19,070 research outputs found

    Confidence sets for network structure

    Full text link
    Latent variable models are frequently used to identify structure in dichotomous network data, in part because they give rise to a Bernoulli product likelihood that is both well understood and consistent with the notion of exchangeable random graphs. In this article we propose conservative confidence sets that hold with respect to these underlying Bernoulli parameters as a function of any given partition of network nodes, enabling us to assess estimates of 'residual' network structure, that is, structure that cannot be explained by known covariates and thus cannot be easily verified by manual inspection. We demonstrate the proposed methodology by analyzing student friendship networks from the National Longitudinal Survey of Adolescent Health that include race, gender, and school year as covariates. We employ a stochastic expectation-maximization algorithm to fit a logistic regression model that includes these explanatory variables as well as a latent stochastic blockmodel component and additional node-specific effects. Although maximum-likelihood estimates do not appear consistent in this context, we are able to evaluate confidence sets as a function of different blockmodel partitions, which enables us to qualitatively assess the significance of estimated residual network structure relative to a baseline, which models covariates but lacks block structure.Comment: 17 pages, 3 figures, 3 table

    The interplay of microscopic and mesoscopic structure in complex networks

    Get PDF
    Not all nodes in a network are created equal. Differences and similarities exist at both individual node and group levels. Disentangling single node from group properties is crucial for network modeling and structural inference. Based on unbiased generative probabilistic exponential random graph models and employing distributive message passing techniques, we present an efficient algorithm that allows one to separate the contributions of individual nodes and groups of nodes to the network structure. This leads to improved detection accuracy of latent class structure in real world data sets compared to models that focus on group structure alone. Furthermore, the inclusion of hitherto neglected group specific effects in models used to assess the statistical significance of small subgraph (motif) distributions in networks may be sufficient to explain most of the observed statistics. We show the predictive power of such generative models in forecasting putative gene-disease associations in the Online Mendelian Inheritance in Man (OMIM) database. The approach is suitable for both directed and undirected uni-partite as well as for bipartite networks
    • …
    corecore