    Full text link
    Measuring the impact and success of human performance is common in various disciplines, including art, science, and sports. Quantifying impact also plays a key role on social media, where impact is usually defined as the reach of a user's content as captured by metrics such as the number of views, likes, retweets, or shares. In this paper, we study entire careers of Twitter users to understand properties of impact. We show that user impact tends to have certain characteristics: First, impact is clustered in time, such that the most impactful tweets of a user appear close to each other. Second, users commonly have 'hot streaks' of impact, i.e., extended periods of high-impact tweets. Third, impact tends to gradually build up before, and fall off after, a user's most impactful tweet. We attempt to explain these characteristics using various properties measured on social media, including the user's network, content, activity, and experience, and find that changes in impact are associated with significant changes in these properties. Our findings open interesting avenues for future research on virality and influence on social media.Comment: Accepted as a full paper at ICWSM 2019. Please cite the ICWSM versio

    A Comparison of Retweet Prediction Approaches: The Superiority of Random Forest Learning Method

    Get PDF
    We consider the following retweet prediction task: given a tweet, predict whether it will be retweeted. In the past, a wide range of learning methods and features has been proposed for this task. We provide a systematic comparison of the performance of these learning methods and features in terms of prediction accuracy and feature importance. Specifically, from each previously published approach we take the best performing features and group these into two sets: user features and tweet features. In addition, we contrast five learning methods, both linear and non-linear. On top of that, we examine the added value of a previously proposed time-sensitive modeling approach. To the authors’ knowledge this is the first attempt to collect best performing features and contrast linear and non-linear learning methods. We perform our comparisons on a single dataset and find that user features such as the number of times a user is listed, number of followers, and average number of tweets published per day most strongly contribute to prediction accuracy across selected learning methods. We also find that a random forest-based learning, which has not been employed in previous studies, achieves the highest performance among the learning methods we consider. We also find that on top of properly tuned learning methods the benefits of time-sensitive modeling are very limited

    Can Cascades be Predicted?

    Full text link
    On many social networking web sites such as Facebook and Twitter, resharing or reposting functionality allows users to share others' content with their own friends or followers. As content is reshared from user to user, large cascades of reshares can form. While a growing body of research has focused on analyzing and characterizing such cascades, a recent, parallel line of work has argued that the future trajectory of a cascade may be inherently unpredictable. In this work, we develop a framework for addressing cascade prediction problems. On a large sample of photo reshare cascades on Facebook, we find strong performance in predicting whether a cascade will continue to grow in the future. We find that the relative growth of a cascade becomes more predictable as we observe more of its reshares, that temporal and structural features are key predictors of cascade size, and that initially, breadth, rather than depth in a cascade is a better indicator of larger cascades. This prediction performance is robust in the sense that multiple distinct classes of features all achieve similar performance. We also discover that temporal features are predictive of a cascade's eventual shape. Observing independent cascades of the same content, we find that while these cascades differ greatly in size, we are still able to predict which ends up the largest
    corecore