62 research outputs found

    Analytical Evaluation of Coverage-Oriented Femtocell Network Deployment

    Full text link
    This paper proposes a coverage-oriented femtocell network deployment scheme, in which the femtocell base stations (BSs) can decide whether to be active or inactive depending on their distances from the macrocell BSs. Specifically, as the areas close to the macrocell BSs already have satisfactory cellular coverage, the femtocell BSs located inside such areas are kept to be inactive. Thus, all the active femtocells are located in the poor macrocell coverage areas. Based on a stochastic geometric framework, the coverage probability can be analyzed with tractable results. Surprisingly, the results show that the proposed scheme, although with a lower defacto femtocell density, can achieve better coverage performance than that keeping all femtocells in the entire network to be active. The analytical results further identify the achievable optimal performance of the new scheme, which provides mobile operators a guideline for femtocell deployment and operation.Comment: 6 pages, 7 figures, published in IEEE International Conference on Communications (ICC'13

    Analytical evaluation of coverage-oriented femtocell network deployment

    No full text
    This paper proposes a coverage-oriented femtocell network deployment scheme, in which the femtocell base stations (BSs) can decide whether to be active or inactive depending on their distances from the macrocell BSs. Specifically, as the areas close to the macrocell BSs already have satisfactory cellular coverage, the femtocell BSs located inside such areas are kept to be inactive. Thus, all the active femtocells are located in the poor macrocell coverage areas. Based on a stochastic geometric framework, the coverage probability can be analyzed with tractable results. Surprisingly, the results show that the proposed scheme, although with a lower defacto femtocell density, can achieve better coverage performance than that keeping all femtocells in the entire network to be active. The analytical results further identify the achievable optimal performance of the new scheme, which provides mobile operators a guideline for femtocell deployment and operation.H. Wang is with the Australian National University and NICTA. NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program. This work was supported by the Australian Research Councils Discovery Projects funding scheme (Project No. DP110102548 and Project No. DP130101760)

    Interference Management Based on RT/nRT Traffic Classification for FFR-Aided Small Cell/Macrocell Heterogeneous Networks

    Full text link
    Cellular networks are constantly lagging in terms of the bandwidth needed to support the growing high data rate demands. The system needs to efficiently allocate its frequency spectrum such that the spectrum utilization can be maximized while ensuring the quality of service (QoS) level. Owing to the coexistence of different types of traffic (e.g., real-time (RT) and non-real-time (nRT)) and different types of networks (e.g., small cell and macrocell), ensuring the QoS level for different types of users becomes a challenging issue in wireless networks. Fractional frequency reuse (FFR) is an effective approach for increasing spectrum utilization and reducing interference effects in orthogonal frequency division multiple access networks. In this paper, we propose a new FFR scheme in which bandwidth allocation is based on RT/nRT traffic classification. We consider the coexistence of small cells and macrocells. After applying FFR technique in macrocells, the remaining frequency bands are efficiently allocated among the small cells overlaid by a macrocell. In our proposed scheme, total frequency-band allocations for different macrocells are decided on the basis of the traffic intensity. The transmitted power levels for different frequency bands are controlled based on the level of interference from a nearby frequency band. Frequency bands with a lower level of interference are assigned to the RT traffic to ensure a higher QoS level for the RT traffic. RT traffic calls in macrocell networks are also given a higher priority compared with nRT traffic calls to ensure the low call-blocking rate. Performance analyses show significant improvement under the proposed scheme compared with conventional FFR schemes

    Mobility management for vehicular user equipment in LTE/mobile femtocell networks

    Get PDF
    Vehicular User Equipment (UE) performance during mobility faces two issues relating to signaling and transmission, namely Handover (HO) and link adaptation. This paper shows that both processes are experiencing degradation during mobility and that vehicular UEs suffer from call drops and loss of connections. Therefore, this work presents an effective technique using Mobile-Femtos to improve vehicular UEs' HO process and link quality. Results show that vehicular UEs attached to a Mobile-Femto achieved better signalling and Link Ergodic capacity and as a consequence the outage probability was reduced. The achieved results indicated that deploying Mobile-Femtos under 25dB Vehicular Penetration Loss (VPL) has improved the vehicular UE Link Ergodic capacity by 1% and reduced the signal outage probability by 1.8% compared to the eNB direct transmission. Consequently, Drop Calls Probability (DCP) and Block Calls Probability (BCP) have been reduced by 7% and 14% respectively compared to the direct transmission from the eNB

    Modeling and Analysis of K-Tier Downlink Heterogeneous Cellular Networks

    Full text link
    Cellular networks are in a major transition from a carefully planned set of large tower-mounted base-stations (BSs) to an irregular deployment of heterogeneous infrastructure elements that often additionally includes micro, pico, and femtocells, as well as distributed antennas. In this paper, we develop a tractable, flexible, and accurate model for a downlink heterogeneous cellular network (HCN) consisting of K tiers of randomly located BSs, where each tier may differ in terms of average transmit power, supported data rate and BS density. Assuming a mobile user connects to the strongest candidate BS, the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater than 1 when in coverage, Rayleigh fading, we derive an expression for the probability of coverage (equivalently outage) over the entire network under both open and closed access, which assumes a strikingly simple closed-form in the high SINR regime and is accurate down to -4 dB even under weaker assumptions. For external validation, we compare against an actual LTE network (for tier 1) with the other K-1 tiers being modeled as independent Poisson Point Processes. In this case as well, our model is accurate to within 1-2 dB. We also derive the average rate achieved by a randomly located mobile and the average load on each tier of BSs. One interesting observation for interference-limited open access networks is that at a given SINR, adding more tiers and/or BSs neither increases nor decreases the probability of coverage or outage when all the tiers have the same target-SINR.Comment: IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 550 - 560, Apr. 201

    Adaptive management of cognitive radio networks employing femtocells

    Get PDF
    Network planning and management are challenging issues in a two-tier network. Tailoring to cognitive radio networks (CRNs), network operations and transmissions become more challenging due to the dynamic spectrum availability. This paper proposes an adaptive network management system that provides switching between different CRN management structures in response to the spectrum availability and changes in the service time required for the radio access. The considered network management system includes conventional macrocell-only structure, and centralized/distributed structures overlaid with femtocells. Furthermore, analytical expressions of per-tier successful connection probability and throughput are provided to characterize the network performance for different network managements. Spectrum access in dynamic radio environments is formulated according to the quality of service (QoS) constraint that is related to the connection probability and outage probability. Results show that the proposed intelligent network management system improves the maximum capacity and reduces the number of blocked connections by adapting between various network managements in response to free spectrum transmission slots. A road map for the deployment and management of cognitive macro/femto networks is also presented

    Energy efficiency and interference management in long term evolution-advanced networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Cellular networks are continuously undergoing fast extraordinary evolution to overcome technological challenges. The fourth generation (4G) or Long Term Evolution-Advanced (LTE-Advanced) networks offer improvements in performance through increase in network density, while allowing self-organisation and self-healing. The LTE-Advanced architecture is heterogeneous, consisting of different radio access technologies (RATs), such as macrocell, smallcells, cooperative relay nodes (RNs), having various capabilities, and coexisting in the same geographical coverage area. These network improvements come with different challenges that affect users’ quality of service (QoS) and network performance. These challenges include; interference management, high energy consumption and poor coverage of marginal users. Hence, developing mitigation schemes for these identified challenges is the focus of this thesis. The exponential growth of mobile broadband data usage and poor networks’ performance along the cell edges, result in a large increase of the energy consumption for both base stations (BSs) and users. This due to improper RN placement or deployment that creates severe inter-cell and intracell interferences in the networks. It is therefore, necessary to investigate appropriate RN placement techniques which offer efficient coverage extension while reducing energy consumption and mitigating interference in LTE-Advanced femtocell networks. This work proposes energy efficient and optimal RN placement (EEORNP) algorithm based on greedy algorithm to assure improved and effective coverage extension. The performance of the proposed algorithm is investigated in terms of coverage percentage and number of RN needed to cover marginalised users and found to outperform other RN placement schemes. Transceiver design has gained importance as one of the effective tools of interference management. Centralised transceiver design techniques have been used to improve network performance for LTE-Advanced networks in terms of mean square error (MSE), bit error rate (BER) and sum-rate. The centralised transceiver design techniques are not effective and computationally feasible for distributed cooperative heterogeneous networks, the systems considered in this thesis. This work proposes decentralised transceivers design based on the least-square (LS) and minimum MSE (MMSE) pilot-aided channel estimations for interference management in uplink LTE-Advanced femtocell networks. The decentralised transceiver algorithms are designed for the femtocells, the macrocell user equipments (MUEs), RNs and the cell edge macrocell UEs (CUEs) in the half-duplex cooperative relaying systems. The BER performances of the proposed algorithms with the effect of channel estimation are investigated. Finally, the EE optimisation is investigated in half-duplex multi-user multiple-input multiple-output (MU-MIMO) relay systems. The EE optimisation is divided into sub-optimal EE problems due to the distributed architecture of the MU-MIMO relay systems. The decentralised approach is employed to design the transceivers such as MUEs, CUEs, RN and femtocells for the different sub-optimal EE problems. The EE objective functions are formulated as convex optimisation problems subject to the QoS and transmit powers constraints in case of perfect channel state information (CSI). The non-convexity of the formulated EE optimisation problems is surmounted by introducing the EE parameter substractive function into each proposed algorithms. These EE parameters are updated using the Dinkelbach’s algorithm. The EE optimisation of the proposed algorithms is achieved after finding the optimal transceivers where the unknown interference terms in the transmit signals are designed with the zero-forcing (ZF) assumption and estimation errors are added to improve the EE performances. With the aid of simulation results, the performance of the proposed decentralised schemes are derived in terms of average EE evaluation and found to be better than existing algorithms

    The co-existence of Femtocell with WiFi (in case of unlicensed spectrum splitting & sharing)

    Get PDF
    Les femtocellules et le WiFi sont souvent présentés comme étant deux technologies concurrentes. Cependant, la réalité dit totalement l'inverse; ces technologies sont supposées jouer des rôles complémentaires dans le but d'accompagner la croissance fulgurante du trafic mobile. De plus, elles sont souvent implémentées dans un même et unique équipement d'accès. Les équipements mobiles pourront ainsi choisir l'utilisation de la technologie qui représente la meilleure option. Le déploiement des femtocellules dans les hotspots WiFi permettra aux opérateurs de donner aux usagers la possibilité d'utiliser les technologies 3G. Par conséquent, grâce à ces deux technologies, la qualité de l'expérience de la communication pendant la mobilité sera sans doute meilleure. Toutefois, cette coexistence présente de nouveaux défis en vue de l'amélioration de performances en termes des débits de transmission et de qualité de service des usagers. Ainsi, nous croyons qu'un partitionnement efficace des ressources spectrales accompagné d'un réglage minutieux des paramètres de transmission permettra de maximiser les performances des deux technologies. Dans ce mémoire, nous nous intéressons à la coexistence des technologies femtocellule et WiFi : (i) Dans un premier lieu, nous proposons une technique de partage des bandes spectrales ouvertes entre le réseau WiFi et le réseau femtocellule. La technique proposée assure une qualité de service et une équité entre les transmissions concurrentes. En se basant sur plusieurs simulations, nous démontrons que la technique proposée assure un partage équitable du spectre. (ii) Dans un second lieu, nous proposons un Framework ayant pour objectif l'amélioration du débit total du réseau des femtocellules lorsque ces dernières utilisent simultanément des bandes de spectres ouvertes et d'autres sous licences. Le système étudié, comprenant le réseau WiFi et le réseau des femtocellules, a été modélisé analytiquement et ses performances ont été évaluées par plusieurs simulations. Ces dernières ont permis de quantifier l'effet de plusieurs paramètres de la technologie WiFi sur les performances du système étudié.\ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : Femtocellule, WiFi, allocation de spectre, qualité de service, équité, capacité, spectre sans licence, modèle de back-off
    • …
    corecore