2,952 research outputs found

    Fault management based on machine learning

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Machine Learning (ML) brings many benefits for network operation. In this paper, basic ML concepts and its integration into existing network control and management planes are reviewed. Case studies covering fault management are illustrated.Peer ReviewedPostprint (author's final draft

    Towards Flexible and Cognitive Production—Addressing the Production Challenges

    Get PDF
    Globalization in the field of industry is fostering the need for cognitive production systems. To implement modern concepts that enable tools and systems for such a cognitive production system, several challenges on the shop floor level must first be resolved. This paper discusses the implementation of selected cognitive technologies on a real industrial case-study of a construction machine manufacturer. The partner company works on the concept of mass customization but utilizes manual labour for the high-variety assembly stations or lines. Sensing and guidance devices are used to provide information to the worker and also retrieve and monitor the working, with respecting data privacy policies. Next, a specified process of data contextualization, visual analytics, and causal discovery is used to extract useful information from the retrieved data via sensors. Communications and safety systems are explained further to complete the loop of implementation of cognitive entities on a manual assembly line. This deepened involvement of cognitive technologies are human-centered, rather than automated systems. The explained cognitive technologies enhance human interaction with the processes and ease the production methods. These concepts form a quintessential vision for an effective assembly line. This paper revolutionizes the existing industry 4.0 with an even-intensified human–machine interaction and moving towards cognitivity

    Prescriptive Analytics Data Canvas: Strategic Planning For Prescriptive Analytics In Smart Factories

    Get PDF
    Prescriptive Analytics deals with the task of prescribing actionable decisions. These decision-making processes are usually based on expert knowledge and existing Data Analytics solutions in a specific manufacturing environment. Prescriptive Analytics is seen as the next big thing for smart factories. Most Use Cases still focus on the descriptive, diagnostic, or predictive level. This is partly due to the complexity of Prescriptive Analytics algorithms. Another major challenge for practitioners is the lack of transparency when planning Use Cases as they are mostly seen as standalone initiatives. This paper presents a novel approach to developing Use Cases based on a fit-gap analysis for existing data objects for Prescriptive Production Management in the Smart Factory. First, a Prescriptive Analytics Data Canvas is developed to structure the input data for Prescriptive Analytics in the Smart Factory. Then, promising Use Cases are selected based on the Data Canvas and existing data collection methods. Synergies between different Use Cases in the same factory are derived. We demonstrate the functionality and usability of the developed artifact and method in a real-world IoT-Factory scenario

    Explainable Predictive Maintenance

    Full text link
    Explainable Artificial Intelligence (XAI) fills the role of a critical interface fostering interactions between sophisticated intelligent systems and diverse individuals, including data scientists, domain experts, end-users, and more. It aids in deciphering the intricate internal mechanisms of ``black box'' Machine Learning (ML), rendering the reasons behind their decisions more understandable. However, current research in XAI primarily focuses on two aspects; ways to facilitate user trust, or to debug and refine the ML model. The majority of it falls short of recognising the diverse types of explanations needed in broader contexts, as different users and varied application areas necessitate solutions tailored to their specific needs. One such domain is Predictive Maintenance (PdM), an exploding area of research under the Industry 4.0 \& 5.0 umbrella. This position paper highlights the gap between existing XAI methodologies and the specific requirements for explanations within industrial applications, particularly the Predictive Maintenance field. Despite explainability's crucial role, this subject remains a relatively under-explored area, making this paper a pioneering attempt to bring relevant challenges to the research community's attention. We provide an overview of predictive maintenance tasks and accentuate the need and varying purposes for corresponding explanations. We then list and describe XAI techniques commonly employed in the literature, discussing their suitability for PdM tasks. Finally, to make the ideas and claims more concrete, we demonstrate XAI applied in four specific industrial use cases: commercial vehicles, metro trains, steel plants, and wind farms, spotlighting areas requiring further research.Comment: 51 pages, 9 figure

    Let’s augment the future together!:Augmented reality troubleshooting support for IT/OT rolling stock failures

    Get PDF
    The railway industry is moving to a socio-technological system that relies on computer-controlled and human-machine interfaces. Opportunities arise for creating new services and commercial business cases by using technological innovations and traffic management systems. The convergence of Information Technology (IT) with Operational Technology (OT) is critical for cost-effective and reliable railway operations. However, this convergence introduces complexities, leading to more intricate rolling stock system failures. Hence, operators necessitate assistance in their troubleshooting and maintenance strategy to simplify the decision-making and action-taking processes. Augmented Reality (AR) emerges as a pivotal tool for troubleshooting within this context. AR enhances the operator’s ability to visualize, contextualize, and understand complex data by overlaying real-time and virtual information onto physical objects. AR supports the identification of IT/OT rolling stock system failures, offers troubleshooting directions, and streamlines maintenance procedures, ultimately enhancing decision-making and action-taking processes. This thesis investigates how AR can support operators in navigating troubleshooting and maintenance challenges posed by IT/OT rolling stock system failures in the railway industry

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    A Tutorial on Machine Learning for Failure Management in Optical Networks

    Get PDF
    Failure management plays a role of capital importance in optical networks to avoid service disruptions and to satisfy customers' service level agreements. Machine learning (ML) promises to revolutionize the (mostly manual and human-driven) approaches in which failure management in optical networks has been traditionally managed, by introducing automated methods for failure prediction, detection, localization, and identification. This tutorial provides a gentle introduction to some ML techniques that have been recently applied in the field of the optical-network failure management. It then introduces a taxonomy to classify failure-management tasks and discusses possible applications of ML for these failure management tasks. Finally, for a reader interested in more implementative details, we provide a step-by-step description of how to solve a representative example of a practical failure-management task

    Data Analytics and Knowledge Discovery for Root Cause Analysis in LTE Self-Organizing Networks.

    Get PDF
    En las últimas décadas, las redes móviles han cobrado cada vez más importancia en el mundo de las telecomunicaciones. Lo que empezó con el objetivo de dar un servicio de voz a nivel global, ha tomado recientemente la direcci\'on de convertirse en un servicio casi exclusivo de datos en banda ancha, dando lugar a la red LTE. Como consecuencia de la continua aparición de nuevos servicios, los usuarios demandan cada vez redes con mayor capacidad, mejor calidad de servicio y a precios menores. Esto provoca una dura competición entre los operadores, que necesitan reducir costes y cortes en el servicio causados por trabajos de mejora o problemas. Para este fin, las redes autoorganizadas SON (Self-Organizing Network) proporcionan herramientas para la automatización de las tareas de operación y mantenimiento, haciéndolas más rápidas y mantenibles por pequeños equipos de expertos. Las funcionalidades SON se dividen en tres grupos principales: autoconfiguración (Self-configuration, los elementos nuevos se configuran de forma automática), autooptimización (Self-optimization, los parámetros de la red se actualizan de forma automática para dar el mejor servicio posible) y autocuración (Self-healing, la red se recupera automáticamente de problemas). En el ambiente competitivo de las redes móviles, los cortes de servicio provocados por problemas en la red causan un gran coste de oportunidad, dado que afectan a la experiencia de usuario. Self-healing es la función SON que se encarga de la automatización de la resolución de problemas. El objetivo principal de Self-healing es reducir el tiempo que dura la resolución de un problema y liberar a los expertos de tareas repetitivas. Self-healing tiene cuatro procesos principales: detección (identificar que los usuarios tienen problemas en una celda), compensación (redirigir los recursos de la red para cubrir a los usuarios afectados), diagnosis (encontrar la causa de dichos problemas) y recuperación (realizar las acciones necesarias para devolver los elementos afectados a su operación normal). De todas las funcionalidades SON, Self-healing (especialmente la función de diagnosis) es la que constituye el mayor desafío, dada su complejidad, y por tanto, es la que menos se ha desarrollado. No hay sistemas comerciales que hagan una diagnosis automática con la suficiente fiabilidad para convencer a los operadores de red. Esta falta de desarrollo se debe a la ausencia de información necesaria para el diseño de sistemas de diagnosis automática. No hay bases de datos que recojan datos de rendimiento de la red en casos problemáticos y los etiqueten con la causa del problema que puedan ser estudiados para encontrar los mejores algoritmos de tratamiento de datos. A pesar de esto, se han propuesto soluciones basadas en la Inteligencia Artificial (IA) para la diagnosis, tomando como punto de partida la limitada información disponible. Estos algoritmos a su vez necesitan ser entrenados con datos realistas. Nuevamente, dado que no hay bases de datos de problemas reales, los datos de entrenamiento suelen ser extraídos de simulaciones, lo cual les quita realismo. La causa de la falta de datos es que los expertos en resolución de problemas no registran los casos conforme los van solucionando. En el ambiente competitivo en el que trabajan, su tiempo es un recurso limitado que debe ser utilizado para resolver problemas y no para registrarlos. En el caso en que tales bases de datos fueran recogidas, un aspecto importante a tener en cuenta es que el volumen, variabilidad y velocidad de generación de los datos hacen que éste sea considerado un problema Big Data. El problema principal de los sistemas de diagnosis automática es la falta de conocimiento experto. Para resolver esto, el conocimiento experto debe convertirse a un formato utilizable. Este proceso se conoce como adquisición del conocimiento. Hay dos aproximaciones a la adquisición del conocimiento: manual(a través de entrevistas o con la implicación de los expertos en el desarrollo) o a través de la analítica de datos (minería de datos en bases de datos que contienen el resultado del trabajo de los expertos). Esta tesis estudia la aproximación de la analítica de datos, utilizando las técnicas KDD (Knowledge Discovery and Datamining). Para que esta aproximación pueda ser utilizada, se requiere la existencia de una base de datos de casos reales de fallo, lo cual es un gran desafío. La visión general de esta tesis es una plataforma en la que cada vez que un experto diagnostica un problema en la red, éste puede reportarlo con un esfuerzo mínimo y almacenarlo en el sistema. La parte central de este sistema es un algoritmo de diagnosis (en esta tesis un controlador de lógica borrosa) que evoluciona y mejora aprendiendo de cada nuevo ejemplo, hasta llegar al punto en el que los expertos pueden confiar en su precisión para los problemas más comunes. Cada vez que surja un nuevo problema, se añadirá a la base de datos del sistema, incrementando así aún más su potencia. El fin es liberar a los expertos de tareas repetitivas, de modo que puedan dedicar su tiempo a desafíos cuya resolución sea más gratificante. Por tanto, el primer objetivo de esta tesis es la colección de una base de datos de casos reales de fallos. Para ello, se diseña una interfaz de usuario para la recolección de datos teniendo en cuenta como requisito prioritario la facilidad de uso. Una vez que se dispone de datos recogidos, se analizarán para comprender mejor sus propiedades y obtener la información necesaria para el diseño de los algoritmos de analítica de datos. Otro objetivo de esta tesis es la creación de un modelo de fallos de LTE, encontrando las relaciones entre el rendimiento de la red y la ocurrencia de los problemas. La adquisición del conocimiento se realiza mediante la aplicación de algoritmos de analítica sobre los datos recogidos. Se diseña un proceso KDD que extrae los parámetros de un controlador de lógica borrosa y se aplica sobre la base de datos recogida. Finalmente, esta tesis también tiene como objetivo realizar un análisis de los aspectos Big Data de las funciones Self-healing, y tenerlos en cuenta a la hora de diseñar los algoritmos
    corecore