6,088 research outputs found

    Using Monte Carlo Search With Data Aggregation to Improve Robot Soccer Policies

    Full text link
    RoboCup soccer competitions are considered among the most challenging multi-robot adversarial environments, due to their high dynamism and the partial observability of the environment. In this paper we introduce a method based on a combination of Monte Carlo search and data aggregation (MCSDA) to adapt discrete-action soccer policies for a defender robot to the strategy of the opponent team. By exploiting a simple representation of the domain, a supervised learning algorithm is trained over an initial collection of data consisting of several simulations of human expert policies. Monte Carlo policy rollouts are then generated and aggregated to previous data to improve the learned policy over multiple epochs and games. The proposed approach has been extensively tested both on a soccer-dedicated simulator and on real robots. Using this method, our learning robot soccer team achieves an improvement in ball interceptions, as well as a reduction in the number of opponents' goals. Together with a better performance, an overall more efficient positioning of the whole team within the field is achieved

    ?????? ?????? ??????????????? ?????? ????????????

    Get PDF
    Department of Computer Science and EngineeringRecently deep reinforcement learning (DRL) algorithms show super human performances in the simulated game domains. In practical points, the sample efficiency is also one of the most important measures to determine the performance of a model. Especially for the environment of large search spaces (e.g. continuous action space), it is very critical condition to achieve the state-of-the-art performance. In this thesis, we design a model to be applicable to multi-end games in continuous space with high sample efficiency. A multi-end game has several sub-games which are independent each other but affect the result of the game by some rules of its domain. We verify the algorithm in the environment of simulated curling.clos

    Scaling Monte Carlo Tree Search on Intel Xeon Phi

    Full text link
    Many algorithms have been parallelized successfully on the Intel Xeon Phi coprocessor, especially those with regular, balanced, and predictable data access patterns and instruction flows. Irregular and unbalanced algorithms are harder to parallelize efficiently. They are, for instance, present in artificial intelligence search algorithms such as Monte Carlo Tree Search (MCTS). In this paper we study the scaling behavior of MCTS, on a highly optimized real-world application, on real hardware. The Intel Xeon Phi allows shared memory scaling studies up to 61 cores and 244 hardware threads. We compare work-stealing (Cilk Plus and TBB) and work-sharing (FIFO scheduling) approaches. Interestingly, we find that a straightforward thread pool with a work-sharing FIFO queue shows the best performance. A crucial element for this high performance is the controlling of the grain size, an approach that we call Grain Size Controlled Parallel MCTS. Our subsequent comparing with the Xeon CPUs shows an even more comprehensible distinction in performance between different threading libraries. We achieve, to the best of our knowledge, the fastest implementation of a parallel MCTS on the 61 core Intel Xeon Phi using a real application (47 relative to a sequential run).Comment: 8 pages, 9 figure

    The Computational Intelligence of MoGo Revealed in Taiwan's Computer Go Tournaments

    Get PDF
    International audienceTHE AUTHORS ARE EXTREMELY GRATEFUL TO GRID5000 for helping in designing and experimenting around Monte-Carlo Tree Search. In order to promote computer Go and stimulate further development and research in the field, the event activities, "Computational Intelligence Forum" and "World 99 Computer Go Championship," were held in Taiwan. This study focuses on the invited games played in the tournament, "Taiwanese Go players versus the computer program MoGo," held at National University of Tainan (NUTN). Several Taiwanese Go players, including one 9-Dan professional Go player and eight amateur Go players, were invited by NUTN to play against MoGo from August 26 to October 4, 2008. The MoGo program combines All Moves As First (AMAF)/Rapid Action Value Estimation (RAVE) values, online "UCT-like" values, offline values extracted from databases, and expert rules. Additionally, four properties of MoGo are analyzed including: (1) the weakness in corners, (2) the scaling over time, (3) the behavior in handicap games, and (4) the main strength of MoGo in contact fights. The results reveal that MoGo can reach the level of 3 Dan with, (1) good skills for fights, (2) weaknesses in corners, in particular for "semeai" situations, and (3) weaknesses in favorable situations such as handicap games. It is hoped that the advances in artificial intelligence and computational power will enable considerable progress in the field of computer Go, with the aim of achieving the same levels as computer chess or Chinese chess in the future
    corecore