13,287 research outputs found

    Sequential Wnt Agonist then Antagonist Treatment Accelerates Tissue Repair and Minimizes Fibrosis

    Get PDF
    Tissue fibrosis compromises organ function and occurs as a potential long-term outcome in response to acute tissue injuries. Currently, lack of mechanistic understanding prevents effective prevention and treatment of the progression from acute injury to fibrosis. Here, we combined quantitative experimental studies with a mouse kidney injury model and a computational approach to determine how the physiological consequences are determined by the severity of ischemia injury, and to identify how to manipulate Wnt signaling to accelerate repair of ischemic tissue damage while minimizing fibrosis. The study reveals that Wnt-mediated memory of prior injury contributes to fibrosis progression, and ischemic preconditioning reduces the risk of death but increases the risk of fibrosis. Furthermore, we validated the prediction that sequential combination therapy of initial treatment with a Wnt agonist followed by treatment with a Wnt antagonist can reduce both the risk of death and fibrosis in response to acute injuries

    Conceptual design and feasibility evaluation model of a 10 to the 8th power bit oligatomic mass memory. Volume 1: Conceptual design

    Get PDF
    The oligatomic (mirror) thin film memory technology is a suitable candidate for general purpose spaceborne applications in the post-1975 time frame. Capacities of around 10 to the 8th power bits can be reliably implemented with systems designed around a 335 million bit module. The recommended mode was determined following an investigation of implementation sizes ranging from an 8,000,000 to 100,000,000 bits per module. Cost, power, weight, volume, reliability, maintainability and speed were investigated. The memory includes random access, NDRO, SEC-DED, nonvolatility, and dual interface characteristics. The applications most suitable for the technology are those involving a large capacity with high speed (no latency), nonvolatility, and random accessing

    Design of an integrated airframe/propulsion control system architecture

    Get PDF
    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture

    Military Application of Aerial Photogrammetry Mapping Assisted by Small Unmanned Air Vehicles

    Get PDF
    This research investigated the practical military applications of the photogrammetric methods using remote sensing assisted by small unmanned aerial vehicles (SUAVs). The research explored the feasibility of UAV aerial mapping in terms of the specific military purposes, focusing on the geolocational and measurement accuracy of the digital models, and image processing time. The research method involved experimental flight tests using low-cost Commercial off-the-shelf (COTS) components, sensors and image processing tools to study key features of the method required in military like location accuracy, time estimation, and measurement capability. Based on the results of the data analysis, two military applications are defined to justify the feasibility and utility of the methods. The first application is to assess the damage of an attacked military airfield using photogrammetric digital models. Using a hex-rotor test platform with Sony A6000 camera, georeferenced maps with 1 meter accuracy was produced and with sufficient resolution (about 1 cm/pixel) to identify foreign objects on the runway. The other case examines the utility and quality of the targeting system using geo-spatial data from reconstructed 3-Dimensional (3-D) photogrammetry models. By analyzing 3-D model, operable targeting under 1meter accuracy with only 5 percent error on distance, area, and volume wer

    NEUROSPF: A tool for the Symbolic Analysis of Neural Networks

    Full text link
    This paper presents NEUROSPF, a tool for the symbolic analysis of neural networks. Given a trained neural network model, the tool extracts the architecture and model parameters and translates them into a Java representation that is amenable for analysis using the Symbolic PathFinder symbolic execution tool. Notably, NEUROSPF encodes specialized peer classes for parsing the model's parameters, thereby enabling efficient analysis. With NEUROSPF the user has the flexibility to specify either the inputs or the network internal parameters as symbolic, promoting the application of program analysis and testing approaches from software engineering to the field of machine learning. For instance, NEUROSPF can be used for coverage-based testing and test generation, finding adversarial examples and also constraint-based repair of neural networks, thus improving the reliability of neural networks and of the applications that use them. Video URL: https://youtu.be/seal8fG78L

    Novel Use of Neural Networks to Identify and Detect Electrical Infrastructure Performance

    Get PDF
    Electrical grid maintenance and repairs are crucial services that keep America’s lights on. Electrical service providers make it their priority to uphold minimal interruptions to this service. Electricity is essential for modern technology within the home, such as cooking, refrigeration, and hot water. Organizations, such as schools, hospitals, and military bases, cannot properly function or operate without power. When analyzing the current electrical infrastructure, it is evident that considerable components of the power grid are aging and in need of replacement. Additionally, threats and damage continue to occur. These damages occur not only due to simple, single power line failure but also on a larger scale in the event of natural disasters. Instead of replacing current aging components or sending out crews of people for preventative maintenance and repairs, neural networks provide innovative technology that can improve these processes. With the use of unmanned aerial vehicles (UAVs), neural networks can identify and classify both normal functioning and damaged electrical power lines. This thesis will investigate the use of convolutional neural networks and low-cost unmanned aerial vehicles (UAV)’s to identify and detect damage to power lines that carry electrical service to consumers called distribution lines. The UAVs can serve as a vehicle to supply neural networks with input imagery data and automatically evaluate the condition of power lines. These neural networks are comprised of many layers that have been configured for this specific use and provide efficient identification and detection performance. Together, the UAV-neural network system can provide more efficient routine maintenance with wider coverage of areas, increased accessibility, and decreased time between identification of issues and subsequent repair. Most importantly, the use of neural networks will keep electrical crews safe and provide faster response in the setting of natural disaster. In this day and age, we must think smarter and respond more efficiently to serve continually growing areas and reach areas with less resources

    EXPEDITIONARY LOGISTICS: A LOW-COST, DEPLOYABLE, UNMANNED AERIAL SYSTEM FOR AIRFIELD DAMAGE ASSESSMENT

    Get PDF
    Airfield Damage Repair (ADR) is among the most important expeditionary activities for our military. The goal of ADR is to restore a damaged airfield to operational status as quickly as possible. Before the process of ADR can begin, however, the damage to the airfield needs to be assessed. As a result, Airfield Damage Assessment (ADA) has received considerable attention. Often in a damaged airfield, there is an expectation of unexploded ordnance, which makes ADA a slow, difficult, and dangerous process. For this reason, it is best to make ADA completely unmanned and automated. Additionally, ADA needs to be executed as quickly as possible so that ADR can begin and the airfield restored to a usable condition. Among other modalities, tower-based monitoring and remote sensor systems are often used for ADA. There is now an opportunity to investigate the use of commercial-off-the-shelf, low-cost, automated sensor systems for automatic damage detection. By developing a combination of ground-based and Unmanned Aerial Vehicle sensor systems, we demonstrate the completion of ADA in a safe, efficient, and cost-effective manner.http://archive.org/details/expeditionarylog1094561346Outstanding ThesisLieutenant, United States NavyApproved for public release; distribution is unlimited

    Automating Program Verification and Repair Using Invariant Analysis and Test Input Generation

    Get PDF
    Software bugs are a persistent feature of daily life---crashing web browsers, allowing cyberattacks, and distorting the results of scientific computations. One approach to improving software uses program invariants---mathematical descriptions of program behaviors---to verify code and detect bugs. Current invariant generation techniques lack support for complex yet important forms of invariants, such as general polynomial relations and properties of arrays. As a result, we lack the ability to conduct precise analysis of programs that use this common data structure. This dissertation presents DIG, a static and dynamic analysis framework for discovering several useful classes of program invariants, including (i) nonlinear polynomial relations, which are fundamental to many scientific applications; disjunctive invariants, (ii) which express branching behaviors in programs; and (iii) properties about multidimensional arrays, which appear in many practical applications. We describe theoretical and empirical results showing that DIG can efficiently and accurately find many important invariants in real-world uses, e.g., polynomial properties in numerical algorithms and array relations in a full AES encryption implementation. Automatic program verification and synthesis are long-standing problems in computer science. However, there has been a lot of work on program verification and less so on program synthesis. Consequently, important synthesis tasks, e.g., generating program repairs, remain difficult and time-consuming. This dissertation proves that certain formulations of verification and synthesis are equivalent, allowing for direct applications of techniques and tools between these two research areas. Based on these ideas, we develop CETI, a tool that leverages existing verification techniques and tools for automatic program repair. Experimental results show that CETI can have higher success rates than many other standard program repair methods

    Investigation into yield and reliability enhancement of TSV-based three-dimensional integration circuits

    No full text
    Three dimensional integrated circuits (3D ICs) have been acknowledged as a promising technology to overcome the interconnect delay bottleneck brought by continuous CMOS scaling. Recent research shows that through-silicon-vias (TSVs), which act as vertical links between layers, pose yield and reliability challenges for 3D design. This thesis presents three original contributions.The first contribution presents a grouping-based technique to improve the yield of 3D ICs under manufacturing TSV defects, where regular and redundant TSVs are partitioned into groups. In each group, signals can select good TSVs using rerouting multiplexers avoiding defective TSVs. Grouping ratio (regular to redundant TSVs in one group) has an impact on yield and hardware overhead. Mathematical probabilistic models are presented for yield analysis under the influence of independent and clustering defect distributions. Simulation results using MATLAB show that for a given number of TSVs and TSV failure rate, careful selection of grouping ratio results in achieving 100% yield at minimal hardware cost (number of multiplexers and redundant TSVs) in comparison to a design that does not exploit TSV grouping ratios. The second contribution presents an efficient online fault tolerance technique based on redundant TSVs, to detect TSV manufacturing defects and address thermal-induced reliability issue. The proposed technique accounts for both fault detection and recovery in the presence of three TSV defects: voids, delamination between TSV and landing pad, and TSV short-to-substrate. Simulations using HSPICE and ModelSim are carried out to validate fault detection and recovery. Results show that regular and redundant TSVs can be divided into groups to minimise area overhead without affecting the fault tolerance capability of the technique. Synthesis results using 130-nm design library show that 100% repair capability can be achieved with low area overhead (4% for the best case). The last contribution proposes a technique with joint consideration of temperature mitigation and fault tolerance without introducing additional redundant TSVs. This is achieved by reusing spare TSVs that are frequently deployed for improving yield and reliability in 3D ICs. The proposed technique consists of two steps: TSV determination step, which is for achieving optimal partition between regular and spare TSVs into groups; The second step is TSV placement, where temperature mitigation is targeted while optimizing total wirelength and routing difference. Simulation results show that using the proposed technique, 100% repair capability is achieved across all (five) benchmarks with an average temperature reduction of 75.2? (34.1%) (best case is 99.8? (58.5%)), while increasing wirelength by a small amount
    • …
    corecore