

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/304590631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis

Deep Reinforcement Learning in Multi-End Games

Sol A Kim

Department of Computer Science and Engineering

Graduate School of UNIST

2020

Deep Reinforcement Learning in Multi-End Games

Sol A Kim

Department of Computer Science and Engineering

Graduate School of UNIST

Deep Reinforcement Learning in Multi-End Games

A thesis

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Master of Science

Sol A Kim

 01.03.2020

Approved by

Advisor

Kwang In Kim

Deep Reinforcement Learning in Multi-End Games

Sol A Kim

This certifies that the thesis of Sol A Kim is approved.

01.03.2020

 Advisor: Kwang In Kim

 Committee Member: Se Young Chun

 Committee Member: Jaesik Choi

Abstract

Recently deep reinforcement learning (DRL) algorithms show super human performances in

the simulated game domains. In practical points, the sample efficiency is also one of the most

important measures to determine the performance of a model. Especially for the environment

of large search spaces (e.g. continuous action space), it is very critical condition to achieve the

state-of-the-art performance. In this thesis, we design a model to be applicable to multi-end

games in continuous space with high sample efficiency. A multi-end game has several sub-games

which are independent each other but affect the result of the game by some rules of its domain.

We verify the algorithm in the environment of simulated curling.

Contents

I Introduction . 1

II Related work . 3

III Background . 4

3.1 Reinforcemnt Learning . 4

3.2 Monte Carlo Tree Search . 5

3.3 Kernel Regression . 6

3.4 The Game of Curling . 6

IV Deep Reinforcement Learning in Continuous Action Spaces 8

4.1 The Policy-Value Network . 8

4.2 Search in Continuous Action Space . 8

V Learning Pipeline . 11

5.1 Supervised Learning . 11

5.2 Self-Play Reinforcement Learning . 12

VI Learning Long Term Strategies . 13

6.1 Domain Knowledges of Curling . 13

6.2 Multi-End Strategy . 14

VII Experimental Results . 15

2

7.1 Dataset . 15

7.2 Settings . 15

7.3 Results . 15

VIII Conclusion . 18

8.1 Summary . 18

8.2 Future Work . 18

Acknowledgements . 19

References . 20

List of Figures

1 The architecture of our policy-value network. A feature map which indicates the

state information is the input of this network. Each convolutional layer represents

32x32 discretized image of the position of stones. During the convolution this size

is fixed without pooling. Policy and value network shares the bottom layers to

increase the data efficiency. The probability distribution of actions is the output

of policy head, and the score distribution is the output of value head. From the

rule of curling, the maximum score which can be obtained by one end is eight.

Thus its range is from -8 to 8. 2

2 Kernel density estimation of shot data from the reference program for supervised

learning. Shots whose spin is clockwise are analyzed only, and the opposite case

is upside down with the centerline. During the simulation, a stone is thrown from

the left to the right side. Stones stopped after the backline are ruled out. To

takeout the opponent’s stones, however, it is clear that the player aims to throw

a stone behind the backline. For our reference program, the difference between

shots whether to draw or to takeout the stones is obvious. Takeout shots are

biased by [-6,-4] of y axis. Note that the curling sheet of this figure is not the

state space (from hogline to backline) but the action space. 11

3 Learning curve for KR-DL-UCT and DL-UCT. The plot shows the winning per-

centages of 2,000 two-end games against DL-UCT with supervised learning only,

1,000 games as the first player and 1,000 games as the second player respectively.

We compute the winning percentages by increasing the number of training shots. 16

4 Elo rating and winning percentages of our models and GAT rankers. Each match

has 200 games (each program plays 100 pre-ordered games), because the player

which has the last shot (the hammer shot) in each end would have an advantage.

Programs colored blue are our proposed programs. 16

List of Tables

1 Winning rates on the side of first player when the number of remaining ends and

the difference of cumulative scores of two players are given. When the difference

is zero after the last end, which means draw, the winning rate is considered as half. 13

List of Abbreviations

CNN Convolutional Neural Network. 1, 2, 18

DRL Deep Reinforcement Learning. 1

HOO Hierarchical Optimistic Optimization. 3

KDE Kernel Density Estimation. 8, 18

KR Kernel Regression. 8, 18

KR-DL Kernel Regression-Deep Learning. 15, 17

KR-DL-UCT Kernel Regression-Deep Learning-Upper Confidence bound applied to Trees. 2,

4, 9, 15, 16

KR-DRL Kernel Regression-Deep Reinforcement Learning. 15, 17

KR-DRL-MES Kernel Regression-Deep Reinforcement Learning-Multi Ends Strategy. 15, 17

KR-UCT Kernel Regression-Upper Confidence bound applied to Trees. 3, 15

MCTS Monte Carlo Tree Search. 3, 5, 15, 18

MDP Markov Decision Process. 4

UCB Upper Confidence Bound. 6, 8, 9

I Introduction

Reinforcement learning is a large area of machine learning with supervised and unsupervied

learning. With in an environment its goal is to train a controllable agent to take optimal

actions. When the agent explores the environment, it gives feedbacks called rewards whether it

goes right or wrong. The optimal action is an action maximizing the sum of future rewards.

Reinforcement learning framework is extensively applied to play diverse strategic games;

chess [1], checkers [2], and othello [3]. Especially, deep reinforcement learning (DRL) which

combines deep convolutional neural networks (CNNs) [4] to reinforcement learning methods

have achieved super-human performance in Atari games [5] and Go [6,7].

Through large deep learning networks, they compute probabilities for the most of scenarios

and choose actions in discretized action space (e.g. Go has 19x19 possible actions per move).

However, in continuous action space, we confront to the discretization problem to apply their

frameworks. It is inevitable to loss information during the process. For some tasks which need

very precise control, it is fatal to loss it.

We propose a policy search framework which solves these issues with an efficient continuous

search algorithm on the top of action samples extracted by a deep CNN. The network still use

the discretized state and action spaces, but we relieve the restriction problems of discretization

through conducting a local search in a well-designed physical simulator with sampling stochastic

and continuous actions. Through this method, we expect following two benefits. First, the

advantage of expressiveness of deep neural networks, which learn the structure of global policy.

Second, an efficient policy search in continuous spaces with the physical simulator enables to

find the precise actions and controls.

We verify our method with the domain of curling which is one of Olympic sports. Its

search space is huge enough to be viewed as a challenging game domain. Also, the uncertainty

and precision on the ice sheet make it to be evaluated as the most challenging Olympic sport

intellectually. The standard size of the ice sheet is 5.00m by 45.720m, and the diameter of a

curling stone is about 30cm. To draw the stone to desired place, the player should precisely

control the stone within 10-15cm. Even if the player can precisely control the power, angle, and

turn of his or her moves, the uncertainty of slippery and melting ice delivers the stone to the

other place. Thus, the degree of the risk also should be considered during the decision making

process. Playing the game itself is very hard to decide which strategies to take and to consider

because of those challenges. Moreover, there is one more important characteristic which makes

the problem complicatedly.

A curling game has several ends which are sub-games. They are independent each others,

but the result of an end determines the rule of the right next end. Maximizing the score of

each ends does not guarantee the result of the game. The reward function of deep reinforcement

learning (DRL) frameworks should consider this kind of rule of games to achieve the goal or

to win the games. However, if we consider the only long term reward, it is hard to expect the

1

Figure 1: The architecture of our policy-value network. A feature map which indicates the state

information is the input of this network. Each convolutional layer represents 32x32 discretized

image of the position of stones. During the convolution this size is fixed without pooling. Policy

and value network shares the bottom layers to increase the data efficiency. The probability

distribution of actions is the output of policy head, and the score distribution is the output of

value head. From the rule of curling, the maximum score which can be obtained by one end is

eight. Thus its range is from -8 to 8.

convergency and high sample efficiency. We propose a method to handle the long term strategic

game. First, we consider the short term reward per end. Then design an expected long term

reward with a table constructed by statistical game results.

More specifically, we design a learning framework combines a new deep CNN which is called

policy-value network and a stochastic continuous search method called kernel regression deep

learning upper confidence bound applied to trees (KR-DL-UCT). The policy-value network gives

the probability distribution of actions (i.e. policy network) and the score distribution which is

considered as a expected reward (i.e. value network). We jointly trained the policy-value network

as in Figure 1.

The program trained under our framework outperforms state-of-the-art digital curling pro-

grams, AyumuGAT’17 [8] and Jiritsukun’17 [9]. Our program also won in the Game AI Tour-

naments (GAT-2018) [10].

2

II Related work

In the domain of go, AlphaGo Lee, the successor version of AlphaGo Fan [6], defeated professional

go players. Go has 19x19 discretized finite action space, although, the depth or length of play

make complex branches. With the play data of human experts, the policy and value networks are

trained in AlphaGo Lee. It also uses Monte Carlo tree search (MCTS) for policy improvement.

AlphaGo Zero [7] has 2,000 more elo rating score [11] than AlphaGo Lee, which is expected

to win about 99.9% of matches against the latter one. It doesn’t uses any hand-crafted features

during the training. The learning starts from scratch, and the model is trained by itself through

the self-play games. It also uses a unified policy and value networks to increase the data efficiency.

For the game of curling, several methods have been proposed. To deal with large continuous

action space, search methods constructing game trees [9] have discretized the space and designed

their own evaluation functions. To consider the given execution uncertainty, the value of action

is calculated by averaging values of neighboring actions.

Monte carlo tree search (MCTS) [12–14] is a prevalent algorithm which has been used for

game AI agents. [15,16] It is a simulation based tree search algorithm which selects and expends

nodes of the tree to explore optimal moves. KR-UCT is a MCTS method, which uses pseudo-

count approach [17] to handle large continuous search spaces. By estimating the information of

a node of the tree using its neighbors’, the number of simulations needed to find the optimal

one is significantly lower than other tree search algorithms.

To deal with the continuous search space for the bandit problem, several algorithms have

been used. Hierarchical optimistic optimization (HOO) [18] creates a cover tree, and divides the

space recursively into small pieces of candidates for each depth. Each node of the cover tree is

a arm of the sequential problem. During the recursion, it exploits the most promising one to

create fine-grained estimates, and explores the region which has not been explored enough.

A well-designed simulator is very important to make decision for all search algorithms. Es-

pecially for the task applicable to real world problems, the similarity between the simulation and

the reality affects reliability of the performance of algorithms. The game of curling corresponds

to the task. Analyzing the dynamics of stones on the ice is important to design the accurate

simulator. [19] However, it is not possible yet to modeling all changes of friction coefficients of

the ice. Pebbles [20] is one of the main factors, which are the small granular frozen water on

the ice sheet, make hard to estimate them between stones and the ice. Thus, general digital

curling simulators assume a fixed friction coefficient which affects the result of simulation as an

uncertainty of the execution. [21–23]

To implement and visualize the physical movement of curling stones, physics engines (e.g.

Box2D [24], Unity3D [25] and Chipmunk 2D) are used. Parameters of the physics model are

generated from the analysis of matching data between professional curling players [21,22,26]. In

this paper, we use a curling simulator and its parameters from an international digital curling

competition [21].

3

III Background

3.1 Reinforcemnt Learning

Markov Decision Process

Reinforcement learning problems can be modeled by markov decision process (MDP). With a

fully observable environment, the model MDP has an omniscient viewpoint of given environment.

Even if the environment is not perfectly observable, we can add some constraints to make the

problem to a form of MDP.

When there is a change in the environment from a state s to the other state s′, we define

the work as an action a which is occurred during the transition. Problems of MDP assume only

the state s and the action a affects to the transition to the state s′

MDP is a 5-tuple < S,A, P,R, γ >. S and A are finite sets of states st and actions at
respectively for the time step t = 0, 1, 2, · · · , T . P is a state transition probability matrix

P ass′ = Pr[st+1 = s′|st = s, at = a]. R is a reward function of immediate or expected reward

Ras = E[rt+1|st = s, at = a] received by the environment after the transition, and γ is a discount

factor which controls the importance of future rewards. The discount factor is a real number

within [0, 1]. The lower value of discount factor represents the less importance of future rewards.

Policy Optimization

The purpose of reinforcement learning is to find the optimal policy which is the solution for a

problem defined as MDP.

Policy π is a mapping function of actions from states to states in the set S. For the de-

terministic policy, the function is directly indicates an action a given a state s: π(s) = a. In

the case of the stochastic policy, the function refers to the probability distribution of actions for

given state: π(a|s) = Pr[at = a|st = s]. We use the latter notation, because the former case can

be represented by the one-hot vector which is composed by one ’1’ for the optimal action and

’0’s for the rest of actions.

The optimal policy is a policy maximizing expected discounted rewards

E[Σ∞t=0γ
tRatst]. (1)

One method to find the optimal policy is dynamic programming with the recursive form of value

function

v(s) = Eπ[Rπ(st)
st + γv(st+1)|st = s]. (2)

The algorithm has two steps; a value update and a policy update. They are repeated in turn

for all the states until no further changes observed. Both recursively update a new estimation

of the optimal policy and value using an older estimation of those values.

4

Policy Iteration with Function Approximation

Policy iteration is an algorithm updates and generates the policy directly by iterating policy

evaluation and improvement steps, rather than finds it indirectly by optimizing the value func-

tion. In large action space such as the continuous space and multi-dimensional spaces, function

approximation make the use of realistic physical resource compare to create all possible cases

with the form of table. Here we wrote the algorithm with an approximation function, deep neu-

ral network [27–29], which represent the policy and value functions through network parameters

ρ and θ respectively.

Firstly, during the iteration, there is a step called policy evaluation to find a true value

function. To judge the current policy π is a right one, a value function v(s) is used for evaluating

the importance of each state s through the policy π. The problem is the value function is not

the real value function, so it should be updated through the iteration.

The parameterized value function vθ is approximated by a neural network, so it is trained

by the estimation. For given state s and reward r(s), the estimator is updated using stochastic

gradient descent method [30,31],

∆θ ∝ ∂vθ(s)

∂θ
(r(s)− vθ(s)). (3)

With the value function vθ, the next step is to update the policy πρ. Through this procedure,

the agent follows the better policy, and finally finds the optimal policy. For given state s

and action a the policy can be trained by stochastic gradient ascent method to maximize the

probability of action a is selected on state s,

∆ρ ∝ ∂ log πρ(a|s)
∂ρ

. (4)

Another method to update the policy is policy gradient reinforcement learning [32]. For each

time step t, the policy πρ parameterized by ρ is trained by maximizing the expected result r(st):

∆ρ ∝ ∂ log πρ(at|st)
∂ρ

r(st). (5)

3.2 Monte Carlo Tree Search

A Monte Carlo tree search (MCTS) [12–14] is a simulation based search algorithm. It is usually

applied to games which needs controls and strategies to play. By constructing a game-tree for

each decision making process, it samples an action to explore and then expands a node or visit

any existing node for each iteration. Usually nodes and branches of the tree are equivalent to

states and actions respectively, but it can be fluently changed by how implements the program.

After expanding a new node, it simulates the game with a predifined rollout function (default

policy) until the game is over to evaluate the play. At the terminal state, when its environment

gives any return (e.g. score, win or lose), it evaluates the information of all the nodes of the path

5

from the leaf to root node, which called backpropagation. The information is usually composed

of the number of visits corresponding node and a expected value of the node itself.

During the tree search algorithm, there is a important step to select which nodes to explore.

One of the functions to choose them is an upper confidence bound (UCB) fucntion. The method

which uses UCB as a selection function is called Upper confidence bounds applied to trees

(UCT) [14].

More specifically, a node of the game-tree has two kinds of the information; the expected

reward value v̄a and the number of visits for corresponding action a. For each iteration of

the algorithm, it visits an action which maximizing one side of a confidence interval Chernoff

Hoeffding inequality [33] as,

arg max
a

v̄a + C

√
log

∑
b nb

na
. (6)

It selects an action which has the maximum expected value v̄a and the lowest visit number na at

the same time. The constant C controls their importance to select the right action to explore.

3.3 Kernel Regression

With non-parametric techniques, we can design a function without any assumption of its shape

or parameters. It is more general than the parametric methods, so we can estimate the dis-

tribution of data more accurately. Kernel regression is a non-parametric method to estimate

the conditional expectation E[y|x] of a random variable y given data x. One proposed function

to estimate the expectation is averaging the variable y with a kernel function K(x, x′) which

indicates the relation between two parameters x and x′ [34–36],

E[y|x] =

∑n
i=0K(x, xi)yi∑n
i=0K(x, xi)

. (7)

Radial basis function kernel is a simple and popular kernel function defined as

K(x, x) = exp
[||x− x′||2

2σ2

]
, (8)

where σ is a free parameter. Intuitively we can interpret the meaning of the function as a

similarity or distance between two points. The denominator of (7) is called kernel density

estimation,

W (x) =

n∑
i=0

K(x, xi), (9)

which infers the density of a random variable based on given data.

3.4 The Game of Curling

Curling is also called chess on ice, which needs a great strategies to choose the most promising

path to move and arrangement of stones for diverse situations. As the play is on the ice, there

6

is no absolutely prior strategy. The global goal of this game is to get the higher accumulated

score than the opponent team’s.

It is composed by even number of ends (8 or 10) except for the case of the overtime. In

each end, eight stones are given to each team and the players throw their stones in turn on

the ice sheet toward the circle called house (the scoring area). The score is determined right

after the last (sixteenth) stone is thrown and stopped. A team which has a stone closer to the

center of house called button than any other opponent’s gets the score, and the number of stones

corresponding to the rule is the amount of points they can get. In other words, the other team

gets the point zero in the end.

The player who gets the point plays the next end as the first player. If there is no one who

got the point, the turn of play is kept. The turn is very important to get the point, because a

player who throw the last stone (hammer shot) can determine the result of each end. It indicates

that the same strategy in one-end games makes different results in multi-end games. Thus, by

optimizing the strategy for one-end games can not guarantee that it also can be a good strategy

for multi-end games [23].

7

IV Deep Reinforcement Learning in Continuous Action Spaces

4.1 The Policy-Value Network

The advantages of the function approximation in reinforcement learning has been actively proved

through performances of diverse games. [5–7]. In that sense, we design a similar architecture fo

the domain of curling. After constructing features an input of 32x32 discretized image from the

placement of stones, we stack convolutional layers and divide its head to represent the policy

and value respectively. These approximated functions reduce the number of iterations to find

the optimal action (policy network) and reduce the running time to simulate the scenarios to

evaluate action explored (value network). The network architecture is described in Figure 1.

The policy network pθ has a network parameter θ, and outputs the probability distribution

of actions which aim to 32x32x2 discretized board (32x32 grids for both clockwise and counter-

clockwise spins).

The value network vθ shares its network parameter θ with the policy network to increase

the data efficiency [6]. The value here indicates not a scalar number but a vector which is the

probability distribution of scores [−8, 8] which can be obtained in one end.

4.2 Search in Continuous Action Space

If the search space is very large or continuous, it is hard to get the global optimal action.

When we choose the sampling method to search in continuous space, we can easily confront

the localization problem. Even if using the random sampling, it needs huge number of samples

to get the stable results, which is unpractical to play games in online matches. When we use

the discretized continuous space, it would lead to get the global optimal action, but the loss of

information during the discretization highly restricts its performance.

Our algorithm starts from discretized space with initialized actions using the policy network,

but it is so meaningful that can solve the localization problem. Then, it estimate the values of

each node based on the information of other nodes visited, using kernel methods (KR and KDE).

With the estimators, it can update the information of each node indirectly. This procedure works

as the information sharing method, which reduces the number of visits necessary to find the

optimal action. With the UCT [14] framework, specifically, we use kernel based estimators. KR

and KDE are used for estimating the expected value v̄a and the number of visits na respectively.

E(v̄a|a)=

∑
b∈At

K(a, b)v̄bnb∑
b∈At

K(a, b)nb
, W (a)=

∑
b∈At

K(a, b)nb (10)

The method with those idea is applied to Algorithm 1, and its explanation is following as

four steps of MCTS algorithm.

Selection First step is the selection. As a variation of UCB, we use kernel based estimators

in line 9. Expected value and the visit number for each action are estimated by the information

8

Algorithm 1 KR-DL-UCT
1: pθ ← the policy network

2: vθ ← the value network

3: st ← the current state

4: At ← a set of visited actions in st
5: expanded← false

6: if st is terminal then

7: return Score(st), false

8: end if

9: at ← argmaxa∈At E[v̄a|a] + C
√

log Σb∈At
W (b)

W (a)

10: if
√∑

a∈At
na < |At| then

11: st+1 ← TakeAction(st, at)

12: re ~ward, expanded← KR-DL-UCT(st)

13: end if

14: if not expanded then

15: a′t ← argminK(at,a)>γW (a)

16: At ← At ∪ a′t
17: st+1 ← TakeAction(st, a

′
t)

18: At+1←∪ki=1 {a
(i)
init} s.t. a

(i)
init∼πa|st+1

// Policy net

19: re ~ward← vθ(st+1|st, a′t) // Value net

20: end if

21: ~vat ← 1
nat+1(nat~vat + re ~ward)

22: nat ← nat + 1

23: return re ~ward, true

of sibling actions b ∈ At. To deal with one-end games, the value itself is used for calculate the

expectation v̄a. For multi-end games, please refer Section VI. When the recursion reaches to

the terminal (line 6), we select the action which has the number of most visits as the optimal

action,

a∗ = arg max
a∈At

W (a), (11)

because there is no reason to explore anymore for the last selection.

Expansion During the expansion, we use a technique called progressive widening to control

the number of branches for each parent node. This indicates line 10. It makes the expansion

can be occurred deeply rather than widely.

In this continuous search algorithm, the action which is selected by the UCB function is not

the action to be explored or expanded directly. In line 15, it choose another action a′t among

the random sampled actions minimizing the estimated number of visits W (a) and satisfying the

similarity to the selected action a is greater than the constant τ . This is a method not only to

9

search in continuous space but also to explore efficiently.

In line 11 and 17, there is a function TakeAction(st, at). It is the simulation function to get

the next state from the environment. That is, it returns the placement of stones after simulating

chosen action and the statement of the game.

To utilize the kernel based estimators, it is necessary to define initial actions before estimating

values. Also, it guides to start from the feasible region to find the optimal action. Our policy

network πa takes these role in line 18:

πa|st+1
=

p(a|st+1)1/τ

Σbp(b|st+1)1/τ
. (12)

To sample the number of k actions for the initialization, we use a parameter tau which make

the sampling can follow the distribution from the policy network.

Simulation For this step, we need a default policy called rollout to simulate scenarios until

the terminal state to evaluate expanded nodes. Design of this function affects the performance

of MCTS algorithms, because it directs to evaluate and update the parameters. The problem is

that it is difficult to make the well-designed rollout at first. However, using our value network

vθ which is trained based on the play data, we can directly get the value without constructing

the default policy or even simulating the scenarios generated by the function. (line 19)

Backpropagation The last step is to update parameters of the nodes from the leaf to the

root nodes along with the explored way of recursion. Variables along line 21 and 22 correspond

to them.

10

Hogline Teeline Backline

Centerline

y

x

0

1

2

3

4

10 8 6 4 2 0 -2 -4 -6

Figure 2: Kernel density estimation of shot data from the reference program for supervised

learning. Shots whose spin is clockwise are analyzed only, and the opposite case is upside down

with the centerline. During the simulation, a stone is thrown from the left to the right side.

Stones stopped after the backline are ruled out. To takeout the opponent’s stones, however, it

is clear that the player aims to throw a stone behind the backline. For our reference program,

the difference between shots whether to draw or to takeout the stones is obvious. Takeout shots

are biased by [-6,-4] of y axis. Note that the curling sheet of this figure is not the state space

(from hogline to backline) but the action space.

V Learning Pipeline

Our model is trained through two kinds of learning methods. One is supervised learning with

data of a reference program, and the other is reinforcement learning with a pile of self-play data.

5.1 Supervised Learning

The policy-value network is first trained based on 4,000,000 shot data from the play of a reference

program (Section 7.1). The data includes the information of the action (a), the placement of

stones (s) and the scoreboard for each play. The policy network is trained by the pairs of action

and state, and the value network estimate the possibility of getting each point for given state.

From a pile of reference data, m number of samples as a form of state and action pair

(st, at). We make d -depth state st+d randomly by considering execution uncertainty. The state

is evaluated by the value network and the prediction zt is used for training the network.

To learn the designated policy π and value z, the policy-value network fθ(s) is trained to

reduce the difference between the network pair (pθ,vθ) and the data pairs (π, z).

We use stochastic gradient descent method to train the network. The sum of the cross-

entropy losses for the training is defined as

l=−zT logvθ−πT logpθ + c||θ||2, (13)

where the constant c for the regularization parameter is set to 0.0001.

11

Here, we set πa = 1 for the action a selected by the reference program, and πb∈A\{a} = 0 for

others. We analyzed the reference program as in Figure 2 and we find that eliminating a part of

the action space beyond the backline is very effective during the training as reduce the action

space. Also it accelerate to learn strong shots (i.e. takeout1 shots) as deleting the less important

area. The network was trained for roughly 100 epochs. The learning rate was initialized by 0.01

and gradually reduced.

5.2 Self-Play Reinforcement Learning

We use policy iteration method to update the policy further through self-play reinforcement

learning. The proposed actions are generated by Algorithm 1. That is, the data generated by

the self-play games is used for train the policy-value network, and the network is also used for

generate the data iteratively. Through the iterations, the policy and value form the network is

gradually improved to find the true functions.

1An action to make a stone that hits another stone to remove it.

12

VI Learning Long Term Strategies

The number of Difference of cumulative scores
remaining ends ≤ −4 -3 -2 -1 0 1 2 3 ≥ 4

10 0.418
9 0.397 0.524 0.648 0.749 0.811
8 0.147 0.153 0.198 0.288 0.411 0.550 0.679 0.781 0.843
7 0.112 0.119 0.163 0.250 0.374 0.520 0.663 0.779 0.842
6 0.103 0.110 0.159 0.262 0.408 0.569 0.715 0.825 0.889
5 0.063 0.072 0.115 0.205 0.339 0.506 0.677 0.813 0.894
4 0.058 0.063 0.114 0.230 0.412 0.610 0.770 0.880 0.938
3 0.020 0.027 0.062 0.144 0.273 0.467 0.691 0.854 0.939
2 0.017 0.020 0.058 0.174 0.435 0.708 0.860 0.945 0.981
1 0.000 0.002 0.013 0.075 0.127 0.355 0.725 0.915 0.981
0 0.000 0.000 0.000 0.000 0.500 1.000 1.000 1.000 1.000

Table 1: Winning rates on the side of first player when the number of remaining ends and the

difference of cumulative scores of two players are given. When the difference is zero after the

last end, which means draw, the winning rate is considered as half.

6.1 Domain Knowledges of Curling

Curling is also called chess on ice, which needs a great strategies to choose the most promising

path to move and arrangement of stones for diverse situations. As the play is on the ice, there

is no absolutely prior strategy. The global goal of this game is to get the higher accumulated

score than the opponent team’s.

It is composed by even number of ends (8 or 10) except for the case of the overtime. In

each end, eight stones are given to each team and the players throw their stones in turn on

the ice sheet toward the circle called house (the scoring area). The score is determined right

after the last (sixteenth) stone is thrown and stopped. A team which has a stone closer to the

center of house called button than any other opponent’s gets the score, and the number of stones

corresponding to the rule is the amount of points they can get. In other words, the other team

gets the point zero in the end.

The player who gets the point plays the next end as the first player. If there is no one who

got the point, the turn of play is kept. The turn is very important to get the point, because a

player who throw the last stone (hammer shot) can determine the result of each end. It indicates

that the same strategy in one-end games makes different results in multi-end games. Thus, by

optimizing the strategy for one-end games can not guarantee that it also can be a good strategy

for multi-end games [23].

13

6.2 Multi-End Strategy

To consider the characteristics of multi-end games, we design a table (Table 1). Based on

statistical result of the play data it converts the score to the winning rate with the information

of remaining ends. In detail, the table uses two variables; the number of ends remained n and

the difference of the sum of points δ. Following is the example of the conversion from a score to

winning percentage.

Let’s consider an situation for the case, the accumulated score is tied until the previous

end, and a team which plays the first shot at the current end. If the team expected to get one

point in this end, and there are only one ends which is remained. Then, the variables (n, δ)

for Table 1 are set to (1, 1). That is the probability of the team wins for the game would be

Pwin(n = 1, δ = 1) = 35.5%.

In this way, the expected winning percentage v̄a can be efficiently computed and used for

replace the expected value in Algorithm 1. The score distribution score over the range of

[−8, 8] we can formalize the conversion to the expected winning rate,

v̄a = Ev[Pwin(n, δ + score)]. (14)

14

VII Experimental Results

To verify our algorithm, we use a simulator provided on the international simulated curling

competition [21]. It includes the action uncertainty on the ice as an asymmetric Gaussian noise.

Its visualization is implemented on Box2D physical engine, and the collision of stones is also

observed.

7.1 Dataset

The play data used for training our policy-value network which is described in Section 5.1 is from

running the top ranked program AyumuGAT’16 [8]. Its algorithm is also a MCTS algorithm and

the winner of the Game AI Tournaments digital curling championship in 2016 (GAT-2016) [10].

7.2 Settings

We construct three models to verify our contributions. Firstly, a model named kernel regression-

deep learning (KR-DL) is a program using the policy-value network trained based on the ref-

erence program only. (Section 5.1) The second program is kernel regression-deep reinforcement

learning (KR-DRL) which trained further using the self-play data. (Section 5.2) The last pro-

gram has overall ideas which are proposed in this paper, kernel regression-deep reinforcement

learning-multi ends strategy (KR-DRL-MES). Note that our Algorithm 1 is used for all three

programs.

For the configuration of Algorithm 1, we choose the constant values of free variables C

and τ as 0.1 and 0.33 respectively through the analysis of the experimental results. During the

self-play games the number of iterations of the algorithm is set to 400 which is enough to explore

the search space to get the optimal strategy. It took a week to get 5,000,000 shot positions with

5 GPUs. During the self-play games our policy-network is trained using uniformly sampled data

based on the most recent 1,000,000 shot data. The Table 1 is a statistical result based on the

data for both supervised learning and self-play reinforcement learning.

7.3 Results

To verify our algorithms KR-DL-UCT itself, we make an experiment to match with the algo-

rithms without the kernel based estimators, DL-UCT. As it shown in Figure 3 its performance

already higher than DL-UCT at the start, before the policy-value network is trained further

through the play. As the network is trained further, the difference between two program is

increased until 16.05% by 5,000,000 shot data.

We set the baseline program as KR-UCT [22]. For each iteration, it uses 1,600 simulations to

make decision, which is much higher than our configuration. It also uses hand-crafted features

to generate rollout function.

15

0 1 2 3 4 5
The number of generated data (million)

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

W
in

ni
ng

 P
er

ce
nt

ag
e

(%
)

KR-DL-UCT
DL-UCT

Figure 3: Learning curve for KR-DL-UCT and DL-UCT. The plot shows the winning percentages

of 2,000 two-end games against DL-UCT with supervised learning only, 1,000 games as the first

player and 1,000 games as the second player respectively. We compute the winning percentages

by increasing the number of training shots.

KR
-UCT

jiri
tsu

ku
nG

AT'1
6

KR
-DL

Ayu
muG

AT'1
6

GCCSG
AT'1

7

Ayu
muG

AT'1
7

KR
-DRL

jiri
tsu

ku
nG

AT'1
7

KR
-DRL-M

ES
500

600

700

800

900

1000

1100

1200

1300

El
o

ra
tin

g

Figure 4: Elo rating and winning percentages of our models and GAT rankers. Each match has

200 games (each program plays 100 pre-ordered games), because the player which has the last

shot (the hammer shot) in each end would have an advantage. Programs colored blue are our

proposed programs.

The result of our three programs with the reference programs are shown in Figure 4. All

games during the experiment follows the configurations of the latest GAT competition, which

16

allows only 3.4 seconds for thinking times per action, and each game is composed of eight ends.

AyumuGAT’16 is the reference program for training the policy-value network in supervised

learning manner, so our first program KR-DL performs a little bit worse than it. After training

the network further based on the self-play data, KR-DRL outperforms it and other top ranked

programs in the next year. JiritsukunGAT’17 is a program uses deep learning to identify the

multi-end strategy and well-designed evaluation function to verify the value of each game state.

It has the highest rating among the reference programs form the competition, but our program

KR-DRL-MES outperforms it as in Figure 4.

17

VIII Conclusion

8.1 Summary

We propose a novel deep reinforcement learning method to handle the continuous search space

and the multi-end game. Without designing hand-craft functions in the Monte Carlo tree search

(MCTS) framework, we approximates the policy and value using the deep CNN. With the

information sharing based on kernel regression (KR) and kernel density estimation (KDE), we

release the restriction of using deep learning with the discretization. Also, we design the winning

rate table to deal with the multi-end strategy and demonstrate that the algorithm equipped it

shows the state-of-the-art performance in the domain of curling.

8.2 Future Work

Even if its statistical performance is good, the black box model makes hard itself to interact with

human beings. The interaction encourage us to get the information and explain its behavior.

This procedure increases the reliability of the performance and can be improved through feed-

backs.

During the exploration and exploitation of the reinforcement algorithm, there are many

expanded action which are not optimal at the end. It is clear that the number of experience

of them is higher than any other selected actions if the algorithm works fine. We would like

to analyze the reason why they are not selected to explain the reason why the optimal one

is selected. We think this future work will be very interesting research topic to explain AI

frameworks.

18

Acknowledgements

I would like to appreciate all people who have been supported me and my research. I’d like to

express my gratitude to my advisor Jaesik Choi who is a mentor of all my work of the thesis. I

would also like to thank all members of the Statistical Artificial Intelligence Laboratory. Each

of them has been a help of my work not only as a coworker but as a friend. Thank you to

my mother Jung Mi Ryu who always be my side and supports everything without any purpose.

Finally, to all people who spend their time to help and support me, I would like to say thank

you again.

19

References

[1] M. Campbell, A. Hoane Jr., and F.-H. Hsu, “Deep blue,” Artificial Intelligence, pp. 57–83,

2002.

[2] J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron, “A world champi-

onship caliber checkers program,” Artificial Intelligence, pp. 273–289, 1992.

[3] M. Buro, “From simple features to sophisticated evaluation functions,” in Computers and

Games, 1999, pp. 126–145.

[4] Y. LeCun and Y. Bengio, “The handbook of brain theory and neural networks,” 1998, pp.

255–258.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Ried-

miller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,

D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep

reinforcement learning,” Nature, pp. 529–533, 2015.

[6] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,

N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and

D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature,

pp. 484–489, 2016.

[7] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche,

T. Graepel, and D. Hassabis, “Mastering the game of go without human knowledge,” Nature,

pp. 354–359, 2017.

[8] K. Ohto and T. Tanaka, “A curling agent based on the monte-carlo tree search consider-

ing the similarity of the best action among similar states,” in Proceedings of Advances in

Computer Games, ACG, 2017, pp. 151–164.

[9] M. Yamamoto, S. Kato, and H. Iizuka, “Digital curling strategy based on game tree search,”

in Proceedings of the IEEE Conference on Computational Intelligence and Games, CIG,

2015, pp. 474–480.

20

[10] T. Ito, “The 4th uec-cup digital curling tournament in game artificial intelligence

tournaments.” [Online]. Available: http://minerva.cs.uec.ac.jp/curling/wiki.cgi?page=

GAT_2018

[11] A. Elo, The rating of chess players, past and present, New York, 1978.

[12] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen, S. Tavener,

D. Perez, S. Samothrakis, and S. Colton, “A survey of monte carlo tree search methods,”

IEEE Transactions on Computational Intelligence and AI in Games, pp. 1–43, 2012.

[13] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree search,” in Com-

puters and Games, 2007, pp. 72–83.

[14] L. Kocsis and c. Szepesvári, “Bandit based monte-carlo planning,” in Proceeding of European

Conference on Machine Learning, ECML, 2006, pp. 282–293.

[15] S. James, G. Konidaris, and B. Rosman, “An analysis of monte carlo tree search,” in Thirty-

First AAAI Conference on Artificial Intelligence, 2017.

[16] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-carlo tree search: A new framework

for game ai.” in AIIDE, 2008.

[17] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos, “Unifying

count-based exploration and intrinsic motivation,” in Proceedings of the Neural Information

Processing Systems, NIPS, 2016, pp. 1471–1479.

[18] S. Bubeck, G. Stoltz, C. Szepesvári, and R. Munos, “Online optimization in x-armed ban-

dits,” in Proceedings of the Neural Information Processing Systems, NIPS, 2008, pp. 201–

208.

[19] E. Lozowski, K. Szilder, S. Maw, A. Morris, L. Poirier, and B. Kleiner, “Towards a first

principles model of curling ice friction and curling stone dynamics,” pp. 1730–1738, 2015.

[20] N. Maeno, “Dynamics and curl ratio of a curling stone,” Sports Engineering, pp. 33–41,

2014.

[21] T. Ito and Y. Kitasei, “Proposal and implementation of digital curling,” in Proceedings of

the IEEE Conference on Computational Intelligence and Games, CIG, 2015, pp. 469–473.

[22] T. Yee, V. Lisý, and M. Bowling, “Monte carlo tree search in continuous action spaces with

execution uncertainty,” in Proceedings of the International Joint Conference on Artificial

Intelligence, IJCAI, 2016, pp. 690–697.

[23] Z. Ahmad, R. Holte, and M. Bowling, “Action selection for hammer shots in curling,” in

Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI, 2016,

pp. 561–567.

21

[24] I. Parberry, Introduction to Game Physics with Box2D, 2013.

[25] S. Jackson, Unity 3D UI Essentials, 2015.

[26] M.-H. Heo and D. Kim, “The development of a curling simulation for performance improve-

ment based on a physics engine,” Procedia Engineering, pp. 385–390, 2013.

[27] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[28] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data mining,

inference, and prediction. Springer Science & Business Media, 2009.

[29] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[30] J. Kiefer, J. Wolfowitz et al., “Stochastic estimation of the maximum of a regression func-

tion,” The Annals of Mathematical Statistics, vol. 23, no. 3, pp. 462–466, 1952.

[31] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of mathemat-

ical statistics, pp. 400–407, 1951.

[32] R. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for rein-

forcement learning with function approximation,” in Proceedings of the Neural Information

Processing Systems, NIPS, 1999, pp. 1057–1063.

[33] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” in The

Collected Works of Wassily Hoeffding. Springer, 1994, pp. 409–426.

[34] E. A. Nadaraya, “On estimating regression,” Theory of Probability & Its Applications, vol. 9,

no. 1, pp. 141–142, 1964.

[35] G. S. Watson, “Smooth regression analysis,” Sankhyā: The Indian Journal of Statistics,

Series A, pp. 359–372, 1964.

[36] H. J. Bierens, “The nadaraya-watson kernel regression function estimator,” 1988.

22

	I Introduction
	II Related work
	III Background
	3.1 Reinforcemnt Learning
	3.2 Monte Carlo Tree Search
	3.3 Kernel Regression
	3.4 The Game of Curling

	IV Deep Reinforcement Learning in Continuous Action Spaces
	4.1 The Policy-Value Network
	4.2 Search in Continuous Action Space

	V Learning Pipeline
	5.1 Supervised Learning
	5.2 Self-Play Reinforcement Learning

	VI Learning Long Term Strategies
	6.1 Domain Knowledges of Curling
	6.2 Multi-End Strategy

	VII Experimental Results
	7.1 Dataset
	7.2 Settings
	7.3 Results

	VIII Conclusion
	8.1 Summary
	8.2 Future Work

	Acknowledgements
	References

<startpage>13
I Introduction 1
II Related work 3
III Background 4
 3.1 Reinforcemnt Learning 4
 3.2 Monte Carlo Tree Search 5
 3.3 Kernel Regression 6
 3.4 The Game of Curling 6
IV Deep Reinforcement Learning in Continuous Action Spaces 8
 4.1 The Policy-Value Network 8
 4.2 Search in Continuous Action Space 8
V Learning Pipeline 11
 5.1 Supervised Learning 11
 5.2 Self-Play Reinforcement Learning 12
VI Learning Long Term Strategies 13
 6.1 Domain Knowledges of Curling 13
 6.2 Multi-End Strategy 14
VII Experimental Results 15
 7.1 Dataset 15
 7.2 Settings 15
 7.3 Results 15
VIII Conclusion 18
 8.1 Summary 18
 8.2 Future Work 18
Acknowledgements 19
References 20
</body>

