1,234 research outputs found

    Visualization and Analysis of Flow Fields based on Clifford Convolution

    Get PDF
    Vector fields from flow visualization often containmillions of data values. It is obvious that a direct inspection of the data by the user is tedious. Therefore, an automated approach for the preselection of features is essential for a complete analysis of nontrivial flow fields. This thesis deals with automated detection, analysis, and visualization of flow features in vector fields based on techniques transfered from image processing. This work is build on rotation invariant template matching with Clifford convolution as developed in the diploma thesis of the author. A detailed analysis of the possibilities of this approach is done, and further techniques and algorithms up to a complete segmentation of vector fields are developed in the process. One of the major contributions thereby is the definition of a Clifford Fourier transform in 2D and 3D, and the proof of a corresponding convolution theorem for the Clifford convolution as well as other major theorems. This Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vectorvalued filters, as well as an acceleration of the convolution computation as a fast transform exists. The depth and precision of flow field analysis based on template matching and Clifford convolution is studied in detail for a specific application, which are flow fields measured in the wake of a helicopter rotor. Determining the features and their parameters in this data is an important step for a better understanding of the observed flow. Specific techniques dealing with subpixel accuracy and the parameters to be determined are developed on the way. To regard the flow as a superposition of simpler features is a necessity for this application as close vortices influence each other. Convolution is a linear system, so it is suited for this kind of analysis. The suitability of other flow analysis and visualization methods for this task is studied here as well. The knowledge and techniques developed for this work are brought together in the end to compute and visualize feature based segmentations of flow fields. The resulting visualizations display important structures of the flow and highlight the interesting features. Thus, a major step towards robust and automatic detection, analysis and visualization of flow fields is taken

    Detection of Total Rotations on 2D-Vector Fields with Geometric Correlation

    Full text link
    Correlation is a common technique for the detection of shifts. Its generalization to the multidimensional geometric correlation in Clifford algebras additionally contains information with respect to rotational misalignment. It has been proven a useful tool for the registration of vector fields that differ by an outer rotation. In this paper we proof that applying the geometric correlation iteratively has the potential to detect the total rotational misalignment for linear two-dimensional vector fields. We further analyze its effect on general analytic vector fields and show how the rotation can be calculated from their power series expansions

    TEMPLATE MATCHING ON VECTOR FIELDS USING CLIFFORD ALGEBRA

    Get PDF
    Due to the amount of flow simulation and measurement data, automatic detection, classification and visualization of features is necessary for an inspection. Therefore, many automated feature detection methods have been developed in recent years. However, only one feature class is visualized afterwards in most cases, and many algorithms have problems in the presence of noise or superposition effects. In contrast, image processing and computer vision have robust methods for feature extraction and computation of derivatives of scalar fields. Furthermore, interpolation and other filter can be analyzed in detail. An application of these methods to vector fields would provide a solid theoretical basis for feature extraction. The authors suggest Clifford algebra as a mathematical framework for this task. Clifford algebra provides a unified notation for scalars and vectors as well as a multiplication of all basis elements. The Clifford product of two vectors provides the complete geometric information of the relative positions of these vectors. Integration of this product results in Clifford correlation and convolution which can be used for template matching of vector fields. For frequency analysis of vector fields and the behavior of vector-valued filters, a Clifford Fourier transform has been derived for 2D and 3D. Convolution and other theorems have been proved, and fast algorithms for the computation of the Clifford Fourier transform exist. Therefore the computation of Clifford convolution can be accelerated by computing it in Clifford Fourier domain. Clifford convolution and Fourier transform can be used for a thorough analysis and subsequent visualization of flow fields

    Causal Fermion Systems -- An Overview

    Get PDF
    The theory of causal fermion systems is an approach to describe fundamental physics. We here introduce the mathematical framework and give an overview of the objectives and current results.Comment: 54 pages, LaTeX, 1 figure, minor improvements (published version

    Spectral, Combinatorial, and Probabilistic Methods in Analyzing and Visualizing Vector Fields and Their Associated Flows

    Get PDF
    In this thesis, we introduce several tools, each coming from a different branch of mathematics, for analyzing real vector fields and their associated flows. Beginning with a discussion about generalized vector field decompositions, that mainly have been derived from the classical Helmholtz-Hodge-decomposition, we decompose a field into a kernel and a rest respectively to an arbitrary vector-valued linear differential operator that allows us to construct decompositions of either toroidal flows or flows obeying differential equations of second (or even fractional) order and a rest. The algorithm is based on the fast Fourier transform and guarantees a rapid processing and an implementation that can be directly derived from the spectral simplifications concerning differentiation used in mathematics. Moreover, we present two combinatorial methods to process 3D steady vector fields, which both use graph algorithms to extract features from the underlying vector field. Combinatorial approaches are known to be less sensitive to noise than extracting individual trajectories. Both of the methods are extensions of an existing 2D technique to 3D fields. We observed that the first technique can generate overly coarse results and therefore we present a second method that works using the same concepts but produces more detailed results. Finally, we discuss several possibilities for categorizing the invariant sets with respect to the flow. Existing methods for analyzing separation of streamlines are often restricted to a finite time or a local area. In the frame of this work, we introduce a new method that complements them by allowing an infinite-time-evaluation of steady planar vector fields. Our algorithm unifies combinatorial and probabilistic methods and introduces the concept of separation in time-discrete Markov chains. We compute particle distributions instead of the streamlines of single particles. We encode the flow into a map and then into a transition matrix for each time direction. Finally, we compare the results of our grid-independent algorithm to the popular Finite-Time-Lyapunov-Exponents and discuss the discrepancies. Gauss\'' theorem, which relates the flow through a surface to the vector field inside the surface, is an important tool in flow visualization. We are exploiting the fact that the theorem can be further refined on polygonal cells and construct a process that encodes the particle movement through the boundary facets of these cells using transition matrices. By pure power iteration of transition matrices, various topological features, such as separation and invariant sets, can be extracted without having to rely on the classical techniques, e.g., interpolation, differentiation and numerical streamline integration
    • …
    corecore