48,073 research outputs found

    Evaluating testing methods by delivered reliability

    Get PDF
    There are two main goals in testing software: (1) to achieve adequate quality (debug testing), where the objective is to probe the software for defects so that these can be removed, and (2) to assess existing quality (operational testing), where the objective is to gain confidence that the software is reliable. Debug methods tend to ignore random selection of test data from an operational profile, while for operational methods this selection is all-important. Debug methods are thought to be good at uncovering defects so that these can be repaired, but having done so they do not provide a technically defensible assessment of the reliability that results. On the other hand, operational methods provide accurate assessment, but may not be as useful for achieving reliability. This paper examines the relationship between the two testing goals, using a probabilistic analysis. We define simple models of programs and their testing, and try to answer the question of how to attain program reliability: is it better to test by probing for defects as in debug testing, or to assess reliability directly as in operational testing? Testing methods are compared in a model where program failures are detected and the software changed to eliminate them. The “better” method delivers higher reliability after all test failures have been eliminated. Special cases are exhibited in which each kind of testing is superior. An analysis of the distribution of the delivered reliability indicates that even simple models have unusual statistical properties, suggesting caution in interpreting theoretical comparisons

    Partition strategies for incremental Mini-Bucket

    Get PDF
    Los modelos en grafo probabilísticos, tales como los campos aleatorios de Markov y las redes bayesianas, ofrecen poderosos marcos de trabajo para la representación de conocimiento y el razonamiento en modelos con gran número de variables. Sin embargo, los problemas de inferencia exacta en modelos de grafos son NP-hard en general, lo que ha causado que se produzca bastante interés en métodos de inferencia aproximados. El mini-bucket incremental es un marco de trabajo para inferencia aproximada que produce como resultado límites aproximados inferior y superior de la función de partición exacta, a base de -empezando a partir de un modelo con todos los constraints relajados, es decir, con las regiones más pequeñas posibleincrementalmente añadir regiones más grandes a la aproximación. Los métodos de inferencia aproximada que existen actualmente producen límites superiores ajustados de la función de partición, pero los límites inferiores suelen ser demasiado imprecisos o incluso triviales. El objetivo de este proyecto es investigar estrategias de partición que mejoren los límites inferiores obtenidos con el algoritmo de mini-bucket, trabajando dentro del marco de trabajo de mini-bucket incremental. Empezamos a partir de la idea de que creemos que debería ser beneficioso razonar conjuntamente con las variables de un modelo que tienen una alta correlación, y desarrollamos una estrategia para la selección de regiones basada en esa idea. Posteriormente, implementamos nuestra estrategia y exploramos formas de mejorarla, y finalmente medimos los resultados obtenidos usando nuestra estrategia y los comparamos con varios métodos de referencia. Nuestros resultados indican que nuestra estrategia obtiene límites inferiores más ajustados que nuestros dos métodos de referencia. También consideramos y descartamos dos posibles hipótesis que podrían explicar esta mejora.Els models en graf probabilístics, com bé els camps aleatoris de Markov i les xarxes bayesianes, ofereixen poderosos marcs de treball per la representació del coneixement i el raonament en models amb grans quantitats de variables. Tanmateix, els problemes d’inferència exacta en models de grafs son NP-hard en general, el qual ha provocat que es produeixi bastant d’interès en mètodes d’inferència aproximats. El mini-bucket incremental es un marc de treball per a l’inferència aproximada que produeix com a resultat límits aproximats inferior i superior de la funció de partició exacta que funciona començant a partir d’un model al qual se li han relaxat tots els constraints -és a dir, un model amb les regions més petites possibles- i anar afegint a l’aproximació regions incrementalment més grans. Els mètodes d’inferència aproximada que existeixen actualment produeixen límits superiors ajustats de la funció de partició. Tanmateix, els límits inferiors acostumen a ser massa imprecisos o fins aviat trivials. El objectiu d’aquest projecte es recercar estratègies de partició que millorin els límits inferiors obtinguts amb l’algorisme de mini-bucket, treballant dins del marc de treball del mini-bucket incremental. La nostra idea de partida pel projecte es que creiem que hauria de ser beneficiós per la qualitat de l’aproximació raonar conjuntament amb les variables del model que tenen una alta correlació entre elles, i desenvolupem una estratègia per a la selecció de regions basada en aquesta idea. Posteriorment, implementem la nostra estratègia i explorem formes de millorar-la, i finalment mesurem els resultats obtinguts amb la nostra estratègia i els comparem a diversos mètodes de referència. Els nostres resultats indiquen que la nostra estratègia obté límits inferiors més ajustats que els nostres dos mètodes de referència. També considerem i descartem dues possibles hipòtesis que podrien explicar aquesta millora.Probabilistic graphical models such as Markov random fields and Bayesian networks provide powerful frameworks for knowledge representation and reasoning over models with large numbers of variables. Unfortunately, exact inference problems on graphical models are generally NP-hard, which has led to signifi- cant interest in approximate inference algorithms. Incremental mini-bucket is a framework for approximate inference that provides upper and lower bounds on the exact partition function by, starting from a model with completely relaxed constraints, i.e. with the smallest possible regions, incrementally adding larger regions to the approximation. Current approximate inference algorithms provide tight upper bounds on the exact partition function but loose or trivial lower bounds. This project focuses on researching partitioning strategies that improve the lower bounds obtained with mini-bucket elimination, working within the framework of incremental mini-bucket. We start from the idea that variables that are highly correlated should be reasoned about together, and we develop a strategy for region selection based on that idea. We implement the strategy and explore ways to improve it, and finally we measure the results obtained using the strategy and compare them to several baselines. We find that our strategy performs better than both of our baselines. We also rule out several possible explanations for the improvement

    Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees

    Full text link
    Deep Reinforcement Learning (DRL) has achieved impressive success in many applications. A key component of many DRL models is a neural network representing a Q function, to estimate the expected cumulative reward following a state-action pair. The Q function neural network contains a lot of implicit knowledge about the RL problems, but often remains unexamined and uninterpreted. To our knowledge, this work develops the first mimic learning framework for Q functions in DRL. We introduce Linear Model U-trees (LMUTs) to approximate neural network predictions. An LMUT is learned using a novel on-line algorithm that is well-suited for an active play setting, where the mimic learner observes an ongoing interaction between the neural net and the environment. Empirical evaluation shows that an LMUT mimics a Q function substantially better than five baseline methods. The transparent tree structure of an LMUT facilitates understanding the network's learned knowledge by analyzing feature influence, extracting rules, and highlighting the super-pixels in image inputs.Comment: This paper is accepted by ECML-PKDD 201

    Using patterns position distribution for software failure detection

    Get PDF
    Pattern-based software failure detection is an important topic of research in recent years. In this method, a set of patterns from program execution traces are extracted, and represented as features, while their occurrence frequencies are treated as the corresponding feature values. But this conventional method has its limitation due to ignore the pattern’s position information, which is important for the classification of program traces. Patterns occurs in the different positions of the trace are likely to represent different meanings. In this paper, we present a novel approach for using pattern’s position distribution as features to detect software failure. The comparative experiments in both artificial and real datasets show the effectiveness of this method

    Validating module network learning algorithms using simulated data

    Get PDF
    In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators.Comment: 13 pages, 6 figures + 2 pages, 2 figures supplementary informatio
    corecore